At the Centre for Integrative Neuroscience, the computational neuroscience groups also take this three-layered approach of computational neuroscience:
In the spirit of Barlow’s original idea, the group of Matthias Bethge tries to find good representations of natural images that allow to encode them in a most efficient manner. In addition to storage, such representations can also be used for denoising or filling-in of missing image information or to ‘fantasize’ new images. Subsequently, they investigate using psychophysical techniques how well human observers can tell images fantasized by the model apart from real-world photographs. In addition to technical applications, this can yield interesting insights into what features of an image are perceptually important and therefore processed by the visual system. Bethge’s group combines such computational approaches with the question of how neural populations in the brain actually perform the computations required to interpret visual input signals. To this end, they develop new models and data analysis techniques for analyzing and understanding the data collected by experimentalists.
The group of Martin Giese focuses on the motor part and studies how complex movements and actions are represented in the brain, and how the learning principles underlying these representations can be exploited for technical applications in computer vision, robotics and biomedical systems. One focus of Giese’s group is the development end experimental testing of models for action representation in the brain. This work includes the development of neural models and testing them in psychophysical, neurophysiological and fMRI experiments. The second focus is the development of technical systems exploiting learning-based action representations for medical diagnosis, computer animation and movement programming in robots. For this purpose they exploit special learning techniques that allow to represent complex movements and actions on the basis of very few learned example patterns.
In 2010, the Bernstein Center for Computational Neuroscience Tübingen was founded to integrate the work of these computational neuroscience groups for computational neuroscience with the experimental community acquiring massive amounts of highly complex data on one hand, and with the machine learning community, who are experts in developing algorithms for large-scale problems on the other hand. At the Bernstein Center, scientists from these backgrounds work closely together to investigate the neural basis of perceptual inference - the process of extracting underlying aspects of the external world that are potentially relevant to the organism. In particular, a main research goal is to understand the coordinated interaction of neurons during perceptual information processing.
Find out more about our national and international partners