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Abstract

The core components of many modern neural network architectures, such as
transformers, convolutional, or graph neural networks, can be expressed as linear
layers with weight-sharing. Kronecker-Factored Approximate Curvature (K-FAC),
a second-order optimisation method, has shown promise to speed up neural network
training and thereby reduce computational costs. However, there is currently
no framework to apply it to generic architectures, specifically ones with linear
weight-sharing layers. In this work, we identify two different settings of linear
weight-sharing layers which motivate two flavours of K-FAC – expand and reduce.
We show that they are exact for deep linear networks with weight-sharing in their
respective setting. Notably, K-FAC-reduce is generally faster than K-FAC-expand,
which we leverage to speed up automatic hyperparameter selection via optimising
the marginal likelihood for a Wide ResNet. Finally, we observe little difference
between these two K-FAC variations when using them to train both a graph neural
network and a vision transformer. However, both variations are able to reach a fixed
validation metric target in 50-75% of the number of steps of a first-order reference
run, which translates into a comparable improvement in wall-clock time. This
highlights the potential of applying K-FAC to modern neural network architectures.

1 Introduction

One of the key driving forces behind the success of deep learning is arguably the development and
scaling of novel deep neural network (DNN) architectures like transformers (Vaswani et al., 2017) or
graph neural networks (Battaglia et al., 2018; Scarselli et al., 2009). While the landscape of neural
network architectures seems vast, their core building blocks like attention, graph, recurrent, and
convolutional layers can be expressed as simple linear layers with weight-sharing. For example,
the weight-sharing can happen over a sequence of tokens, e.g. in language modelling, over image
patches, or by tying weights in the forward pass. The perspective of expressing the core neural
network operations as linear operations has been formalised in a different context with the Tensor
Programs framework (Yang, 2019), which develops a language to express arbitrary neural network
computations as a composition of simple matrix multiplications and coordinate-wise nonlinearities.
One downside of relying on increasing the scale of the models to achieve better performance is
the increased compute cost. To decrease these costs, we can try to improve the efficiency of the
optimisation algorithms, which motivates exploring second-order methods like Newton’s method and
natural gradient descent (Amari, 1998), which uses the Fisher information matrix, or short, the Fisher.
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Kronecker-Factored Approximate Curvature (Heskes, 2000; Martens & Grosse, 2015, K-FAC) is
an approximation to the Fisher, or for common loss functions equivalently, the generalised Gauss-
Newton matrix (GGN). It has first been derived in the context of optimisation for linear layers and
later for convolutional (Grosse & Martens, 2016) and recurrent (Martens et al., 2018) layers. In
deep learning, using the Fisher/GGN instead of the Hessian has been the de-facto standard; in turn,
K-FAC has arguably been one of the most popular approximations of the Fisher/GGN, probably due
to its relative efficiency as it approximates each layer’s Fisher/GGN independently with a Kronecker
product. While K-FAC has also been used for transformers (Grosse et al., 2023; Osawa et al., 2022;
Pauloski et al., 2021; Zhang et al., 2019a) and a graph neural network (Izadi et al., 2020), there is no
theoretical framework for these cases and for applying K-FAC to new architectures.

Contributions. We propose such a framework by leveraging the idea of linear layers with weight-
sharing. This concept reveals the additional structure in the Fisher/GGN due to the weight-sharing
that has to be explicitly considered when applying K-FAC. We identify two settings of such layers
that motivate two different flavours of the K-FAC approximation: K-FAC-expand and K-FAC-reduce.
The former corresponds to the Kronecker Factors for Convolution (KFC) approximation in Grosse
& Martens (2016), to the simplest approximation for recurrent layers proposed in Martens et al.
(2018), and has been used for transformers (Grosse et al., 2023; Osawa et al., 2022; Pauloski et al.,
2021; Zhang et al., 2019a) – though without discussion or motivation. Notably, K-FAC-reduce is
exact for certain settings, like deep linear networks with convolutions and average pooling, under the
same conditions that K-FAC is exact for deep linear networks without weight-sharing, whereas the
currently used K-FAC-expand is not. In practice, both approximations can be used in each setting and
K-FAC-reduce generally has a lower computational and memory complexity than K-FAC-expand. We
empirically verify this speed difference with a Wide ResNet on CIFAR-10. Moreover, we show that
the two K-FAC variations applied to a graph neural network and vision transformer can reach a fixed
validation metric target in 50-75% of the steps of a first-order reference method, which translates into
an almost equivalent decrease in wall-clock time. Although this does not demonstrate that K-FAC is
a superior training algorithm, it indicates the potential of extending K-FAC to modern deep learning
architectures. In general, K-FAC can be used as a drop-in Hessian approximation, e.g., in Laplace
approximations for Bayesian deep learning (Daxberger et al., 2021; MacKay, 1992; Ritter et al., 2018)
or in natural gradient variational inference (Khan et al., 2018; Zhang et al., 2018). To demonstrate
this, we show that K-FAC-reduce can speed up automatic weight decay selection via approximate
marginal likelihood optimisation, compared to the previously used K-FAC-expand.

2 Background

We consider the supervised learning setup with a dataset D of N i.i.d. samples {xn,yn}Nn=1, with
xn ∈ RD and yn ∈ RC , a neural net fθ : RD → RC , parameterised with θ ∈ RP , and a loss
function ℓ :RC×RC→R, which is often equivalent to a negative log likelihood, i.e. ℓ(y, fθ(x))=
− log p(y|fθ(x)). The DNN is usually trained with a (stochastic) gradient-based iterative update
rule, in its simplest form θt+1 = θt − α∇θtℓ(y, fθt(x)), where t indicates the iteration and α is the
learning rate. If we assume a local quadratic approximation of the loss around the current parameter
iterate θt, we get a preconditioned gradient update step, i.e.

θt+1 = θt − αC−1
t ∇θtℓ(y, fθt(x)), (1)

where Ct∈RP×P is the symmetric positive definite (p.d.) preconditioner. Setting Ct to the Hessian
of the loss w.r.t. the model parameters Ht := ∇2

θt
ℓ(y, fθt(x)) yields a simplified version of the

classic Newton’s method; however, since Ht is expensive to compute, store, and not guaranteed to be
p.d., it is not commonly used in deep learning.

2.1 Second-order optimisation in deep learning

The term “second-order” is used ambiguously in the literature: it can refer to using second-order
derivatives like the Hessian of the loss w.r.t. the parameters of the model, or approximations thereof,
like the GGN, which however only contains second-order derivatives of the loss w.r.t. the model
outputs and not the parameters. It can also refer to using some variation of the second moment of the
(average) mini-batch gradient, which blurs the line between commonly used methods that are usually
considered “first-order” methods like Adam (Kingma & Ba, 2015).
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There have been numerous works on “second-order” methods in deep learning. For example, Martens
(2010) proposes to use Hessian-free optimisation, Gupta et al. (2018) introduce an architecture-
agnostic structured version of AdaGrad (Duchi et al., 2011) called Shampoo, Goldfarb et al. (2020)
develop K-BFGS, a Kronecker-factored stochastic quasi-Newton method, and Ren & Goldfarb (2021)
introduce Tensor Normal Training, which is similar to Shampoo, but approximates the Fisher; just
to name a few among many more methods (Yang et al., 2022, 2023; Yao et al., 2021). While these
methods have been shown to require fewer steps than commonly used first-order methods to reach
similar performance in many settings, the mechanism behind their benefits is not fully understood.
It could be orthogonal to unique properties of the true GGN or Fisher but might be more related
to being able to adapt to the stochastic gradient noise (Kunstner et al., 2019) or to the fact that
K-FAC with a specific but commonly used form of damping can be viewed as an approximation to
gradient descent on neurons instead of weights (Benzing, 2022). In any case, generalising K-FAC to
modern architectures is a promising direction because it is used in many training algorithms that can
potentially speed up training and train a wider range of architectures. Moreover, it can be used to
study the mechanisms behind the benefits of second-order methods in deep learning.

2.2 Linear weight-sharing layers

Here, we present three examples of how the core building blocks of modern DNN architectures can be
expressed as linear layers with weight-sharing. DNNs have a layered structure, i.e. they can be written
as fθ = fθL

◦. . .◦fθℓ
◦. . .◦fθ1 , with θ = concat

(
θ1, . . . ,θℓ, . . . ,θL

)
and L the number of layers;

concat(·, . . . , ·) concatenates vector inputs to a larger vector. For a linear layer, we have fθℓ
(x) =

ϕ(Wℓx+ bℓ), where x∈RPℓ,in ,Wℓ∈RPℓ,out×Pℓ,in , b∈RPℓ,out , θℓ = concat
(
vec(Wℓ), bℓ

)
∈RPℓ ,

and Pℓ = Pℓ,outPℓ,in+Pℓ,out; vec(·) vectorises a matrix by concatenating its column vectors and ϕ is
an element-wise nonlinearity. For simplicity, we subsume the bias into the weights. We are interested
in linear layers with weights shared across an additional input dimension of size R, i.e. with inputs
X∈RR×D.1 The linear layer is applied to this input as XW ⊺ and the weight matrix W is shared
across the additional first dimension, i.e. every element in W contributes to each row of the output.

Example 1: Attention. The transformer architecture is popular in vision (Dosovitskiy et al., 2021),
language (Brown et al., 2020), and spatio-temporal modelling (Bi et al., 2022). The inputs and outputs
of the attention operation (Bahdanau et al., 2015) in transformers are exactly shaped as described
above, where R is the sequence length, e.g. the number of tokens in language data or the number of
image patches in vision. For the i-th row of the output matrix O and the r-th row of the inputs X ,
the attention operation is generally defined as

oi =

R∑
r=1

Ai,rxr, (2)

where A∈RR×R is the attention matrix, which is normalised such that
∑R

r=1 Ai,r = 1; alternatively,
we can write it using matrix operations as O = AX . Intuitively, the outputs are a weighted sum of
the inputs, where each weighting factor indicates the importance of the r-th sequence element to
the element with index i. The most common choice for A is a variation of so-called self-attention,
defined as A = softmaxrow(XW ⊺

QWKX⊺), where WQ∈RPout×D and WK ∈RPout×D are weight
matrices and softmaxrow(·) applies the softmax function softmax(x)i := exp(xi)/

∑J
j=1 exp(xj)

for an input x∈RJ to each row of the input matrix. This corresponds to a dot-product similarity
measure of two independent linear projections of the input, allowing for asymmetric relationships
between sequence elements. The two weight matrices WQ,WK , and any linear projection of the
attention output are applied to all R sequence elements – they are linear weight-sharing layers.

Example 2: Convolution. A typical input to a 2d convolution is an image XI ∈RCin×H×W , where
Cin is the number of input channels, H is the height, and W the width of the image. We choose a
kernel of size K×K, such that we have a rank-4 weight tensor of shape Cout×Cin×K×K, where
Cout is the number of output channels. For simplicity, following Grosse & Martens (2016), we
assume that the convolution is performed with a stride of 1 and that the padding is chosen such that
the height and width of the inputs are maintained, i.e. the output image will be OI ∈RCout×H×W .

1Our framework also applies to weight-sharing where the weights are used multiple times during the forward
pass; however, we focus the presentation on an input with an explicit weight-sharing dimension.
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The elements of the output tensor of the convolution are then defined as

oId,i,j =

Cin∑
c=1

K∑
k=1

K∑
k′=1

XI
c,i+k−1,j+k′−1Wd,c,k,k′ ; (3)

the input elements Xc,i+k−1,j+k′−1 are defined as 0 outside of the image’s boundaries. Now, we can
unfold the input tensor to a matrix X ∈RHW×CinK

2

, where we have extracted and vectorised the
K×K sized patches for each of the H ·W spatial locations. The weight tensor can be reshaped to the
matrix W ∈ RCout×CinK

2

. Using these quantities, we can write the convolution as O = XW ⊺∈
RHW×Cout . Again, we can recognise the canonical form of a linear weight-sharing layer – here, with
R = HW , i.e. the weights are shared across all spatial locations.

Example 3: Graph neural network layer. We follow Battaglia et al. (2018) since their formulation
encompasses many graph neural network (GNN) layers. For the full example and notation, please
refer to Appendix A. Once again, the core operations in these kinds of models can be expressed as
linear weight-sharing layers. Here, the weights are shared across all R = NV nodes or R = NE

edges of a graph, depending on whether node or edge features are being updated.

2.3 The generalised Gauss–Newton and the Fisher matrix

To avoid computing the Hessian, approximations like the generalised Gauss–Newton matrix (GGN)
are usually used in deep learning (Botev et al., 2017; Martens, 2010; Schraudolph, 2002). Defining
Λ(fθ(xn)) :=∇2

fθ
ℓ(yn, fθ(xn))∈RC×C , we have

GGN(θ) =

N∑
n=1

Jθfθ(xn)
⊺
Λ(fθ(xn))Jθfθ(xn), (4)

which is equivalent to the Hessian when fθ is a linear model or the residual g−1(fθ(xn))−yn is zero
for all data points, where g−1 is the inverse link function, e.g. the softmax function for classification.
For all likelihoods of the exponential family with natural parameterisation the GGN coincides with
the Fisher information matrix (Martens, 2014; Wang, 2010). This is, for example, the case for the
common cross-entropy loss corresponding to a categorical likelihood and the mean-square error loss
corresponding to a Gaussian likelihood. Setting Ct in Equation (1) to the Fisher leads to natural
gradient descent (Amari, 1998). We will only state our derivations for the GGN explicitly, but they
follow analogously for the Fisher.

2.4 Kronecker-Factored Approximate Curvature

The GGN is a semi-p.d. approximation to the Hessian, of size P×P , which is still prohibitively large
for DNNs. K-FAC was proposed as an efficient approximation to a neural network’s Fisher (Heskes,
2000; Martens & Grosse, 2015) and GGN (Botev et al., 2017) matrix.2 First, we only approximate the
GGN for each layer, ignoring cross-layer interactions, which results in a block-diagonal matrix. We
define Jθℓ

(xn) :=Jθℓ
fθ(xn)=Jsℓ,n

fθ(xn)Jθℓ
sℓ,n∈RC×Pℓ as the Jacobian of the model outputs

w.r.t. the parameters of the ℓ-th layer. Now we can write sℓ,n=Wℓaℓ,n=(a⊺
ℓ,n⊗ IPℓ,out

) vec(Wℓ)

and with this we have Jθℓ
sℓ,n = a⊺

ℓ,n⊗ IPℓ,out
. Additionally, by defining bℓ,n := Jsℓ,n

fθ(xn)
⊺ ∈

RPℓ,out×C as the transposed Jacobian of the model outputs w.r.t. the pre-activations of the ℓ-th layer,
we note that Jθℓ

(xn)
⊺=(a⊺

ℓ,n⊗ IPℓ,out
)⊺bℓ,n=aℓ,n⊗ bℓ,n. K-FAC approximates the GGN of the

ℓ-th layer as

GGN(θℓ) ≈

[
1

N

N∑
n=1

aℓ,na
⊺
ℓ,n

]
︸ ︷︷ ︸

=:Aℓ

⊗

[
N∑

n=1

bℓ,nΛ(fθ(xn))b
⊺
ℓ,n

]
︸ ︷︷ ︸

=:Bℓ

, (5)

where we have replaced the (transposed) Jacobians in the definition of the GGN in Equation (4) by
aℓ,n⊗ bℓ,n and approximated the sum of Kronecker products with a Kronecker product of sums.3

2In the literature, the name “K-FAC” is used to refer to the approximation of the Fisher/GNN and to a specific
algorithm using this approximation (Martens & Grosse, 2015); here, we use it to refer to just the approximation.

3Note that the Kronecker product A⊗B is in reverse order compared to in Figure 1, because we concatenate
the columns in the derivation and the rows in the implementation when flattening a matrix with vec(·).
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Figure 1: Visualisation of K-FAC-expand and K-FAC-reduce in the expand setting. The shown
quantities are for a single layer within a deep linear network. We have N = 4, R = 2, Pℓ,in =
8, Pℓ,out=8, and Pℓ=Pℓ,in ·Pℓ,out=64. As we have seen in Section 3.2, K-FAC-expand is exact for
the expand case in this setting and K-FAC-reduce is not. For better visibility, the color scale is not the
same for all quantities, except for the approximation error (right) where black represents zero.

3 K-FAC for linear weight-sharing layers

In this section, we propose to distinguish between two different linear weight-sharing settings when
applying K-FAC. The two settings motivate two corresponding approximations, K-FAC-expand
and K-FAC-reduce. However, both approximations can be applied in each setting, see Listing 1
for an illustration with code. More details on the derivations and the proofs for Proposition 1 and
Proposition 2 can be found in Appendix B.

3.1 The expand and reduce settings

Within a network, linear layers with weight-sharing can be classified based on the point where the
weight-sharing dimension is aggregated. Specifically, there are three possible aggregation points,
which will define the setting for the ℓ-th layer:

(i) Before the ℓ-th layer, i.e. Aℓ,n∈RR×Pℓ,in is reduced to ãℓ,n∈RPℓ,in before being multiplied
with the weight matrix of the layer Wℓ. →We are in the setting of a regular linear layer and
no additional considerations are necessary when using K-FAC.

(ii) After the per-example loss, i.e. there will be N ·R labels and outputs of the model. The
per-example loss is applied to each of the N ·R output-label pairs. → This is the expand
setting, as the loss for each of the N data points is expanded with R terms.

(iii) In between the pre-activation of the ℓ-th layer Sℓ,n ∈ RR×Pℓ,out and the model output
fθ(xn), i.e. before the final aggregation over the per-example losses. → This is the reduce
setting, as all weight-sharing dimensions have been reduced during the forward pass.

If we assume a single weight-sharing dimension which will be reduced once, the number of loss
terms determines which setting applies to all linear weight-sharing layers within the model. So for
our purposes, we can identify the setting we are in simply by looking at the form of the loss.

3.2 K-FAC-expand

The expand setting can be characterised by a loss with N ·R terms, similar to N ·R i.i.d. examples,
Lexpand(fθ,D) := −

∑N
n=1

∑R
r=1 log p(yn,r|fθ(xn)r), where fθ(xn)r is the r-th row of the model

output fθ(xn)∈RR×C and yn,r is the r-th row of the label Yn∈RR×C . A typical example of this
type of loss function is language translation, where N is the dataset size and R is the sequence length.

We can express the Jacobian of the r-th row of the model output fθ(xn) ∈ RR×C w.r.t. θℓ as
Jθℓ

(xn)r =
∑R

m=1 Jsℓ,n,m
fθ(xn)rJθℓ

sℓ,n,m. Since the weights θℓ are shared across the weight-
sharing dimension of size R, we can write the r-th row of Sℓ,n as sℓ,n,r =Wℓaℓ,n,r and we have
Jθℓ

sℓ,n,r = a⊺
ℓ,n,r⊗IPℓ,out

, as for a regular linear layer. We denote bℓ,n,r,m := Jsℓ,n,m
fθ(xn)

⊺
r .
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Hence, we have Jθℓ
(xn)

⊺
r =
∑R

m=1 aℓ,n,m⊗bℓ,n,r,m. Deriving the approximation the same way as
we would with N examples is not possible, since we cannot directly write each of the N ·R loss terms
as a Kronecker product without any approximation. The Jacobians Jθℓ

(xn)r could be approximated
with a Kronecker product of sums, but this requires access to

∑R
m=1 bℓ,n,r,m and would not be exact

in the simple settings we consider later. In contrast, what can be implemented in practice without
additional backward passes and what has been used for convolutional neural networks (Grosse &
Martens, 2016) and language transformers (Grosse et al., 2023; Osawa et al., 2022; Pauloski et al.,
2021; Zhang et al., 2019a) is

GGN(θℓ) =

N∑
n=1

R∑
r=1

(
R∑

m=1

aℓ,n,m ⊗ bℓ,n,r,m

)
Λ(fθ(xn)r)

(
R∑

m′=1

a
⊺
ℓ,n,m′ ⊗ b

⊺
ℓ,n,r,m′

)

≈
N∑

n=1

R∑
r=1

R∑
m=1

(aℓ,n,m ⊗ bℓ,n,r,m)Λ(fθ(xn)r)
(
a
⊺
ℓ,n,m ⊗ b

⊺
ℓ,n,r,m

)
,

(6)

where all terms with m ̸=m′ are ignored.4 Consequently, we can apply the regular K-FAC approxi-
mation over N ·R terms instead of the usual N terms, resulting in what we call the K-FAC-expand
approximation:

K-FAC-expand

ˆGGN
expand

θℓ
:=

[
1

NR

N∑
n=1

R∑
m=1

aℓ,n,ma
⊺
ℓ,n,m

]
︸ ︷︷ ︸

=Aℓ

⊗

[
N∑

n=1

R∑
m=1

R∑
r=1

bℓ,n,r,mΛ(fθ(xn)r)b
⊺
ℓ,n,r,m

]
︸ ︷︷ ︸

=Bℓ

(7)

In the context of convolutions, this approximation has been derived by explicitly stating the assump-
tions on the activations and pre-activation derivatives (Grosse & Martens, 2016).

For deep linear networks without any weight-sharing layers, K-FAC is known to be exact assuming a
Gaussian likelihood (Bernacchia et al., 2018). While this holds for the full GGN/Fisher, we only focus
on the block-diagonal case here. To motivate K-FAC-expand, we want to show that the same also
holds for deep linear networks with weight-sharing in the expand setting. However, it does not even
hold for simplistic transformer models since the dot-product attention mechanism in transformers
directly correlates elements across the weight-sharing dimension; we discuss this in more detail in
Appendix B. A deep linear network is defined as a model of the form

fθ(x) = WL . . .Wℓ . . .W1x = Wx, (8)

where x∈RD and WL∈RC×PL,in ,Wℓ∈RPℓ,out×Pℓ,in (with Pℓ,in=Pℓ−1,out), and W1∈RP1,out×D.
Decomposing a single weight matrix W into L separate ones is a common framework for theoretical
analysis since it creates nonlinear training dynamics for gradient-based training algorithms, while
still having analytical solutions (Bernacchia et al., 2018; Saxe et al., 2014). For an input X∈RR×D

to this type of network, we can show:

Proposition 1 (Exactness of K-FAC-expand for deep linear network in the expand setting).
For layer ℓ of a deep linear network defined as in Equation (8) and a Gaussian likelihood with p.d.
covariance matrix Σ∈RC×C , K-FAC-expand is exact in the expand setting.

3.3 K-FAC-reduce

The reduce setting is characterised by a loss with just N loss terms, i.e. Lreduce(fθ,D) :=

−
∑N

n=1 log p(yn|fθ(xn)), and thus the weight-sharing dimension must have been reduced some-
where in the forward pass of the neural network fθ. A typical instance where this type of loss is
used in a model with linear weight-sharing layers is image classification with a convolutional neural
network or vision transformer.

4Although the work on transformers does not scale by 1/R in Equation (7), see Appendix B.2.1 for details.
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Figure 2: Visualisation of K-FAC-expand and K-FAC-reduce in the reduce setting. This is
similar to Figure 1, but for the reduce setting, where K-FAC-reduce is exact and K-FAC-expand is
not (Section 3.3).

Since Aℓ,n∈RR×Pℓ,in is now a matrix, we have Sℓ,n=Aℓ,nW
⊺
ℓ ∈RR×Pℓ,out . Hence, Jθℓ

Sℓ,n and
JSℓ,n

fθ(xn) are now both multi-dimensional arrays. Luckily, we can avoid dealing with this directly
by writing Jθℓ

fθ(xn) =
∑R

r=1 Jsℓ,n,r
fθ(xn)Jθℓ

sℓ,n,r, where sℓ,n,r ∈ RPℓ,out is the r-th row of
Sℓ,n and sℓ,n,r=Wℓaℓ,n,r. Using this equivalence, we can approximate the (transposed) Jacobians
in the GGN for layer ℓ as

Jθℓ
fθ(xn)

⊺
=

R∑
r=1

aℓ,n,r ⊗ bℓ,n,r ≈
1

R

R∑
r=1

aℓ,n,r ⊗
R∑

r=1

bℓ,n,r. (9)

Here, we have approximated the sum of Kronecker products with a Kronecker product of sums over
R terms of each of the N per-input Jacobians. The idea to approximate the Jacobians within the GGN
with a Kronecker-product has been proposed in the context of invariance learning with deep neural
networks via differentiable Laplace approximations (Immer et al., 2022). We can apply the same
approximation as usual to the sum over the N data points and call the resulting final approximation
K-FAC-reduce and can write it explicitly as

K-FAC-reduce

ˆGGN
reduce

θℓ
:=[

1

NR2

N∑
n=1

(
R∑

r=1

aℓ,n,r

)(
R∑

r=1

a
⊺
ℓ,n,r

)]
︸ ︷︷ ︸

=Âℓ

⊗

[
N∑

n=1

(
R∑

r=1

bℓ,n,r

)
Λ(fθ(Xn))

(
R∑

r=1

b
⊺
ℓ,n,r

)]
︸ ︷︷ ︸

=B̂ℓ

. (10)

To ensure that K-FAC-reduce is exact in the simple setting of Proposition 1, we have to choose an
appropriate aggregation function z : RR×Pℓ,out → RPℓ,out . A simple and relevant case for which
this holds is a scaled sum, i.e. z(Sℓ,n) = c

∑R
r=1 sℓ,n,r with c∈R. Both vision transformers and

convolutional neural networks with average pooling use scaled sums as the aggregation function
(with c=1/R). With this, we can state the corresponding statement to Proposition 1.
Proposition 2 (Exactness of K-FAC-reduce for deep linear network in the reduce setting). For
layer ℓ of a deep linear network (Equation (8)), a Gaussian likelihood with p.d. covariance matrix
Σ∈RC×C , and a scaled sum aggregation function, K-FAC-reduce is exact in the reduce setting.

Notably, for a deep linear model with convolution layers and average pooling, K-FAC reduce will be
exact under the assumptions of Proposition 2, whereas the approximation proposed in the literature
(Grosse & Martens, 2016) (which corresponds to K-FAC-expand) is not. Moreover, the calculation
of Aℓ costs O(NRP 2

ℓ,in) for K-FAC-expand and only O(NPℓ,in(Pℓ,in+R)) for Âℓ and K-FAC-
reduce. The same holds for Bℓ and B̂ℓ, with complexities of O(NRCPℓ,out(C+Pℓ,out)) and
O(NCPℓ,out(C+Pℓ,out+R)). The space complexity of K-FAC’s overhead also differs by a factor of
R, with O(NR(Pℓ,in + Pℓ,out)) for K-FAC-expand and O(N(Pℓ,in + Pℓ,out)) for K-FAC-reduce.
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4 Experiments

In Section 4.1, we empirically validate the speed up of K-FAC-reduce compared to K-FAC-expand
in line with their computational complexities with a Wide ResNet on CIFAR-10 and show how this
scales with the batch size. Additionally, in Sections 4.2 and 4.3, we compare the two approximations
based on their downstream optimisation performance. We validate that both K-FAC variations can
reduce the number of required steps to achieve a fixed validation target compared to a well-tuned
first-order reference optimiser. For this, we use a GNN and a vision transformer (ViT), two of the
examples in Section 2.2. We leverage the codebase and validation metric targets of the MLCommons
algorithmic-efficiency (AlgoPerf) repository5 (Dahl et al., 2023), and use their target-setting
runs as reference runs. Both K-FAC variations use the same learning rate schedule as those target-
setting runs but the warmup and expected number of steps are multiplied by 0.75 to account for the
fact that second-order methods tend to require fewer steps. Additionally, we tune the learning rate and
damping for K-FAC via random search and set all other hyperparameters to the same values as the
reference target-setting run. To exclude the adjusted learning rate schedule and the additional tuning
of the learning rate as confounding factors, we additionally applied the same tuning to the reference
runs; however, none of these runs hit the target validation performance. Despite these considerations,
the experiments in Sections 4.2 and 4.3 are not meant to demonstrate that K-FAC is a superior training
algorithm (see Appendix C.1). However, the reference runs allow us to put the training performances
of both K-FAC flavours into perspective and also indicate the potential of extending second-order
methods like K-FAC to modern neural network architectures Lastly, to demonstrate a use case of
K-FAC other than as a preconditioner, we automatically learn the weight decay hyperparameter
by optimising a Laplace approximation of the marginal likelihood in Section 4.4. Our K-FAC
implementation leverages the ASDL package (Osawa et al., 2023). See Appendix C for more details
on the experiments and additional results.

4.1 Update step speed with K-FAC-expand and K-FAC-reduce

Table 1: Timing [s] of an update step
with the two K-FAC variants for a Wide
ResNet on CIFAR-10.

K-FAC Batch size
128 256 512 1024 2048

expand 0.24 0.38 0.75 1.36 OOM
reduce 0.17 0.24 0.43 0.63 1.17

To empirically validate the smaller computational com-
plexity of K-FAC-reduce compared to K-FAC-expand, we
time a single preconditioned gradient update step for a
Wide ResNet on CIFAR-10 with both approximations and
five different batch sizes on an NVIDIA V100 GPU (Ta-
ble 1). As expected based on the complexities of the two
approximations, we see increasing gains in speed with
increasing batch size. For the largest tested batch size,
2048, K-FAC-reduce is faster than K-FAC-expand is for
half the batch size. Moreover, K-FAC-expand runs out-of-memory (OOM) at a batch size of 2048.
Notably, we implement both approximations with the naive unfold operation (c.f. Section 2.2), but
K-FAC-reduce could be implemented even more efficiently by never explicitly allocating memory
for the full unfolded layer input, which has been shown to lead to a further speed-up of about 4.5×
(Dangel, 2023). To highlight the speed difference of the two K-FAC variations for language models,
we compute a K-FAC GGN approximation for nanoGPT (Karpathy, 2023), a popular implementation
of GPT-2 (Radford et al., 2019), on the full DART dataset (Nan et al., 2021). K-FAC-reduce is
significantly faster than K-FAC-expand, which is currently used for transformers, only taking 70% of
the time of K-FAC-expand. We expect this discrepancy to become even more pronounced for larger
batch sizes and sequence lengths.

4.2 Graph neural network on ogbg-molpcba

We use a basic GraphNetwork (Battaglia et al., 2018) with multi-layer perceptrons as the update
functions (c.f. Appendix A) and train it on the ogbg-molpcba dataset (Hu et al., 2020) (Figure 3).
The target validation metric is a mean average precision (mAP) of 0.28098. The reference algorithm
is SGD with Nesterov momentum, with the tuned hyperparameters from the AlgoPerf target-setting
runs. For both K-FAC variations, the statistics and preconditioner are updated every 10 iterations.
We report the mean and standard error for five runs with different random seeds. The reference run
reaches the target in 31,887± 2,070 steps, whereas K-FAC-expand takes 16,106± 863 and K-FAC-

5https://bit.ly/algoperf
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Figure 3: Training results for a graph neural network on ogbg-molpcba. Both K-FAC variations
require≈50% of the steps which almost directly translates into reduced wall-clock time. The K-FAC
statistics are updated every 10 steps. We show runs with five different random seeds for each method.

reduce 15,566 ± 429 steps, about 51% and 49% of the reference run, respectively. In wall-clock
time, the reference run takes about 2.33 ± 0.22 hours, whereas K-FAC-expand takes 1.32 ± 0.11
and K-FAC-reduce 1.23± 0.03 hours, about 57% and 53% of the reference run, respectively. The
reduced number of steps almost directly translates into reduced wall-clock time since the update
step time is dominated by the data pipeline. K-FAC-reduce appears to be slightly faster in steps and
wall-clock time than K-FAC-expand, but not significantly. Moreover, the runs with K-FAC-reduce
have lower variance.

4.3 Vision transformer on ImageNet

We train a ViT (Dosovitskiy et al., 2021) on LSVRC-2012 ImageNet (Russakovsky et al., 2015) and
use NAdamW (Loshchilov & Hutter, 2019) with the hyperparameters from the AlgoPerf target-
setting runs as the reference run (Figure 4); each run is repeated with three different random seeds.
For K-FAC-expand and K-FAC-reduce, we update the K-FAC statistics and preconditioner every 50
iterations. The reference run reaches the target validation accuracy of 0.77309 in 122,139± 1119
steps or about 26.10± 0.24 hours. K-FAC-expand only takes 87,464± 245 steps or 19.57± 0.13
hours, and K-FAC-reduce 92,550 ± 731 steps or 20.28 ± 0.00 hours. This corresponds to about
72% of the steps and 75% of the time of the reference run for K-FAC-expand and 76% of the steps
and 78% of the reference run’s time for K-FAC-reduce. While the difference in speed between
both K-FAC variations does become less relevant due to the infrequent K-FAC updates, one update
step with K-FAC-expand takes about 1.36×as much as with K-FAC-reduce, which has a significant
impact on the runtime when the K-FAC statistics are computed more frequently; see Figure 5 for a
run where the update is performed every step. While K-FAC-expand requires slightly fewer steps and
wall-clock time than K-FAC-reduce here, the difference does not appear significant.

4.4 K-FAC for automatic hyperparameter selection via marginal likelihood optimisation

K-FAC has also been used for marginal likelihood maximisation in Bayesian neural net-
works using Laplace approximations (Daxberger et al., 2021; Immer et al., 2021). In par-
ticular, K-FAC can be used to obtain a scalable Laplace approximation and optimise its
marginal likelihood with respect to regularisation parameters, e.g., weight decay, during training.
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Figure 4: Training results for a vision transformer on ImageNet. The K-FAC statistics are updated
every 50 steps. Due to amortising the costs, the reduced number of steps to the target translates into
reduced wall-clock time. We show runs with three different random seeds for each method.

Table 2: Performance of K-FAC variants
for marginal likelihood maximisation on
CIFAR-10 with a Wide ResNet with and
without data augmentation (DA).

K-FAC DA NLL ↓ Acc [%] ↑ Time [%] ↓

expand ✗ 0.42 88.9
100

✓ 0.24 92.5

reduce ✗ 0.70 86.7
50.5

✓ 0.35 93.5

Therefore, we compare K-FAC-reduce and K-FAC-expand
in this setting following the setup of Daxberger et al.
(2021) on CIFAR-10 with a Wide ResNet (Zagoruyko &
Komodakis, 2016) and optimise a weight decay parameter
per layer every five epochs during 100 epochs of training.
Table 2 shows that K-FAC-reduce is significantly faster
than K-FAC-expand in this setting, but K-FAC-expand
provides better test negative log likelihoods (NLL) in both
settings.

5 Discussion and conclusion

We have leveraged the idea of linear weight-sharing layers to generalise K-FAC to a broader range
of architectures. This resulted in two distinct flavours of the approximation, which are exact for
simple cases with deep linear networks in their respective setting. Maybe surprisingly, we see little
difference between the two K-FAC variations in terms of their downstream optimisation performance.
Moreover, in some settings, the overhead of K-FAC can be amortised or is negligible. This is, for
example, the case when 1) the data loading dominates the algorithm’s update step time (c.f. the
GNN experiment), 2) when the K-FAC update frequency can be reduced sufficiently (c.f. the ViT
experiment), or 3) when underutilised resources can be leveraged to compute K-FAC updates, for
example when using pipeline parallelism for language models (Osawa et al., 2022). In these settings,
the improvement in wall-clock time of K-FAC-reduce compared to K-FAC-expand is rendered
insignificant. However, in applications where the K-FAC overhead still significantly impacts the
runtime, e.g. in the online weight decay selection experiment in Section 4.4, or when there are
memory constraints (c.f. Section 4.1), K-FAC-reduce can greatly reduce the runtime compared to the
previously used K-FAC-expand. Some challenges remain when applying K-FAC in modern deep
learning settings. For example, the memory overhead can be prohibitive, even for K-FAC-reduce,
which could be addressed by sparse structured Kronecker factors (Grosse et al., 2023; Zhang et al.,
2018). Also, numerical instabilities might arise in low-precision settings due to the need for matrix
inversions or decompositions; this could be addressed by inverse-free methods relying on the K-FAC
approximation (Lin et al., 2023).
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A Weight-sharing in graph neural networks

In this section, we expand on the third example in Section 2.2 on graph neural networks (GNNs) and
show how they use linear layers with weight-sharing.

Graph convolutional network for node classification. A popular type of GNN is called graph
convolutional network (Kipf & Welling, 2016, GCN). A GCN defines a convolution operation on
graph structures, by repeatedly aggregating feature information over the neighbourhood of a node.
As a regular convolutional neural network, it also uses weight-sharing; see Liu et al. (2020) for a
comprehensive discussion on weight-sharing in GCNs. However, in contrast to the other models
presented here, they utilise a slightly different type of weight-sharing, which will become apparent in
Equation (12). Nevertheless, we briefly mention this case here, since the only work on K-FAC for
GNNs has been on this model architecture and we will explicitly show how K-FAC was applied in
this case in Appendix B.3.2; this relies on the notation introduced here.

A graph is defined as G := (V, E), where V is the set of N nodes and E the set of edges. The edges
can be encoded relative to the nodes in an adjacency matrix C ∈ RN×N with Cij = 0 if there is no
edge and Cij = 1 if there is one. Typically, they are used for node and graph classification tasks.
Here, we focus on node classification, e.g. classifying scientific publications which are represented as
nodes in a citation network into topics (Sen et al., 2008).

The ℓ-th GCN layer is defined as

fθℓ
(X) = ϕ(ĈXW

⊺
ℓ ) (11)

which is identical to a regular dense linear layer from Section 2.2, but the input matrix X ∈ RN×Pℓ,in ,
which has the N node features xn of size Pℓ,in stacked in the rows, is first transformed by the
normalised adjacency matrix Ĉ := (D + IN )−

1
2 (C + IN )(D + IN )−

1
2 , where D is the diagonal

node degree matrix of the graph and IN is the N ×N identity matrix.

Defining

x̃n :=

N∑
j=1

Ĉnjxj =
∑

j∈N (n)

Ĉnjxj , (12)

we can express the forward pass for a single node and layer as

fθℓ
(x̃n) = ϕ(Wℓx̃n), (13)

whereN (n) := {j ∈ {1, . . . , N}|Ĉnj ̸= 0} is the neighbourhood of the node with index n. Notably,
the forward pass for a single node xn depends on its neighbourhood, i.e. we cannot express the
forward pass for the node without access to the feature information of the nodes in its neighbourhood
N (n). Moreover, we can now see that the forward pass through the linear layer, i.e. the matrix
multiplication of the weight matrix Wℓ with the transformed input x̃n, does not need the notion of
weight-sharing anymore, in the sense, that we do not need a batched matrix-vector product over a
weight-sharing dimension. This is because we aggregate over each node’s neighbourhood, over which
the weights are shared, before the matrix-vector product. Hence, in contrast to the GraphNetwork
introduced in the next paragraph, this model does not require special consideration when applying
K-FAC (c.f. setting (i) in Section 3.1).

GraphNetwork for graph classification. One more general formulation of a GNN is an instance
of the GraphNetwork introduced in Battaglia et al. (2018). The GraphNetwork in its general form
takes a graph G = (u,V, E) where u ∈ RDu are the global features of the graph, and V and E
are the sets of nodes and edges, respectively, just as before. We can also write the i-th graph of a
dataset of N graphs as a 5-tuple XG

n := (xu
n,X

V
n ,XE

n , rn, sn), with global features xu
n ∈ RDu ,

node features XV
n ∈ RNV

n ×DV , and edge features XE
n ∈ RNE

n ×DE for all n = 1, . . . , N . The
two vectors rn ∈ RNE

n and sn ∈ RNE
n contain the indices of the receiving and sending nodes of

each edge, respectively. Using these indices, we define XV
n,rn
∈ RNE

n ×DV and XV
n,sn
∈ RNE

n ×DV

which contain the node features XV
n at indices sn and rn, respectively. Note, that these graph inputs

unfortunately cannot trivially be batched by stacking them, since the number of nodes NV
n or edges

NE
n are not necessarily the same for all n ∈ {1, . . . , N}.
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A GraphNetwork block updates the 3-tuple (xu
n,X

V
n ,XE

n ) by using three update functions ϕ,

XE
n ← ϕE(XE

n ,XV
n,rn

,XV
n,sn

,xu
n)

XV
n ← ϕV (XV

n , X̃E
n ,xu

n)

xu
n ← ϕu(xu

n, X̄
V
n , X̄E

n ),

(14)

and three permutation-invariant aggregation functions ρ

X̃E
n ← ρE→V (XE

n )

X̄E
n ← ρE→u(XE

n )

X̄V
n ← ρV→u(XV

n ).

(15)

Examples of these aggregation functions include element-wise summation, mean, or maximum.

One forward pass through a GraphNetwork block corresponds to the following steps, where each
step is executed for all n ∈ {1, . . . , N}:

1. Update edges XE
n with ϕE(XE

n ,XV
n,rn

,XV
n,sn

,xu
n).

2. Aggregate updated edges over all nodes in X̃E
n ∈ RNV

n ×DE using ρE→V (XE
n ).

3. Update nodes XV
n using ϕV (XV

n , X̃E
n ,xu

n).

4. Aggregate updated edges over all graphs in X̄E
n ∈ RDE using ρE→u(XE

n ).

5. Aggregate updated nodes over all graphs in X̄V
n ∈ RDV using ρV→u(XV

n ).

6. Update global features xu
n with ϕu(xu

n, X̄
V
n , X̄E

n ).

In this work, we consider graph classification; for example, molecules can be represented as graphs
and we could classify them according to some chemical property (e.g. the ogbg-molpcba dataset used
in Section 4.2). We specifically consider a GraphNetwork instance with simple MLPs for all update
functions ϕ and an element-wise sum for the aggregation functions ρ. Moreover, multiple of these
GraphNetwork blocks can be stacked on top of each other. To classify the input graphs, an MLP is
applied to the global features xu

n after they are updated by the last GraphNetwork block.

To be more precise, the update functions are in this case specified as

ϕE(XE
n ,XV

n,rn
,XV

n,sn
,xu

n) := concat(XE
n ,XV

n,rn
,XV

n,sn
, repeatNE

n
(xu

n))W
E

⊺

ϕV (XV
n , X̃E

n ,xu
n) := concat(XV

n , X̃E
n , repeatNV

n
(xu

n))W
V

⊺

ϕu(xu
n, X̄

V
n , X̄E

n ) := W uconcat(xu
n, X̄

V
n , X̄E

n )

(16)

with WE ∈ RDE×(DE+2DV +Du),W V ∈ RDV ×(DV +DE+Du), and W u ∈ RDu×3Du .

Note, that this is a simplification since in reality, the update functions ϕ are MLPs with ReLU
activations, layer normalisation (Ba et al., 2016), and dropout (Hinton et al., 2012). Also, we omit the
potential bias vectors. However, these components are not relevant for deriving K-FAC for the linear
layers within these networks, which is why we can omit them here for simplicity.

Most importantly, we can now observe that this type of GNN shares its weights over each graph’s
edges and nodes: just as for the attention or convolution operations described in Section 2.2, we apply
the transposed weight matrices from the right side of the input of the layers of type ϕE and ϕV , i.e.
for updating the edge and node features. However, since the number of edges NE

n and the number of
nodes NV

n is not necessarily the same for all N graphs, we now have a weight-sharing dimension of
size Rn, which depends on the n-th input. Also, note that the update function ϕu used to update the
global features xu

n does not use any weight-sharing, as there is just one feature vector per data point.
We have specifically introduced this notation of the inputs to show that the edge and node feature
update functions are exactly examples of the concept of a linear weight-sharing layer, as introduced
in Section 2.2. This might not be immediately obvious when only looking at the original notation
used in Battaglia et al. (2018); therefore, this can be seen as an instructive example for expressing a
neural network architecture in terms of linear weight-sharing layers. Consequently, our framework
for K-FAC can directly be applied to this architecture, as we show in Appendix B.3.2.
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B Extended derivation and discussion of K-FAC-expand and K-FAC-reduce

B.1 Background: K-FAC for regular linear layers

Kronecker-Factored Approximate Curvature (Heskes, 2000; Martens & Grosse, 2015, K-FAC) was
proposed as an efficient approximation to a neural network’s Fisher information matrix. The Fisher
information matrix is defined as6

F (θ) = −
N∑

n=1

Ey∼p(y|fθ(xn))[∇
2
θ log p(y|fθ(xn))]

=

N∑
n=1

Ey∼p(y|fθ(xn))[∇θ log p(y|fθ(xn))(∇θ log p(y|fθ(xn)))
⊺
].

(17)

Notably, the labels y are samples from the predictive distribution of the model and are not the
empirical labels from the data. Replacing y with yn leads to the empirical Fisher (EF), which
is simply the uncentered covariance of the empirical gradient. While it is commonly used as a
replacement for the Fisher (Chaudhari et al., 2017; Graves, 2011; Kingma & Ba, 2015), it can give
rise to very different downstream behaviour when used for optimisation (Kunstner et al., 2019).

First, in all of this work, we focus on a layer-wise K-FAC approximation of the Fisher, i.e. it is
approximated by a block-diagonal matrix

F (θ) ≈ diag(F (θ1), . . . ,F (θℓ), . . . ,F (θL)) ∈ RP×P , (18)

where F (θℓ) ∈ RPℓ×Pℓ and diag(·, . . . , ·) build a block-diagonal matrix with the input matrices as
blocks.

To derive K-FAC, we first note that the pre-activation for layer ℓ and the n-th data point xn can be
expressed as sℓ,n = Wℓaℓ,n, with Wℓ ∈ RPℓ,out×Pℓ,in and aℓ,n ∈ RPℓ,in , the input to the ℓ-th layer
(or equivalently, the activation of the ℓ− 1-th layer). We have omitted an explicit bias parameter bℓ,
since it can always be subsumed in Wℓ. Hence, by applying the chain rule, the gradient of the loss
w.r.t. the weights of the ℓ-th layer can be written as∇Wℓ

L(y, fθ(xn)) = ∇sℓ,n
L(y, fθ(xn))a

⊺
ℓ,n =:

gℓ,na
⊺
ℓ,n ∈ RPℓ,out×Pℓ,in .

Using these insights, K-FAC then replaces the sum of expectations over Kronecker products with a
Kronecker product of two sums of expectations, i.e.

F (θℓ) =

N∑
n=1

Ey∼p(y|fθ(xn))[vec(∇Wℓ
L(y, fθ(xn)))vec(∇Wℓ

L(y, fθ(xn)))
⊺
] (19a)

=

N∑
n=1

Ey∼p(y|fθ(xn))[vec(gℓ,na
⊺
ℓ,n)vec(gℓ,na

⊺
ℓ,n)

⊺
] (19b)

=

N∑
n=1

Ey∼p(y|fθ(xn))[(aℓ,n ⊗ gℓ,n)(a
⊺
ℓ,n ⊗ g

⊺
ℓ,n)] (19c)

=

N∑
n=1

Ey∼p(y|fθ(xn))[aℓ,na
⊺
ℓ,n ⊗ gℓ,ng

⊺
ℓ,n] (19d)

≈

[
1

N

N∑
n=1

aℓ,na
⊺
ℓ,n

]
︸ ︷︷ ︸

=:Aℓ

⊗

[
N∑

n=1

Ey∼p(y|fθ(xn))[gℓ,ng
⊺
ℓ,n]

]
︸ ︷︷ ︸

=:Gℓ

, (19e)

where Aℓ ∈ RPℓ,in×Pℓ,in and Gℓ ∈ RPℓ,out×Pℓ,out . For this derivation, we have used three convenient
properties of the Kronecker product (using matrices A,B,C,D with appropriate dimensions):
vec(ABC) = (C⊺⊗A)vec(B) and (A⊗B)⊺ = A⊺⊗B⊺ for Equation (19c), and (A⊗B)(C⊗
D) = AC ⊗BD for Equation (19d).

6More generally, it is defined with an expectation over x ∼ p(x) as well.
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We can see that the approximation is exact in the trivial case of a single data point, i.e. N = 1.
Moreover, it is also exact in the case of a single linear layer or a deep linear network and a Gaussian
likelihood (Bernacchia et al., 2018).

K-FAC is more efficient than a naive block-wise approximation because we only have to store
and invert two Kronecker factors instead of a larger dense matrix for each layer, which reduces the
memory complexity fromO(P 2

ℓ,inP
2
ℓ,out) toO(P 2

ℓ,in+P 2
ℓ,out) and the computational complexity of the

preconditioning of the gradient with the approximate Fisher fromO(P 3
ℓ,inP

3
ℓ,out) toO(P 3

ℓ,in+P 3
ℓ,out),

since
F (θℓ)

−1g(θℓ) ≈ (Aℓ ⊗Gℓ)
−1g(θℓ)

= vec
(
G−1

ℓ ∇Wℓ
L(y, fθ(xn))A

−1
ℓ

) (20)

with g(θℓ) = vec (∇Wℓ
L(y, fθ(xn))) and the property (A⊗B)−1 = A−1 ⊗B−1.

Alternatively, we can derive K-FAC for the GGN (Botev et al., 2017), which will recover the
same result as for the Fisher in Equation (5) for many common loss functions, as we have learned
Section 2.3. We define Jθℓ

(xn) := Jθℓ
fθ(xn) = Jsℓ,n

fθ(xn)Jθℓ
sℓ,n ∈ RC×Pℓ as the Jacobian of

the model outputs w.r.t. the parameters of the ℓ-th layer and Λ(fθ(xn)) := HfθL(yn, fθ(xn)) ∈
RC×C as the Hessian of the loss w.r.t. the model outputs. Now we can write sℓ,n = Wℓaℓ,n =
(a⊺

ℓ,n ⊗ IPℓ,out
)vec(Wℓ) and with this we have Jθℓ

sℓ,n = a⊺
ℓ,n ⊗ IPℓ,out

. Additionally, by defining
bℓ,n := Jsℓ,n

fθ(xn)
⊺ ∈ RPℓ,out×C as the transposed Jacobian of the model outputs w.r.t. to the

pre-activations of the ℓ-th layer, we note that Jθℓ
(xn)

⊺ = (a⊺
ℓ,n ⊗ IPℓ,out

)⊺bℓ,n = aℓ,n ⊗ bℓ,n.

Replacing the (transposed) Jacobians in the definition of the GGN by this expression, we have

GGN(θℓ) =

N∑
n=1

Jθℓ
(xn)

⊺
Λ(fθ(xn))Jθℓ

(xn)

=

N∑
n=1

(aℓ,n ⊗ bℓ,n)Λ(fθ(xn))(aℓ,n ⊗ bℓ,n)
⊺

=

N∑
n=1

(aℓ,na
⊺
ℓ,n)⊗ (bℓ,nΛ(fθ(xn))b

⊺
ℓ,n)

≈

[
1

N

N∑
n=1

aℓ,na
⊺
ℓ,n

]
︸ ︷︷ ︸

=:Aℓ

⊗

[
N∑

n=1

bℓ,nΛ(fθ(xn))b
⊺
ℓ,n

]
︸ ︷︷ ︸

=:Bℓ

.

(21)

This derivation is a bit more convenient for our purposes, as it does not require us to keep track of the
expectation over the labels y, while still being equivalent to the Fisher for common loss functions
(c.f. Section 2.3). Moreover, in our context, it will be useful to have the Jacobians Jθℓ

(xn) separate
from the loss; therefore, we will only explicitly write our results for the GGN.

B.2 K-FAC for linear weight-sharing layers

B.2.1 The expand setting and K-FAC-expand

The expand setting can be identified by a loss with N · R terms, which corresponds to assuming
N ·R i.i.d. examples,

The Expand Setting

Lexpand(fθ,D) := −
N∑

n=1

R∑
r=1

log p(yn,r|fθ(xn)r), (22)

where fθ(xn)r is the r-th row of the model output fθ(xn) ∈ RR×C and yn,r is the r-th row of the
label Yn∈RR×C . A typical example of this type of loss function is language translation, where N is
the number of training examples and R is the sequence length.
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Note that we are not assuming our inputs xn to have an additional weight-sharing dimension since
we only require that the input to the ℓ-th layer has this additional dimension, i.e. Aℓ,n ∈ RR×D.
This obviously does not exclude the case where xn already has this weight-sharing dimension, e.g. a
sequence of tokens in translation tasks.

We can express the Jacobian of the r-th row of the model output fθ(xn) ∈ RR×C w.r.t. the parameters
θℓ as

(Jθℓ
(xn)r)ij =

R∑
m=1

Pℓ,out∑
p=1

∂fθ(xn)ri
∂Sℓ,n,mp

∂Sℓ,n,mp

∂θℓ,j
(23)

or in matrix form

Jθℓ
(xn)r =

R∑
m=1

Jsℓ,n,m
fθ(xn)rJθℓ

sℓ,n,m. (24)

Since the weights θℓ are shared across the weight-sharing dimension of size R, we can write the r-th
row of Sℓ,n as sℓ,n,r = Wℓaℓ,n,r and we have Jθℓ

sℓ,n,r = a⊺
ℓ,n,r ⊗ IPℓ,out

, as for regular K-FAC
(c.f. Appendix B.1). We denote bℓ,n,r,k := Jsℓ,n,k

fθ(xn)
⊺
r . Hence, we have

Jθℓ
(xn)

⊺
r =

(
R∑

m=1

b
⊺
ℓ,n,r,m(a

⊺
ℓ,n,m ⊗ IPℓ,out

)

)⊺

=

R∑
m=1

aℓ,n,m ⊗ bℓ,n,r,m.

(25)

On a high level, applying K-FAC to a model trained with this type of loss just requires treating the
problem as if we had N ·R independent examples and deriving the approximation in the same way
as we would with N examples (c.f. Appendix B.1),

GGN(θℓ) =

N∑
n=1

R∑
r=1

Jθℓ
(xn)

⊺
rΛ(fθ(xn)r)Jθℓ

(xn)r

=

N∑
n=1

R∑
r=1

(
R∑

m=1

aℓ,n,m ⊗ bℓ,n,r,m

)
Λ(fθ(xn)r)

(
R∑

m′=1

a
⊺
ℓ,n,m′ ⊗ b

⊺
ℓ,n,r,m′

)
.

(26)

However, we cannot directly write each of the N ·R loss terms as a Kronecker product without any
approximation. One approach could be to approximate each Jθℓ

(xn)r with a Kronecker product of
sums, as the K-FAC approximation does for the sum of the N data points, but then we would have
to be able to access

∑R
m=1 bℓ,n,r,m. Moreover, this would not even be exact in the simple settings

we consider later. In contrast, what can be implemented in practice without additional backward
passes (c.f. Appendix B.4) and what has been used for convolutional neural networks (Grosse &
Martens, 2016) and language transformers (Grosse et al., 2023; Osawa et al., 2022; Pauloski et al.,
2021; Zhang et al., 2019a) is

GGN(θℓ) ≈
N∑

n=1

R∑
r=1

R∑
m=1

(aℓ,n,m ⊗ bℓ,n,r,m)Λ(fθ(xn)r)
(
a
⊺
ℓ,n,m ⊗ b

⊺
ℓ,n,r,m

)
=

N∑
n=1

R∑
m=1

(
aℓ,n,ma

⊺
ℓ,n,m

)
⊗

(
R∑

r=1

bℓ,n,r,mΛ(fθ(xn)r)b
⊺
ℓ,n,r,m

)
,

(27)

where we ignore all the terms with m ̸= m′, which allows us to express each of the N ·R terms as a
Kronecker product.7 Consequently, we can apply the regular K-FAC approximation over N ·R terms
instead of just N terms as usual. We call the resulting approximation K-FAC-expand:

7However, the authors of the work on transformers do not discuss this extension of K-FAC at all; although
Zhang et al. (2018) do explicitly discuss the tying of the embedding and linear output layer weights.
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K-FAC-expand

ˆGGN
expand

θℓ
:=

[
1

NR

N∑
n=1

R∑
m=1

aℓ,n,ma
⊺
ℓ,n,m

]
︸ ︷︷ ︸

=Aℓ

⊗

[
N∑

n=1

R∑
m=1

R∑
r=1

bℓ,n,r,mΛ(fθ(xn)r)b
⊺
ℓ,n,r,m

]
︸ ︷︷ ︸

=Bℓ

(28)

There is one simple case where the exact expression in Equation (26) is identical to the approximation
in Equation (27). When bℓ,n,r,m = 0 for all r ̸= m, both expression are equivalent to

N∑
n=1

R∑
r=1

(aℓ,n,r ⊗ bℓ,n,r,r)Λ(fθ(xn)r)
(
a
⊺
ℓ,n,r ⊗ b

⊺
ℓ,n,r,r

)
. (29)

With other words, when fθ(xn)r is independent of all pre-activations sℓ,n,m with m ̸= r the
two expressions coincide. This does not even hold for simplistic transformer models since the
self-attention mechanism (Section 2.2) in transformers directly correlates elements across the weight-
sharing dimension – we discuss this in more detail in Appendix B.3.1. Alternatively, we could also
scale Equation (27) by R, which leads to a scaling of 1/N instead of 1/NR in Equation (28). This
might be a better approximation when bℓ,n,r,m ̸= 0 for r ̸= m and is also what has been used by
previous work on transformers (Grosse et al., 2023; Osawa et al., 2022; Pauloski et al., 2021; Zhang
et al., 2019a). However, we choose to use the scaling in Equation (28) since the condition above
holds for networks that simply stack multiple linear weight-sharing layers; this allows us to show that
the approximation in Equation (28) is exact in the same simple cases as regular K-FAC.

For a typical neural network with nonlinear activation functions, K-FAC is only an approximation.
However, for regular individual linear layers and deep linear networks, K-FAC is known to be exact
assuming a Gaussian likelihood (Bernacchia et al., 2018). While this holds for the full GGN/Fisher,
we only focus on the block-diagonal case here. To motivate K-FAC-expand, we want to show
that similar statements hold for a single linear weight-sharing layer and deep linear networks with
weight-sharing in the expand setting. First, we state a simple condition for which the approximation
is indeed exact; this line of reasoning could also be applied to K-FAC for regular linear layers since
only the effective number of data points changes from N · R to N . Note, that we could also state
more trivial sufficient conditions for the exactness of the approximation, i.e. N = R = 1 and when
all inputs to a layer aℓ,n,r are the same for all n ∈ {1, . . . , N} and r ∈ {1, . . . , R}. We do not state
these types of conditions explicitly from now on.
Lemma 3 (Sufficient condition for exactness of K-FAC-expand in the expand setting). Let
Cℓ ∈ RPℓ,out×Pℓ,out be a constant matrix for layer ℓ. If bℓ,n,r,m = 0 for all r ̸= m and
bℓ,n,m,mΛ(fθ(xn)m)b⊺ℓ,n,m,m = Cℓ for all n ∈ {1, . . . , N} and m ∈ {1, . . . , R}, then the K-
FAC approximation in Equation (7) is equal to the exact GGN/Fisher of the ℓ-th layer in the expand
setting.

Proof. As mentioned before, when bℓ,n,r,m = 0 for all r ̸= m the last line of Equation (26) and
the first line of Equation (27) both simplify to Equation (29). Hence, we can directly show that the
second and third approximation in Equation (27) equal the exact expression for the GGN of layer ℓ
from there. We have(

1

NR

N∑
n=1

R∑
r=1

aℓ,n,ra
⊺
ℓ,n,r

)
⊗

(
N∑

n=1

R∑
r=1

bℓ,n,r,rΛ(fθ(xn)r)b
⊺
ℓ,n,r,r

)

=

(
1

NR

N∑
n=1

R∑
r=1

aℓ,n,ra
⊺
ℓ,n,r

)
⊗ (NRCℓ)

=

(
N∑

n=1

R∑
r=1

aℓ,n,ra
⊺
ℓ,n,r

)
⊗Cℓ

=

N∑
n=1

R∑
r=1

(
aℓ,n,ra

⊺
ℓ,n,r

)
⊗
(
bℓ,n,r,rΛ(fθ(xn)r)b

⊺
ℓ,n,r,r

)
,

(30)
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where we have used the assumption that bℓ,n,m,mΛ(fθ(xn)m)b⊺ℓ,n,m,m = Cℓ is the same for all
n ∈ {1, . . . , N} and m ∈ {1, . . . , R}.

Leveraging this simple insight, we can provide an example of a single layer where the assumptions of
Lemma 3 are fulfilled.
Proposition 4 (Exactness of K-FAC-expand for single linear layer in the expand setting). For a
single linear weight-sharing layer and a Gaussian likelihood with p.d. covariance matrix Σ ∈ RC×C ,
K-FAC-expand is exact in the expand setting.

Proof. We can write fθ(xn)r = Wℓxn,r and hence bℓ,n,r,m = 0 for r ̸= m. Moreover, we have
Λ(fθ(xn)r) = Σ−1 and bℓ,n,m,m = IC (Pℓ,out = C for a single layer). Hence,

bℓ,n,m,mΛ(fθ(xn)r)b
⊺
ℓ,n,m,m = ICΣ

−1IC = Σ−1

for all n ∈ {1, . . . , N} and m ∈ {1, . . . , R}. Therefore, the desired result follows from Lemma 3.

A natural question might be if the same result also holds for deep linear networks. A deep linear
network is here defined as a model of the form

fθ(x) = WL . . .Wℓ . . .W1x = Wx, (31)

where x ∈ RD and WL ∈ RC×PL,in ,Wℓ ∈ RPℓ,out×Pℓ,in (with Pℓ,in = Pℓ−1,out), and W1 ∈
RP1,out×D. Decomposing a single weight matrix W into L separate ones is a common framework for
theoretical analysis since it creates nonlinear training dynamics for gradient-based training algorithms,
while still having analytical solutions (Bernacchia et al., 2018; Saxe et al., 2014). We adopt the
notation of Bernacchia et al. (2018) and define

W a
ℓ := WL . . .Wℓ+1 (32)

as the product of the weight matrices ahead of Wℓ and

W b
ℓ := Wℓ−1 . . .W1 (33)

as the product of the weight matrices behind of Wℓ. Hence, we can write fθ(x) = W a
ℓ WℓW

b
ℓ x.

Note, that now
aℓ,n,r = W b

ℓ xn,r ∈ RPℓ,in (34)
and

bℓ,n,r,r = W a
⊺

ℓ ∈ RPℓ,out×C . (35)
Using these insights, we can now easily state the result for deep linear networks.
Proposition 1 (Exactness of K-FAC-expand for deep linear network in the expand setting).
For layer ℓ of a deep linear network defined as in Equation (8) and a Gaussian likelihood with p.d.
covariance matrix Σ∈RC×C , K-FAC-expand is exact in the expand setting.

Proof. We can write fθ(xn)r = Wxn,r and hence bℓ,n,r,m = 0 for r ̸= m. We have Λ(fθ(xn)r) =

Σ−1 and bℓ,n,r,r = W a
⊺

ℓ . Hence, bℓ,n,m,mΛ(fθ(xn)m)b⊺ℓ,n,m,m = W a
⊺

ℓ Σ−1W a
ℓ for all n ∈

{1, . . . , N} and m ∈ {1, . . . , R}. Therefore, the desired result follows from Lemma 3.

B.2.2 The reduce setting and K-FAC-reduce

The reduce setting is characterized by a loss with just N loss terms, i.e.

The Reduce Setting

Lreduce(fθ,D) := −
N∑

n=1

log p(yn|fθ(xn)), (36)

where the crucial observation is that the weight-sharing dimension must have been reduced somewhere
in the forward pass of the neural network fθ. A typical instance where this type of loss is used together
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with a model with linear weight-sharing layers is image classification with a vision transformer or a
convolutional neural network. Note, that the inputs xn and labels yn do not have a weight-sharing
dimension here; in general, it is also possible for the inputs to have this additional dimension of size
R already.

Since Aℓ,n ∈ RR×Pℓ,in is now a matrix, we have Sℓ,n = Aℓ,nW
⊺
ℓ ∈ RR×Pℓ,out . Hence, Jθℓ

Sℓ,n

and JSℓ,n
fθ(xn) are now both multi-dimensional arrays. Luckily, we can simplify this by writing

(Jθℓ
fθ(xn))ij =

R∑
r=1

Pℓ,out∑
p=1

∂fθ(xn)i
∂Sℓ,n,rp

∂Sℓ,n,rp

∂θℓ,j
, (37)

or in matrix form

Jθℓ
fθ(xn) =

R∑
r=1

Jsℓ,n,r
fθ(xn)Jθℓ

sℓ,n,r, (38)

where sℓ,n,r ∈ RPℓ,out is the r-th row of Sℓ,n and sℓ,n,r = Wℓaℓ,n,r.

Using this equivalence we can approximate the GGN for layer ℓ as

GGN(θℓ) =

N∑
n=1

Jθℓ
(xn)

⊺
Λ(fθ(xn))Jθℓ

(xn)

=

N∑
n=1

(
R∑

r=1

Jsℓ,n,r
fθ(xn)Jθℓ

sℓ,n,r

)⊺

Λ(fθ(xn))

(
R∑

r=1

Jsℓ,n,r
fθ(xn)Jθℓ

sℓ,n,r

)

=

N∑
n=1

(
R∑

r=1

aℓ,n,r ⊗ bℓ,n,r

)
Λ(fθ(xn))

(
R∑

r=1

aℓ,n,r ⊗ bℓ,n,r

)⊺

≈
N∑

n=1

[
1

R

R∑
r=1

aℓ,n,r

]
︸ ︷︷ ︸

=:âℓ,n

⊗

[
R∑

r=1

bℓ,n,r

]
︸ ︷︷ ︸

=:b̂ℓ,n

Λ(fθ(xn))

[
1

R

R∑
r=1

a
⊺
ℓ,n,r

]
⊗

[
R∑

r=1

b
⊺
ℓ,n,r

]

=

N∑
n=1

(
âℓ,nâ

⊺
ℓ,n

)
⊗
(
b̂ℓ,nΛ(fθ(xn))b̂

⊺

ℓ,n

)
≈

[
1

N

N∑
n=1

âℓ,nâ
⊺
ℓ,n

]
︸ ︷︷ ︸

=:Âℓ

⊗

[
N∑

n=1

b̂ℓ,nΛ(fθ(xn))b̂
⊺

ℓ,n

]
︸ ︷︷ ︸

=:B̂ℓ

,

(39)

where we have approximated the sum over the R Kronecker products with a Kronecker product
of sums for each of the N per-input Jacobians, before applying the same type of approximation as
usual to the sum over the N data points. The idea to approximate the Jacobians within the GGN
with a Kronecker-product has been proposed in the context of invariance learning with deep neural
networks via differentiable Laplace approximations in Immer et al. (2022). We call the approximation
in Equation (39) K-FAC-reduce and to highlight the difference to K-FAC-expand, we can rewrite it as

K-FAC-reduce

ˆGGN
reduce

θℓ
:=[

1

NR2

N∑
n=1

(
R∑

r=1

aℓ,n,r

)(
R∑

r=1

a
⊺
ℓ,n,r

)]
︸ ︷︷ ︸

=Âℓ

⊗

[
N∑

n=1

(
R∑

r=1

bℓ,n,r

)
Λ(fθ(Xn))

(
R∑

r=1

b
⊺
ℓ,n,r

)]
︸ ︷︷ ︸

=B̂ℓ

.

(40)
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As for K-FAC-expand, we want to show that this approximation can be exact in the case of a single
layer or a deep linear network and a Gaussian likelihood. First, we state an analogous condition to
Lemma 3.
Lemma 5 (Sufficient condition for exactness of K-FAC-reduce in the reduce setting). Let Dℓ,n ∈
RPℓ,out×C be a constant matrix for layer ℓ and data point xn. Further, let Cℓ ∈ RPℓ,out×Pℓ,out

be a constant matrix for layer ℓ. If it holds for each n that bℓ,n,r = Dℓ,n for all r ∈ {1, . . . , R}
and b̂ℓ,nΛ(fθ(xn))b̂

⊺

ℓ,n = Cℓ for all n ∈ {1, . . . , N}, then the K-FAC-reduce approximation in
Equation (10) is equal to the exact GGN of the ℓ-th layer in the reduce setting.

Proof. We start with the first approximation and derive the exactness of this step under our assump-
tions. We have

N∑
n=1

(
1

R

R∑
r=1

aℓ,n,r ⊗
R∑

r=1

bℓ,n,r

)
Λ(fθ(xn))

(
1

R

R∑
r=1

aℓ,n,r ⊗
R∑

r=1

bℓ,n,r

)⊺

=

N∑
n=1

(
1

R

R∑
r=1

aℓ,n,r ⊗RDℓ,n

)
Λ(fθ(xn))

(
1

R

R∑
r=1

aℓ,n,r ⊗RDℓ,n

)⊺

=

N∑
n=1

(
R∑

r=1

aℓ,n,r ⊗ bℓ,n,r

)
Λ(fθ(xn))

(
R∑

r=1

aℓ,n,r ⊗ bℓ,n,r

)⊺

,

(41)

where we have used the assumption that for each n, we have bℓ,n,r = Dℓ,n for all r ∈ {1, . . . , R}.
Now we consider the second approximation in Equation (39). Analogously, we have(

1

N

N∑
n=1

âℓ,nâ
⊺
ℓ,n

)
⊗

(
N∑

n=1

b̂ℓ,nΛ(fθ(xn))b̂
⊺

ℓ,n

)

=

(
1

N

N∑
n=1

âℓ,nâ
⊺
ℓ,n

)
⊗NCℓ

=

N∑
n=1

(
âℓ,nâ

⊺
ℓ,n

)
⊗
(
b̂ℓ,nΛ(fθ(xn))b̂

⊺

ℓ,n

)
,

(42)

where we have used that b̂ℓ,nΛ(fθ(xn))b̂
⊺

ℓ,n = Cℓ for all n ∈ {1, . . . , N}.

Until now, we did not have to explicitly take the aggregation function z : RR×Pℓ,out → RPℓ,out

into account, since its Jacobian is simply subsumed in bℓ,n,r. Since we want to verify that the
approximation in the reduce case is also exact in the simple scenarios from Proposition 1 and
Proposition 2, we now have to also check if the Jacobian Jsℓ,n,r

zℓ,n with zℓ,n := z(Sℓ,n) ∈ RPℓ,out

is the same for all r ∈ {1, . . . , R}, to make sure the first condition in Lemma 5 is fulfilled. Maybe
the simplest case where this holds is a scaled sum, i.e.

z(Sℓ,n) = c

R∑
r=1

sℓ,n,r

= cS
⊺
ℓ,n1R

=
(
1
⊺
R ⊗ cIPℓ,out

)
vec(S

⊺
ℓ,n)

=
(
1
⊺
R ⊗ cIPℓ,out

)
K(R,Pℓ,out)vec(Sℓ,n)

(43)

with c ∈ R and the commutation matrix

K(R,Pℓ,out) :=

R∑
r=1

Pℓ,out∑
p=1

(eR,re
⊺
Pℓ,out,p

)⊗ (ePℓ,out,pe
⊺
R,r), (44)

where ei,j is the j-th canonical vector of dimension i. This is a linear function in vec(Sℓ,n) and
we have Jsℓ,n,r

zℓ,n = cIPℓ,out
for all r ∈ {1, . . . , R}. In particular, when c = 1 the aggregation
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function is a simple sum and when c = 1/R it is the mean. Notably, it is not sufficient for z to be
linear in vec(Sℓ,n), because as soon as we have a weighted sum with weights cr ∈ R and they are
not the same for all r ∈ {1, . . . , R}, the Jacobians Jsℓ,n,r

zℓ,n will also not be the same anymore.
Both vision transformers and convolutional neural networks with average pooling use scaled sums as
the aggregation function (with c=1/R).

After clarifying the role of the aggregation function in the exactness of K-FAC-reduce, we can now
state a similar statement to Proposition 4.
Proposition 6 (Exactness of K-FAC-reduce for single linear layer in the reduce setting). For a
single linear layer, a Gaussian likelihood with p.d. covariance matrix Σ ∈ RC×C , and a scaled sum
as defined in Equation (43) as the aggregation function applied to the output of the linear function,
K-FAC-reduce is exact in the reduce setting.

Proof. We have Λ(fθ(xn)) = Σ−1 and bℓ,n,r =
(
Jzℓ,n

fθ(xn)Jsℓ,n,r
zℓ,n

)⊺
= cIC for all r ∈

{1, . . . , R} and n ∈ {1, . . . , N} (Pℓ,out = C for a single layer). Hence, b̂ℓ,nΛ(fθ(xn))b̂
⊺

ℓ,n =

c2R2ICΣ
−1IC = c2R2Σ−1 for all n ∈ {1, . . . , N}. Therefore, the desired result follows from

Lemma 5.

Just as for K-FAC-expand, we can extend this result to deep linear networks.
Proposition 2 (Exactness of K-FAC-reduce for deep linear network in the reduce setting). For
layer ℓ of a deep linear network (Equation (8)), a Gaussian likelihood with p.d. covariance matrix
Σ∈RC×C , and a scaled sum aggregation function, K-FAC-reduce is exact in the reduce setting.

Proof. We have Λ(fθ(xn)r) = Σ−1 and bℓ,n,r =
(
Jzℓ,n

fθ(xn)Jsℓ,n,r
zℓ,n

)⊺
= cW a

⊺
ℓ for all

r ∈ {1, . . . , R} and n ∈ {1, . . . , N}. Hence,

b̂ℓ,nΛ(fθ(xn))b̂
⊺

ℓ,n = c2R2W a
⊺

ℓ Σ−1W a
ℓ

for all n ∈ {1, . . . , N}. Therefore, the desired result follows from Lemma 5.

To summarise, the difference between the expand and the reduce setting is at what point the aggre-
gation over the additional weight-sharing dimension happens. If this dimension is not aggregated
before the per-example loss, i.e. if the loss can be expanded to N ·R instead of N terms, we call it
the expand setting. If the aggregation happens inside the model, we call it the reduce setting. Both
settings motivate an approximation each, K-FAC-expand and K-FAC-reduce. Moreover, we presented
simple cases where the approximations are exact. In Figure 1 and Figure 2 we verify this numerically,
and also show that using the inappropriate approximation results in an inexact computation.
Remark 1. In practice, however, both approximations can be applied in each of the two settings.

B.3 Examples of K-FAC for linear weight-sharing layers in the wild

B.3.1 K-FAC for self-attention

While we have mentioned (vision) transformers for translation and image classification as prototypical
examples for the expand and the reduce setting, we have mostly ignored how linear weight-sharing
layers are used within the architecture and how this affects the approximation quality of K-FAC-
expand and K-FAC-reduce. Linear weight-sharing layers are crucial for the self-attention mechanism
in Section 2.2. To gain some intuition for models using this type of attention mechanism, we look
at a network that only consists of one simplified variation of the self-attention mechanism used in
transformers (we ignore the softmax function, but also consider a linear projection of the output with
weight matrix W V ), i.e.

fθ(Xn) = XnW
Q

⊺︸ ︷︷ ︸
=:SQ,n

WKX
⊺
n︸ ︷︷ ︸

=:S⊺
K,n

XnW
V

⊺︸ ︷︷ ︸
=:SV,n

. (45)

We can observe that it is no longer a linear function in the input Xn ∈ RR×D and that we have three
linear weight-sharing layers involved in this operation. First, we consider the expand setting, i.e. the
output fθ(Xn) is not reduced before the loss is applied.
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Simplified self-attention in the expand setting. Since we want to understand if K-FAC-expand
can be exact in this case, we first derive the Jacobians appearing in the derivation of K-FAC-expand
in Equation (27) for all three involved layers, i.e. JsQ,n,m

fθ(Xn)r for the layer with weights WQ,
JsK,n,m

fθ(Xn)r for the layer with weights WK , and JsV,n,m
fθ(Xn)r for the layer with weights

W V .

We can simply write the r-th row of the output of the layer with the weight matrix WQ as a function
of sQ,n,r as

fθ(Xn)r = s
⊺
Q,n,rS

⊺
K,nSV,n. (46)

Therefore, we have
JsQ,n,r

fθ(Xn)r = S
⊺
V,nSK,n = b

⊺
Q,n,r ∈ RC×PK,out , (47)

with C = PV,out and bQ,n,r,m = 0 for all m ̸= r, which is the first assumption necessary for
Lemma 3 to hold. While bQ,n,r is not the same for all n ∈ {1, . . . , N}, it is the same for all
r ∈ {1, . . . , R} and hence, under the same assumptions as in Proposition 4, K-FAC-expand is exact
for the layer with weights WQ in the special case of a single data point, N = 1.

For the other two involved linear layers, we cannot express the r-th row of fθ(Xn) as a function
of the r-th row of SK/V,n, i.e. elements from all rows of SK/V,n contribute to the r-th row of the
output matrix. We can also see this by directly deriving JsK/V,n,m

fθ(Xn)r which will be generally
non-zero and dependent on r and m. We omit the explicit derivation by taking the partial derivatives
and directly state the results. For the second layer with weight matrix WK , we have

JsK,n,m
fθ(Xn)r = sV,n,ms

⊺
Q,n,r ∈ RC×PQ,out . (48)

Moreover, for the third layer with weight matrix W V , we have
JsV,n,m

fθ(Xn)r = s
⊺
Q,n,rsK,n,mIC ∈ RC×C . (49)

This means that the assumption of Lemma 3 that the R elements along the weight-sharing dimension
are independent does not hold, since the Jacobians depend on r and m. The approximation leads to
an inexact computation, even though only linear layers are involved and a Gaussian likelihood is used.
Similarly, we can inspect the corresponding reduce case.

Simplified self-attention in the reduce setting. Assuming we use a scaled sum z with factor c as the
aggregation function, we can further rewrite the Jacobians occurring in Equation (39) as

Jθℓ
z(fθ(Xn)) =

R∑
r=1

Jsℓ,n,r
z(fθ(Xn))Jθℓ

sℓ,n,r

=

R∑
r=1

aℓ,n,r ⊗ bℓ,n,r

=

R∑
r=1

aℓ,n,r ⊗

(
c

R∑
m=1

Jsℓ,n,r
fθ(Xn)m

)
,

(50)

where Jsℓ,n,r
fθ(Xn)m are the same Jacobians we have derived for the expand case. Since according

to Lemma 5 we need all bℓ,n,r to be the same for all r ∈ {1, . . . , R} for the first approximation to be
exact under the assumptions of Proposition 6, K-FAC-reduce is only exact when N = 1 and only for
the layer with weights WQ – just as K-FAC-expand in the expand setting.

When we extend this scenario to a network consisting of L blocks as defined in Equation (45), the
above statements regarding the special case where K-FAC-expand and K-FAC-reduce are exact for the
layer with weights WQ only hold for the last block. While we omit an explicit derivation, intuitively,
this can be seen by the fact that we cannot rewrite the r-th row of this model’s output as a function of
only the r-th row of the layer’s output Sℓ,Q,n of all layers with weights WQ

ℓ , besides for the layer in
the last block, i.e. the layer in the L-th block with weights WQ

L .

This shows that even without explicit nonlinear activation functions, the self-attention mechanism in
transformer models breaks the two approximations. Hence, it is not inherently clear how useful it
is to consider the corresponding approximation in the expand and reduce setting. This is especially
relevant given that we know that the computational complexity of K-FAC-reduce is generally smaller
than of K-FAC-expand and given the similar downstream optimisation performance we report in
Section 4.
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B.3.2 K-FAC for GNNs

Beyond transformers, we have introduced GNNs as a class of models that also use linear weight-
sharing layers. There are many types of GNNs and we will only explicitly cover two of them
here.

Related work: node classification with GCN. We first consider a GCN layer, described in Ap-
pendix A. This specification of K-FAC for GNNs has been previously derived for semi-supervised
node classification in Izadi et al. (2020) and we include it for completeness, since it is, to the best of
our knowledge, the only case where K-FAC has been applied to a GNN. The only difference to the
normal derivation of K-FAC is that the inputs ãℓ,n to the ℓ-th layer for the node with index n now
depend on its neighbourhood N (n), since

ãℓ,n :=
∑

j∈N (n)

Ĉnjaℓ,j ∈ RPℓ,in . (51)

Using this notation, the definition of the K-FAC GGN for node classification is simply

GGN(θℓ) =

N∑
n=1

Jθℓ
(X)

⊺
nΛ(fθ(X)n)Jθℓ

(X)n

≈
[ 1
N

N∑
n=1

ãℓ,nã
⊺
ℓ,n

]
︸ ︷︷ ︸

=:Ãℓ

⊗
[ N∑
n=1

b̃ℓ,nΛ(fθ(X)n)b̃
⊺

ℓ,n

]
︸ ︷︷ ︸

=:B̃ℓ

,
(52)

where X ∈ RN×D, b̃ℓ,n := Js̃ℓ,n
fθℓ

(X)⊺n, and s̃ℓ,n := Wℓãℓ,n. Again, it is important to note
that we need to have access to the whole neighbourhood of xn to be able to write the n-th term of
the GGN, which is why the input to the model is the matrix X containing all nodes for each loss
term. Also, depending on the sparsity of Ĉ, i.e. the size of neighbourhoods, we might have multiple
identical terms. In the extreme case of all neighbourhoods being the same, e.g. in the case of a fully
connected graph, i.e. are values of Ĉ are the same, all terms of the GGN will be the same.

According to the first of the three cases in Section 3.1, we do not need to think in terms of the expand
and reduce settings here – as opposed to the case of the GraphNetwork we consider next, because we
aggregate over each node’s neighbourhood before the forward pass through a linear layer.

Graph classification with GraphNetwork. Now, we want to look at a more general architecture, an
instance of the GraphNetwork introduced in Battaglia et al. (2018) and described in Appendix A. It is
important to note that while the inputs and the GraphNetwork block structure look different from
our standard input and linear layer, this case can be treated the same. This architecture is therefore a
good didactic example of how to apply the presented framework of thinking about K-FAC for linear
weight-sharing layers to new model architectures. In contrast to the original description in Battaglia
et al. (2018), we already defined the inputs to a GraphNetwork block according to our definition of an
input that leads to weight-sharing, i.e. with an additional weight-sharing dimension of size R. This is
in fact the crucial step to be able to apply our framework in this setting. As noted in Appendix A, the
inputs cannot be trivially batched in this formulation. This is not an issue for our derivation, but it
requires special consideration in the implementation, which we will consider in Appendix B.4.

First, we note that we consider the task of graph classification. Hence, our loss has the same form
as Equation (36), which means that the weight-sharing dimensions have to be reduced at some
point during the forward pass and we are in the reduce setting. Notably, this is the setting of the
ogbg-molpcba workload of the AlgoPerf benchmark from the experiment in Section 4.2. Following
this line of reasoning, we would simply have to apply the corresponding K-FAC approximation. Since
the inputs take a more complex form than in our description of the reduce case, we still have to adopt
the notation from Appendix A to concretely write down the approximation.

To recap, the weight-sharing dimension of size Rn of graph XG
n depends on the input graph itself

(indicated by the index n) and which update function within a GraphNetwork block we want to derive
K-FAC-reduce for. For ϕE this dimension is going to be Rn = NE

n , whereas it will be Rn = NV
n

for ϕV . In the case of ϕu we do not have a weight-sharing dimension, as it has been reduced before
this layer is applied, and we can simply apply the regular K-FAC approximation. We can define the
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inputs to layer ℓ of type ϕE as

Aℓ,n = concat(XE
n ,XV

n,rn
,XV

n,sn
, repeatNE

n
(xu

n)) ∈ RNE
n ×(DE+2DV +Du) (53)

and as
Aℓ,n = concat(XV

n , X̃E
n , repeatNV

n
(xu

n)) ∈ RNV
n ×(DV +DE+Du) (54)

for ϕV . Correspondingly, we have bℓ,n = JSℓ,n
fθ(XG

n )
⊺ ∈ RNE

n ×DE×C for ϕE and bℓ,n =

JSℓ,n
fθ(XG

n )
⊺ ∈ RNV

n ×DV ×C , with Sℓ,n = Aℓ,nW
E

⊺
ℓ ∈ RNE

n ×DE and Sℓ,n = Aℓ,nW
V

⊺
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Using this notation, we can approximate the GGN for layer ℓ, assuming its type is either ϕE or ϕV , as
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⊺
ℓ,n

]
︸ ︷︷ ︸

=:Âℓ
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analogously to Equation (39). However, there is one important difference: since Rn now depends on
the n-th data point, it makes a difference where we insert the scaling by 1/Rn, since Âℓ and/or B̂ℓ

are now weighted sums. To avoid having one potentially non-uniformly weighted and one unweighted
sum, we choose to not just include the scaling by 1/Rn in âℓ,n as in Equation (39), or in b̂ℓ,n. Instead,
to try to keep the overall scale and the weighting of the N terms balanced, we simply include a
scaling by 1/

√
Rn in both, âℓ,n and b̂ℓ,n.

B.4 Practical Considerations

While we have discussed theoretically how to apply K-FAC to linear weight-sharing layers, we now
turn to implementation details and computational considerations that are crucial for the practical
application of the approximations.

Implementation details. There are multiple libraries that implement K-FAC for popular deep learning
frameworks like Jax (Bradbury et al., 2018) and PyTorch (Paszke et al., 2019), e.g. KFAC-JAX
(Botev & Martens, 2022) for Jax and BackPACK (Dangel et al., 2020), ASDL (Osawa et al., 2023),
and KFAC-PyTorch (Pauloski et al., 2021) for PyTorch. We focus on the implementation of K-
FAC-expand and K-FAC-reduce within ASDL, which we also use for the experiments in Section 4.
K-FAC is implemented using forward and backward hooks, which allow us to get the inputs to a
specific layer and the gradients of the loss w.r.t. the layer outputs – which are the ingredients we
need for all K-FAC approximations. Notably, this requires that linear layers are implemented with
torch.nn.Linear instances, since otherwise, the implementation with hooks does not work. The
default implementation of multi-head attention in PyTorch does indeed not use the required linear
modules, so the implementation has to be adjusted to work with common K-FAC implementations
like ASDL. In contrast, other methods like Shampoo (Gupta et al., 2018) and Tensor Normal Training
(Ren & Goldfarb, 2021) are agnostic to the architecture. Assuming the implementation of the model is
appropriate, K-FAC-expand and K-FAC-reduce in their simplest form only require a minor adjustment
in the code base for regular K-FAC, which is presented in Listing 1.

However, if we wanted to use K-FAC-expand in the expand and K-FAC-reduce in the reduce setting,
we would need to find a way of automatically determining the setting we are in. For all models
considered here, i.e. the (vision) transformer and GNN, only one of the two settings applies to all
linear layers with weight-sharing. Hence, using a single additional forward pass, we could check if
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1 # Check if there even is a weight-sharing dimension; if not, the Kronecker
2 # factors can directly be calculated.
3 if in_data.ndim == 3:
4 # Mini-batch size M, weight-sharing dimension R, feature dimension Pℓ,in/out.
5 M, R, P_in = in_data.shape
6 P_out = out_grads.shape[2]
7 if approximation == 'expand':
8 # Flatten the weight-sharing dimension into the mini-batch dimension.
9 in_data = in_data.view(M*R, P_in) / math.sqrt(R)

10 out_grads = out_grads.view(M*R, P_out)
11 elif approximation == 'reduce':
12 # Reduce the weight-sharing dimension with mean and sum.
13 in_data = in_data.mean(dim=1)
14 out_grads = out_grads.sum(dim=1)
15 # Calculate Kronecker factors Aℓ/Âℓ and Bℓ/B̂ℓ.
16 A = torch.matmul(in_data.T, in_data) / M
17 B = torch.matmul(out_grads.T, out_grads)

Listing 1: Illustration of K-FAC-expand and K-FAC-reduce with code. This piece of code
calculates the approximations on one mini-batch and for one layer. We receive the inputs to the layer,
in_data, from a forward hook and the gradients of the loss w.r.t. the outputs of the layer, out_grads,
from a backward hook. Here we assume that only one additional weight-sharing dimension exists and
that the first dimension is always the mini-batch dimension. Note that the dimensions of in_data
and out_grads are the same, independently of the setting we are in (c.f. Section 3.1). This illustrates
why we can choose to use either approximation, K-FAC-expand or K-FAC-reduce, in each setting.
The actual implementation in ASDL is very similar for torch.nn.Linear modules, the logic is just
separated into multiple functions and allows for multiple weight-sharing dimensions. However, the
adjustments for the GraphNetwork are more involved.

any linear weight-sharing layers are used and what the shape of the model output is. From this, we
can deduce if the expand or the reduce case applies. As we mentioned before, this might not even be
desirable, as it is unclear if we should always use the approximation theoretically motivated by the
setting. Alternatively, a single flag set by the user can determine if K-FAC-expand or K-FAC-reduce
is applied to all linear weight-sharing layers.

This implementation obviously assumes that we even have an explicit weight-sharing dimension. In
the case of K-FAC-reduce for the GraphNetwork introduced in Appendix A, we have to adopt our
implementation due to the batching technique that is employed for graph inputs in practice. Since
each graph in a mini-batch M of size M might have a different weight-sharing dimension Rm,
i.e. the number of nodes and the number of edges of each graph, we cannot batch them trivially.
As a solution, the inputs for each graph as stated in Equation (53) and Equation (54) are simply
concatenated in the first dimension, which results in a dimension of size RM :=

∑M
m=1 Rm. To

apply K-FAC-expand here, we do not have to modify anything, besides scaling the approximation for
each mini-batch by 1/RM instead of 1/M .8 To apply K-FAC-reduce, we can use a scatter mean,
which aggregates tensor elements according to indices, to implement the mean (with the square
root scaling from Equation (55)) operation without having an explicit weight-sharing dimension.
Unfortunately, this creates two issues. First, we have to know that this adjustment to K-FAC is even
required for a specific layer since we cannot deduce it from the shape of the layer inputs. Second, the
scatter mean requires additional information, since we need to know to which graphs the nodes/edges
in the input belong. One approach to resolve these issues is to define a custom layer type for this type
of linear layer, which has an attribute containing the indices of all nodes/edges for each graph in the
batch. However, this requires changes to the model architecture implementation, because additional
attributes have to be set for the regular linear modules.

Besides the changes necessary for K-FAC-expand and K-FAC-reduce, we can use the same additional
algorithmic tools often used for optimisation with K-FAC. Typically, damping is used (Martens &
Grosse, 2015), i.e. a scalar is added to the diagonal of the two Kronecker factors A and B or the
diagonal of their product – the latter corresponds to adding the Hessian of an isotropic Gaussian
prior over the weights. Also, since we usually operate in the stochastic setting and only compute
the K-FAC approximation on mini-batches, sometimes an exponential moving average over the

8As explained below Equation (55), we could also choose a different way of scaling here. We choose this
one as it enables a simple implementation in contrast to K-FAC-reduce.
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Kronecker factors is used. However, in our experiments, we do not use such a moving average and
only compute K-FAC for a single mini-batch (besides for Figure 5, as mentioned in Appendix C.4)
and still reduce the update frequency of the K-FAC statistics and the preconditioner.

Computational considerations. Besides the implementation details, we also have to consider the
computational cost when deploying K-FAC approximations in practice. Here, we have to respect the
same constraints as with regular K-FAC. When we have a large output dimension C, it is expensive
or even unfeasible to propagate the C × C loss Hessian Hfθℓ(yn, fθ(xn)) for each of the N data
points through the computation graph. Instead, we use the fact that we have

Ey∼p(y|fθ(xn))[∇fθ log p(y|fθ(xn))∇fθ log p(y|fθ(xn))
⊺
] = Hfθℓ(yn, fθ(xn)) (56)

and take S Monte Carlo (MC) samples from the model’s predictive distribution ys ∼ p(y|fθ(xn).
Taking a single sample results in a rank-1 MC approximation of the true loss Hessian and only
requires the propagation of a single vector through the computation graph for each data point.

C Additional experimental details and results

C.1 MLCommons’ AlgoPerf benchmark for training algorithms

The goal of the AlgoPerf benchmark for training algorithms (Dahl et al., 2023) is to measure “train-
ing speedups due to algorithmic improvements” (MLCommons, 2022). Specifically, the benchmark
defines multiple workloads, where one workload is defined by the combination of a dataset, a neural
network model, a loss function, and a target performance defined by some evaluation metric. For
example, training a ViT on ImageNet using the cross-entropy loss until a target validation accuracy of
77.309% has been reached constitutes a workload. In the AlgoPerf benchmark, training algorithms
are compared on fixed hardware in terms of the wall-clock time they require to reach the fixed
validation target performance.

For our experiments, we use two of the workloads of the AlgoPerf benchmark as realistic deep
learning problems, to showcase the optimisation behaviour of our two K-FAC variations (Sections 4.2
and 4.3). Similar to the benchmark, we measure both the number of steps and the wall-clock time
necessary to reach the target validation metric. To put the training behaviour of K-FAC-expand
and K-FAC-reduce into perspective, we compare them to the target-setting run of the AlgoPerf
benchmark, denoted reference run in the experiments (Sections 4.2 and 4.3). To determine the
fixed validation target for each workload, four standard algorithms (AdamW, NAdamW, SGD with
Nesterov momentum (Nesterov), and SGD with heavy ball momentum) were each tuned with a
budget of 200 trials for every workload. The combination of algorithm and hyperparameters that
reached the highest validation performance within a fixed time was then run 20 times and the median
of the best achieved validation metric was set as the validation target. As our reference run, we use the
workload-specific, best-performing algorithm and hyperparameter combination. Note that this should
not be confused with the baseline algorithms in the AlgoPerf benchmark, since the target-setting
runs are tuned for the best possible validation performance on each workload.

K-FAC is run with most of the hyperparameters of the reference run and a tuning budget of 15 runs for
tuning the learning rate and damping. This means that most hyperparameters are not directly tuned for
K-FAC. To enable a fairer comparison, we also use the same additional budget for tuning the learning
rate of the reference run, the same learning rate schedule, and tuning goal as K-FAC. However, none
of these runs reaches the validation metric target, which is why the reference runs correspond to the
original target-setting runs. Despite this, the experiments presented in Sections 4.2 and 4.3 are not
meant to demonstrate that K-FAC is a superior training algorithm. To provide actual evidence for this
claim we would have to run a valid and optimised submission on the entire AlgoPerf benchmark or
a benchmark of comparable rigour. Nevertheless, using the well-tuned reference run allows us to put
K-FAC’s training performance into perspective.

The two AlgoPerf workloads used in this paper are:

Graph neural network on ogbg-molpcba. The workload consists of a (binary) cross-entropy loss,
the GraphNetwork instance described in Appendix A, and the ogbg-molpcba molecular property
prediction dataset (Hu et al., 2020). Each molecule is represented as a graph, where atoms are nodes
and edges are chemical bonds. The task is to predict whether or not a molecule has certain chemical
properties; there are 128 different properties. For training, we have about 350k examples and almost
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Table 3: Results from Table 1 with standard errors over 10 epochs.

K-FAC Batch size
128 256 512 1024 2048

expand 0.24± 0.01 0.38± 0.02 0.75± 0.03 1.36± 0.05 OOM

reduce 0.17± 0.01 0.24± 0.02 0.43± 0.03 0.63± 0.04 1.17± 0.08

44k for validation and testing. The validation target mean average precision (mAP) determined by
the target-setting runs is 0.28098 and the best performing reference run algorithm is Nesterov.

Vision transformer on ImageNet. This workload also uses the cross-entropy loss, a vision trans-
former architecture, and the LSVRC-2012 ImageNet (short: ImageNet) image dataset (Russakovsky
et al., 2015). The goal is to classify images into one of 1000 classes. There are about 1.3 million
training, 50k validation, and 10k test examples. The validation target accuracy determined by the
target-setting runs is 0.77309 and the best performing reference run algorithm is NAdamW.

C.2 Update step speed with K-FAC-expand and K-FAC-reduce

Table 4: Timing of K-FAC GGN approx-
imation for GPT-2 on full DART dataset.

K-FAC Absolute time [min] ↓ Relative time [%] ↓
expand 9.55± 0.13 100
reduce 6.68± 0.04 70

We provide the full results of the update step timing exper-
iment with standard errors over 10 epochs in Table 3. The
model architecture, optimiser, and data setup are exactly
the same as described in Appendix C.5.The full results of
the GPT-2 (nanoGPT) timing experiment are presented in
Table 4; the mean and standard error are computed based
on three runs.

C.3 Graph neural network on ogbg-molpcba

For this workload, we use a training batch size of 512 and a single NVIDIA V100 32GB GPU for
each run. The reference run algorithm (Nesterov) uses a learning rate of 2.4917728606918423, β1

equal to 0.9449369031171744, weight decay set to 1.285 964 054 102 592 8e−7, and linear warmup
for 3,000 steps and a polynomial schedule with a decay steps factor of 0.861509027839639 and
an end factor of 1e−3. The two K-FAC variations use the exact same hyperparameters, but the
warmup and expected number of steps (60,000) are multiplied by 0.75 and the learning rate and the
damping are tuned via random search. The search space for the learning rate is log uniform values
in [0.1, 10] and for the damping in [1e−3, 1]. We choose the hyperparameters of the run that first
reaches the validation target. This setting is a learning rate of 9.96871902194967 and damping of
0.7881965339190345 for K-FAC-expand and a learning rate of 0.5885756514016359 and damping
of 0.0579230193904011 for K-FAC-reduce. We then repeated each run five times. The Kronecker
factors and the preconditioner are computed every 10 iterations and we use a single sample MC
approximation of the Fisher, as explained in Appendix B.4.

C.4 Vision transformer on ImageNet

We use a training batch size of 1,024, ϵ = 1e−8 for NAdamW, and 4× NVIDIA V100 32 GPUs
for all runs on this workload. The reference run algorithm (NAdamW) is using a learning rate of
0.0008445074561975979, β1 equal to 0.8895758153482813, β2 to 0.9978504782314613, weight
decay set to 0.08135402759553023, linear warmup for 6999 steps, and a cosine decay schedule.
The two K-FAC variations use the exact same hyperparameters, but the warmup and expected
number of steps (140,000) is multiplied by 0.75 and the learning rate and the damping are tuned
via random search. The search space for the learning rate and the damping is log uniform values in
[1e−4, 1e−2]. We choose the hyperparameters of the run that first reaches the validation target. For
both K-FAC variations, the best setting is a learning rate of 0.0012662938340704357 and damping
of 0.00016524019235426572. The Kronecker factors and the preconditioner are computed every 50
iterations and we use a single sample MC approximation of the Fisher, as explained in Appendix B.4.

We also conduct a run where we update the Kronecker factors every step, use an exponential moving
average with a factor (ema_decay in ASDL) equal to β2, update the preconditioner every 10 steps,
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Figure 5: Training results for a vision transformer on ImageNet. This is similar to Figure 4, but
the K-FAC statistics are updated every step and different hyperparameters are used. Due to K-FAC’s
overhead, the wall-clock time is not reduced in this setting. Moreover, the discrepancy in speed
between K-FAC-expand and K-FAC-reduce becomes apparent.

set the damping to 1e−5, and use all the other hyperparameters of a reference run setting, including
the learning rate. The reference run setting corresponds to an earlier target-setting run result from
the AlgoPerf repository and uses a learning rate of about 2e−3, β1 = 0.7132, β2 = 0.9982, and
the weight decay is set to 0.026595. Moreover, it clips the gradients to keep their norm below 1.
As before, we also multiply the number of warmup and expected number of steps by 0.75. Due
to the high update frequency of the Kronecker factors, we can see the significant wall-clock time
difference between K-FAC-expand and K-FAC-reduce in Figure 5. Both variations are similar in
terms of steps to the target, K-FAC-expand takes about 92.6k and K-FAC-reduce takes about 93.7k
steps, but whereas K-FAC-expand takes about 50 hours, K-FAC-reduce reaches the target after about
37 hours. Note, that both variations are still significantly slower than the NAdamW reference run
which only takes about 25 hours, but 117.4k steps.

C.5 K-FAC for automatic hyperparameter selection via marginal likelihood optimisation

K-FAC is used for the Hessian approximation within the Laplace approximation by first accumulating
it over the entire data set and using the eigendecomposition of Kronecker factors as in Immer et al.
(2021). This is done every five epochs during training to update the weight decay parameters per layer
of the neural network. Therefore, the computation time of K-FAC makes a significant contribution
to the overall training time: reduce takes on average 75% of the overall time of expand, a result of
reducing the wall-clock time of a single marginal likelihood update step by about 50%, as shown in
Table 2. Here, we provide additional experimental details and the full table with standard errors.

For the marginal likelihood optimisation experiment, we use the same settings as Daxberger et al.
(2021), i.e., a Wide ResNet 16-4 with Fixup initialisation and parameters instead of batch normalisa-
tion (Zagoruyko & Komodakis, 2016; Zhang et al., 2019b). We use a batch size of 128, an initial
learning rate of 0.1 cosine decayed to 1e−6 and weight decay of 5e−3 training for 100 epochs. We
use standard data augmentation with horizontal flips and random crops. Results are averaged over
three seeds and the timings are obtained running all runs on a single NVIDIA A100 GPU and locally
measuring the hyperparameter update time. The full results with standard errors are presented in
Table 5.
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Table 5: Results from Table 2 with standard errors over three random seeds. The update time is the
average time per full K-FAC Laplace approximation to the marginal likelihood, which requires a full
data set pass with computation and eigendecomposition of the Kronecker factors.

K-FAC Data Augmentation NLL ↓ Accuracy [%] ↑ Update Time [s] ↓

expand ✗ 0.422 ± 0.013 88.89 ± 0.24 196 ± 22
✓ 0.244 ± 0.004 92.52 ± 0.12

reduce ✗ 0.703 ± 0.012 86.71 ± 0.13 99 ± 23
✓ 0.352 ± 0.008 93.50 ± 0.06
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