
Probabilistic DAG Search

Julia Grosse1 Cheng Zhang2 Philipp Hennig1,3

1University of Tübingen, Tübingen, Germany,
2Microsoft Research, Cambridge, United Kingdom,

3Max-Planck-Institute for Intelligent Systems, Tübingen, Germany,

Abstract

Exciting contemporary machine learning problems
have recently been phrased in the classic formal-
ism of tree search—most famously, the game of
Go. Interestingly, the state-space underlying these
sequential decision-making problems often posses
a more general latent structure than can be captured
by a tree. In this work, we develop a probabilis-
tic framework to exploit a search space’s latent
structure and thereby share information across the
search tree. The method is based on a combina-
tion of approximate inference in jointly Gaussian
models for the explored part of the problem, and
an abstraction for the unexplored part that imposes
a reduction of complexity ad hoc. We empirically
find our algorithm to compare favorably to existing
non-probabilistic alternatives in Tic-Tac-Toe and a
feature selection application.

1 INTRODUCTION

Tree search is a natural formulation for problems that require
planning and decision making. For historical reasons it is
often studied in the domain of board games, but the scope of
applications reaches wide beyond. Within machine learning,
problems from reinforcement learning, active learning or
experimental design can be phrased as tree search. More
generally, tree search is for example applied to combina-
torial optimization [Sabharwal et al., 2012] or scheduling
problems [Pellier et al., 2010] in computer science.

The fundamental challenge for problems of this kind is the
exponential complexity of the underlying search tree. In
many cases the complexity can be reduced to some extent
by collapsing nodes that represent identical problem states
to a single node. In this work, we propose a method that
additionally exploits similarity relations – as a generaliza-
tion of the identity relation – between nodes to improve the

search.

As a didactic example, we will consider the search tree
of the popular game Tic-Tac-Toe (Figure 1). The nodes
and paths represent positions and sequences of decisions
made by the two players, respectively. Different sequences
of decisions sometimes lead to the same position—the
paths overlap. While the tree has 58524 nodes, there are
only 765 different board states in Tic-Tac-Toe. In the
context of games this is known as move transposition,
but the same phenomenon also occurs in other decision
making problems beyond the scope of games, e.g. in feature
selection. Apart from representing the search space as a
DAG, our method also includes relations between board
states with overlapping signs, such as node A and B in
Figure 1(b). Observing a win by playing the game starting
from state A also increases the estimated score of node B.

As a second, more realistic example (on account of its scale)
we will study the problem of selecting a limited subset of
pixels from MNIST images Deng [2012] to maximize clas-
sification accuracy of the images. The greedy approach,
considering the pixels in isolation and picking the most in-
formative ones one after another, is evidently suboptimal:
For example, neighbouring pixels could be selected that are
informative in themselves, but together provide redundant
information. However, testing all possible combinations is,
well, combinatorially hard. To find the best subset of k = 10
pixels from the N = 28×28 = 784 pixels of MNIST images,

one has to search (
N
k
) ≈ 2.28 ⋅ 1022 possible combinations.

One way to do so is to build a search tree starting with the
empty subset as the root and iteratively adding the remaining
features in each level. This tree has∑ki=0

N !
(N−i)!

≈ 8.29 ⋅1028

states. For a feature selection problem, though, the order
of features does not matter, so the search tree can be re-
duced to a directed acyclic graph (DAG), which has only

∑
k
i=0 (

N
i
) ≈ 2.31 ⋅ 1022 nodes. This is still a large num-

ber, so further domain knowledge must be used to leverage

Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI 2021), PMLR 161:1424–1433.

mailto:<julia.grosse@uni-tuebingen.de>?Subject=Probabilistic DAG Search


(a) Search Tree for Tic-Tac-Toe. (b) Search DAG for Tic-Tac-Toe.

Figure 1: The advantage of treating a search space as a DAG
instead of a tree. (a) In a tree, identical states are represented
by different nodes if reached by different move sequences.
(b) In a DAG, such states are collapsed into one node. In the
proposed model states with overlapping signs (×, ○) will be
related to each other even if they are not (yet) connected
by a path, as indicated by the red lines. We assign a priori
beliefs to the unexplored part of the DAG, illustrated by the
clouds.

“smoothness”: For example, the values of nodes representing
combinations of pixels, that have some pixels in common,
can assumed to be similar to each other. The information
collected to estimate the value of one of the nodes is thereby
also useful to learn something about the values of the others.
We develop a probabilistic inference scheme for search prob-
lems on (smooth) DAGs, that allows information sharing
across the search space, by extending an earlier approximate
probabilistic inference framework for the optimal values in
(adversarial game) trees [Hennig et al., 2010].

1.1 PROBLEM DEFINITION AND NOTATION

We deal with the problem of finding an optimal sequence of
decisions in a discrete space. The different sequences form
the search space that is represented as a DAG (trees are a
special case) G = (X,E) with nodes X and directed edges
E. Each node i ∈X corresponds to a state si of the search
space. The root of the DAG corresponds to the initial state.
The children of a node correspond to the states that can be
reached from the parent’s state by making a decision. A path
from the root to a leaf (terminal node) describes a complete
sequence of decisions. Leaf nodes are associated with a
reward, the value/utility of this sequence of decisions. The
goal is to find an optimal path through the DAG — a path
leading from the root to a leaf with maximal reward. We
distinguish between two scenarios: in adversarial settings,
every second decision belongs to an opponent that tries to
minimize the reward. Nodes at which the opponent takes
the decision are therefore called MIN nodes. Levels in the
tree with MIN nodes alternate with levels with MAX nodes.
In non-adversarial settings, there are only MAX nodes (or
MIN nodes). During search roll-outs from a node can be
requested. For a roll-out a path from this node to a leaf is

descended, guided by a roll-out policy. We use a uniform
random policy in this work. The information available from
a roll-out consists of the reached leaf t and its reward rt.
Nodes have two kinds of values attached: a generative score
g and an optimal value v. The generative score of a node
models the obtained reward if a random path from this node
to a leaf is followed. For the optimal value, it is instead
assumed that an optimal decision is made at each node of
such a path.

1.2 BACKGROUND: TREE SEARCH

The most popular contemporary approach to tree search is
the family of Monte Carlo Tree Search (MCTS) algorithms.
MCTS involves building a growing search tree by adding
a new node in each iteration. Such an iteration begins with
a descent from the root through the search tree, ending at
a node that has not been visited before. From there begins
a roll-out through the unexplored part of the tree. The re-
ward observed at its end is backpropagated up to the root,
improving a value estimate of the existing nodes, which
in turn allows a more informative descent in the next step.
A key implicit assumption underlying MCTS is that the
search space is “smooth”: The rewards at leaf nodes are not
independent of each other, but those of nodes close to each
other in the tree (i.e. nodes that share a larger part of their
ancestry) are more similar to each other [Pearl, 1984].

Common forms of MCTS, such as the UCT (Upper
Confidence Bound applied to trees) algorithm, are based
on PAC (probably approximately correct) point estimates
[Auer et al., 1995]. The main argument for PAC estimates is
that they require little in the way of prior assumptions. This
property is a double-edged sword, however, because it also
prevents the use of patently available prior information. The
alternative is to construct an explicit probabilistic model
for the tree and perform inference on it. The main problem
with this latter approach is that it requires approximations,
because inference on the maximum of correlated random
variables is notoriously challenging. An early work on
such approximate methods for probabilistic tree search
by Hennig et al. [2010] constructs a joint generative
model for the values of nodes in a game tree both under
random and under optimal play. Their construction begins
with imposing a Gaussian generative model (based on a
Brownian random walk) for the values of board positions
under random play. The motivation for this model is the
intuition that each decision on the way from the root to a
leaf changes the value of the position, the probability to
win or lose, by a small amount, and this amount is iid. (and
assumed Gaussian for convenience) if both players act
randomly. From this relatively simple Gaussian model,
the op.cit. then derive an inference scheme for the values
under optimal play as a recursive application of expectation
propagation [Minka, 2001a,b].

1425



2 RELATED WORK

We integrate three aspects of tree search research: A prob-
abilistic formulation of the search; search on DAGs; and
generalization between related states. In addition to the
aforementioned probabilistic tree search by Hennig et al.
[2010], on which our methods are based, there are others
described in Tesauro et al. [2012], Baum and Smith [1997]
and Stern et al. [2007]. In contrast to the method described
above, the latter methods all model the optimal values of
sibling nodes as independent of each other. There have been
other (non-probabilistic) attempts to search on DAGs (Sec-
tion 2.1), and to generalize across states (Section 2.2).

2.1 SEARCH SPACE AS DAG

The idea of treating the search space as a DAG instead
of a tree proved valuable in chess (e.g. Plaat et al. [1996],
Warnock and Wendroff [1988]) and some other games (e.g.
Veness and Blair [2007], Rasmussen et al. [2007]). Because
the predominant search algorithm of this era was alpha-
beta search, much of the literature is concerned with this
depth-first method. For contemporary MCTS, Saffidine et al.
[2012] suggest three ways how to incorporate data from
roll-outs in the DAG setting, in which the ancestors tra-
versed during the descent from the root to the currently
explored node are a subset of all the ancestors of the node.
The simplest approach is to update only the ancestors in
this subset with the usual UCT update rule. A second option
is to update all ancestors. As a compromise between the
first two options, one could also update the visited ancestors
and non-visited ancestors who do not exceed a certain dis-
tance from the explored node. There are difficulties with all
three options: In the first option, information is wasted. For
the second option, Saffidine et al. [2012] provide a coun-
terexample, where the search is likely not to converge, and
in the third option, it is unknown how one should choose
the distance. Pélissier et al. [2019] describes another idea
for MCTS on DAGs. Their work differs from ours in that
they recursively update confidence intervals — in contrast
to distributions — for the optimal values of interior nodes.
Perhaps, the more interesting difference is how the confi-
dence interval/distribution for the optimal value of a node
at the boundary is constructed. The confidence interval is
based solely on observations from this node, whereas in our
work, the optimal values are based on the generative scores,
which allows us to share information from observations
made elsewhere.

2.2 GENERALIZATION BETWEEN RELATED
STATES

From the DAG perspective, nodes that represent identical
states are collapsed into a single node. A generalization
of this discrete form of similarity is the continuous-valued
notion of a kernel / covariance. Above, we use this idea to
construct a joint Gaussian model with a custom covariance
function over the state space. This allows sharing observa-
tions over different parts of the DAG. A related, but less
general idea is the so-called Rapid Action Value Estima-
tion (RAVE), originally introduced for Go by Gelly and
Silver [2007], where RAVE assigns a global score to each
of the 19 × 19 = 361 available board locations, which is
updated wherever in the tree the move is selected. As illus-
trated above for the pixel selection scenario, the value of
a decision often depends on the decisions made before. In
order to take this aspect into account, one can also define
local RAVE-scores for each decision conditioned on others.
Nodes are then selected based on a combination of the orig-
inal value estimate and the RAVE scores. These scores have
proven valuable in Go, but they are not straightforward to
extend to other settings, where the set of available actions
depends on the context of the state.

v∅

v{1} v{x} v{y} v{z}⋯ ⋯ ⋯

v{x,y}

g∅

g{1} g{x} g{y} g{z}⋯ ⋯ ⋯

g{x,y}

r{1,...}

r{x,y,z,.}.

r{z,...}

∆1

∆xy

∆z

Figure 2: Generative model for feature selection. Each node
in the DAG represents a feature bag. Three variables belong
to each node: generative scores g (Section 3.1 and 3.2.2) in
black, optimal values v (Section 3.1 and 3.2.3), and incre-
ments ∆ (Section 3.2). Roll-outs from a node result in the
observation of a reward r (Section 3.1), shown in black. The
information from roll-outs is used to update the generative
scores (Section 3.2.2). It is shared across the search space,
e.g. the observed reward in the roll-out from node {x, y} in-
fluences the generative score of node {z} (indicated by red
line) if the terminal node also contains feature z. For nodes
at the boundary, v is inferred from g and v and for inner
nodes, it is derived from the children’s v (Section 3.2.3).

3 METHOD

To construct a probabilistic method for search on DAGs, we
extend the algorithmic structure of MCTS outlined above:

1426



The observed part of the DAG is traversed from the root to
a node at the current boundary of the tracked DAG using a
policy based on the beliefs over the optimal values. Once a
node at the border is reached, this node is expanded: The
node’s children are added to the DAG—if not already part
of the DAG. A roll-out from the node is then performed
and the revealed information is used to update the beliefs
over the generative and optimal values in the DAG. Doing
so in a probabilistic fashion requires a generative model
(Section 3.1), and an approximate algorithm for inference
in it (Section 3.2). Following the approach of Hennig et al.
[2010], we define the value, the quantity to be optimized, in
a recursive fashion by leveraging an easier-to-define Gaus-
sian generative score describing the evolution under random
paths through the graph. Figure 2 provides an overview of
the generative model in the context of a feature selection
application. In this example, the generative score of a node,
say node {x, y}, models the classification accuracy based
on features x and y and k − 2 additional, randomly selected
features. For the node’s optimal score vx,y , the best k − 2 of
the remaining features are selected instead.
A crucial part of the proposed probabilistic DAG search
is that the information from a roll-out is not only used to
update the estimates for the node and it’s ancestors itself,
but also for nodes in other parts of the search space, that are
related to the leaf node reached by the roll-out. In Figure 2,
the roll-out from node {x,y} terminates in a leaf node, that
also contains feature z. The reward rx,y,z,.. collected there
influences the generative score of node {z}. This is realised
through a positive correlation of the modeled g-scores of
nodes with shared features.

3.1 GENERATIVE MODEL

Definition. The joint prior distribution over the genera-
tive scores gi over nodes xi ∈ X in the DAG G = (X,E)

is given by a multivariate Gaussian distribution p(g) =

N (g;µ, c ⋅Σ) with arbitrary µ ∈ R∣X ∣ and symmetric posi-
tive definite Σ ∈ R∣X ∣×∣X ∣.
The covariance Σij of the generative scores gi and gj should
be defined such that it captures problem-specific relation-
ship of the states represented by nodes i and j. For example,
in Tic-Tac-Toe, a plausible choice is the number of overlap-
ping ×’s and ○’s. In our second example, feature selection
for MNIST images, we define the covariance as the shared
number of selected pixels in the feature-bag represented
by the two nodes (+1 on the diagonals to ensure positive
semi-definiteness).
The scaling factor c in the prior variance captures the range
of possible rewards and depth of the tree. In our feature
selection experiments we standardize the rewards at leaf
nodes such that they have unit variance and zero mean. In
this case, c can be set to the inverse depth of the DAG and
the prior mean µ to zero.

Definition. The likelihood of an observation rt at a leaf
node t is defined as p(rt∣gt) = N (rt; gt, λ) where λ ∈ R is
a small constant modeling noise in the observations.
For example, in game scenarios an observation rt consists
of the outcome of the game encoded numerically and in
the feature selection scenario an observation could be the
classification accuracy.

Definition. The optimal value vt of a node is defined recur-
sively: For a leaf node t, set vt = gt. For interior nodes in
adversarial situations (where choices are made in alternating
fashion between a MAX and a MIN player), the optimal
value is the maximum or minimum of the children’s optimal
values:

vi =

⎧⎪⎪
⎨
⎪⎪⎩

max{vj ∣j ∈ children(i)} if i is MAX
min{vj ∣j ∈ children(i)} if i is MIN

(1)

(for non-adversarial settings, every node is MAX).

3.2 INFERENCE

The goal of our algorithm is to find a path through the DAG
that leads to a leaf t with globally maximal vt. The end of
the recursion in the definition of the optimal values are the
leaf nodes. Since the DAG is only observed up to the current
boundary and we only keep track of beliefs of observed
nodes, we have to approximate the optimal values of the
nodes at the boundary. This is where the generative scores
come into play. We assume that the optimal value vi of a
node i at the boundary consists of its generative score gi
and some increment ∆i:

vi = gi +∆i (2)

The increment ∆i of a node indicates how much we can
improve the score of the node if the remaining steps are se-
lected in an optimal manner in contrast to random selection.
Hennig et al. [2010] show how to derive beliefs for these
increments, prior to data acquisition. We take over their
derivations, i.e. we treat the unexplored part of the search
space as a tree, and assume that the generative score gj of a
child node j can be obtained from the parent’s generative
score gi by adding a (scaled) Brownian step ξj ∼ N (0, c) to
the parent’s generative score gi:

p(gj ∣gi) = N (gj ; gi, c) (3)

For leaf nodes t the generative scores correspond to the
optimal values, thus ∆t = 0. Now, consider a node i one
level above the leaf nodes. If node i is a MAX node and
the best option is chosen, the score of the parent can be
improved by

∆i = max
j∈children(i)

{ξj} (4)

1427



For the ∆i of nodes further up, one obtains recursively (for
MAX nodes):

∆i = max
j∈children(i)

{∆j + ξj} (5)

Assuming a constant branching factor, at least per level, the
computation of the beliefs over the ∆ can be simplified.
With this assumption, the approximation for the ∆ is the
same for all nodes in the same level, i.e. it is sufficient to
calculate the approximation for a single ∆ per level and use
copies for the sibling nodes for the subsequent step. The cal-
culation effort for the ∆’s is therefore not exponential, as it
seems in their recursive definition, but linear in the depth of
the tree/DAG. The distribution over the maximum/minimum
of Gaussian distributed random variables is not Gaussian
anymore. However, there is a Gaussian approximation avail-
able [Hennig, 2009], that is summarized in Section 3.2.1.
We repeatedly apply this approximation to obtain a look-up
table for the ∆ prior to the search.
The Brownian steps from a parent node to its children, on
which the definition of the ∆ is based, are independent of
each other in the tree model, i.e. the ∆ of sibling nodes
are not correlated. If the search space is actually a general
DAG, the effective number of options is generally smaller
than in a tree, because some paths reunite in later steps. In
other words, the optimal increments ∆ of sibling nodes are
correlated. For example, think of the extreme case where
all paths end in the same leaf node and the ∆ would be
perfectly correlated.

3.2.1 Approximation of the Maximum of Gaussian
Distributed Variables

Consider the problem of determining the distribution of
the maximum of a finite set of jointly Gaussian distributed
variables, as required, inter alia, for the ∆. Suppose, for
the moment, one is interested in the maximum m of only
two variables x1 and x2. The knowledge Ix on x1 and x2

is expressed by a joint Gaussian distribution p(x1, x2∣Ix) =

N (x;µ,Σ). In some cases there might be prior information
I0 on the maximum in form of a Gaussian belief p(m∣I0) =

N (m;µ0, σ
2
0). Both sets of information are combined into

a posterior-like distribution of m:

p(m∣Ix,I0)

= Z−1p(m∣I0)⋅∫ ∫ p(x1, x2∣m)p(x1, x2∣Ix)dx1dx2,

(6)

where Z is a normalization constant. The solution to this
problem requires computing the probability for either of
them to be the maximum, and the value of the maximum

−3 −2 −1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

m, xi

p
(
m
)
,p
(
x
i
)

Figure 3: Gaussian Approximation of the maximum of Gaus-
sian distributed variables. The red and yellow lines show
Gaussian approximations to the maximum m of three inde-
pendent Gaussian variables x1, x2, x3 plotted in blue. The
approximation plotted in red includes a Gaussian prior for
the maximum (shown in green). The yellow one is obtained
if no prior information on the maximum is included.

itself:

p(m∣Ix,I0)

= Z−1
⋅p(m∣I0)∫

∞

−∞

δ(x1 −m)∫

x1

−∞

p(x1, x2∣Ix)dx2dx1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m is distributed like x1 if x1>x2

+Z−1
⋅p(m∣I0)∫

∞

−∞

δ(x2 −m)∫

x2

−∞

p(x1, x2∣Ix)dx1dx2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
m is distributed like x2 if x2>x1

,

(7)

where δ denotes the Dirac-delta function. Solving the above
integrals amounts to computing generalized error functions,
which are intractable in the multivariate case [Genz and
Bretz, 2009]. The resulting distribution is also not Gaussian.
Hennig [2009] derives the moments of p(m∣Ix,I0) which
can be used for moment matching this distribution with a
Gaussian. The resulting expressions are listed in appendix A.
The Gaussian approximation for the maximum of two vari-
ables can be easily extended to an iterative approximation
scheme for the maximum of a finite set with more variables
as follows. At first, the maximum over two of the variables
is approximated. In each subsequent step, a further variable
is added and the maximum of it and the previous maximum
is approximated. An approximation for the minimum can be
obtained in the same way since mini{xi} = −maxi{−xi}.
The computational complexity of approximating the ex-
tremal value of b variables is O(b2) if the variables are
correlated and reduces to O(b) if they can be assumed to
be independent. Figure 3 shows two approximations of the
maximum of three independent Gaussian variables, one with
the standard Gaussian as prior and another one without prior
information (i.e. σ0 →∞).

1428



3.2.2 Inference on Generative Scores

During search, observations from roll-outs are used to iter-
atively update the distribution over the generative scores,
which then also informs the optimal values. This is where
the smoothness of the DAG is explicitly used. Since both
prior and likelihood for g are Gaussian, this task is straight-
forward: Given observations O = {(ti, rti) ∶ i = 1, ..., n}
from the first n roll-outs, the posterior mean and covariance
are obtained with the usual formulas for Gaussian regres-
sion:

µ′i = µi +ΣiO(ΣOO + λ)
−1

(r − µO) and (8)

Σ′

ij = Σij −ΣiO(ΣOO + λ)
−1ΣOi (9)

The matrix ΣOO ∈ Rn×n denotes the covariance between the
g scores of the observed leaf nodes {ti ∶ i = 1, ..., n} and the
vector r ∈ Rn contains the corresponding observed rewards
{rti ∶ i = 1, ..., n}. To simplify exposition we consider this
generic joint Gaussian model in this paper and do not as-
sume further simplifying structure to ΣOO. This means that
inference is of cubic cost in the size of the state-space in
memory (not the full, potentially exponentially large prob-
lem!). We note in passing that a naive implementation would
have costO(N4) because of repeated matrix inversions, but
this can be reduced to O(N3) through careful use of the
matrix-inversion lemma. Of course the various means of
speeding up Gaussian inference to quadratic and linear time
complexity developed in the ML community over recent
years can be applied more or less directly to our framework
to alleviate this polynomial complexity issue [Snelson and
Ghahramani, 2006, Titsias, 2009, Hensman et al., 2013].

3.2.3 Inference on Optimal Values

While inference on the generative scores g is easy, inference
on the extremal values v is non-analytic anywhere other
than at the boundary of the graph: For boundary nodes, the
optimal value is the sum of the generative score and ∆ (Eq.
2). Since the beliefs over the generative scores and ∆’s are
Gaussian, their sum is also a Gaussian random variable:

p(vi) = N (µgi + µ∆i , σ
2
gi + σ

2
∆i

) (10)

Yet, for the interior nodes, v values are defined as the max-
imum or minimum of their children’s v values. We recur-
sively use the approximation scheme from Section 3.2.1 to
approximate the v values of interior nodes based on the ap-
proximations of their children’s v values. The above scheme
can actually account for correlations between v-values if
they are known, but in our experiments we assumed inde-
pendence between the optimal values. This is of course a
strong, and formally incorrect simplification, but it is cur-
rently unclear how to correctly compute the correlation
coefficients. Such assumption has the effect that maximas

are overestimated and minimas are undererstimated, respec-
tively. A simplistic, but in our experiments effective way
to counteract this is to introduce a (Gaussian) prior for the
maximum that acts as a regularizer. The selection of the
hyperparameters of this prior can be motivated by the range
of the rewards. Assuming standardized rewards, we use a
standard normal distribution as prior for the optimal value.

Inference on a node’s optimal value requires beliefs over
the optimal values of all children. This is why we suggest
to add all children of a node to the DAG as soon as it is
expanded. However, this effectively increases the size of
the search DAG by the branching factor of the graph. For
problems with a high branching size (such as the MNIST
pixel-selection example below), this can be a computation
and memory bottleneck. As a simple, lightweight approxi-
mation, we then calculate the optimal values by considering
the optimal values of just the observed children and a sin-
gle summary variable for the maximum of all the currently
unobserved children. We approximate the value of this unex-
plored option by the parent’s generative score and the ∆ one
would get at the parents level assuming a branching factor
equal to the number of the remaining unexplored children.

3.2.4 Simplified Estimation of Optimal Values

A further simplification of the inference on the optimal
value vj at a parent’s node can be achieved by replacing the
EP inference scheme and instead approximating vj more
ad-hoc, as a weighted sum of the children’s values vj ∶=
∑
K
i=1wivi with higher weights wi for children with higher

estimated vi value. Using the softmax function as a soft
version of the maximum function we propose to set the
weights wi to

wi =
e−(µmax−µi)/σvi

∑
K
k=1wk

(11)

with µmax = maxk µvk . The weight vector can be inter-
preted as a categorical distribution for each of the children
nodes to be the best choice (the argmax). Assuming inde-
pendence between the children and constant weights, one
obtains for the parent’s mean µvj and variance σ2

vj :

µvj =∑
i

wiµvi and σ2
vj =∑

i

w2
i σ

2
vi (12)

The experiments below suggest that this new update rule for
the optimal values, although ad hoc, performs only slightly
worse than full EP inference while making the implementa-
tion considerably easier.

3.3 POLICY

The procedure outlined above yields local, approximately
Gaussian distributions over of the optimal values v, which

1429



can be used to guide the search, as well as during evaluation.
For exploratory search we use a standard upper confidence
bound [Auer et al., 1995] policy π to select nodes (for MAX
nodes, and mutatis mutandis for MIN nodes):

π[j] = arg max
i∈children(j)

µvi + β
√

log(nj)σ2
vi (13)

The variable nj counts how often node j was visited during
the search (cf. Section 4 on how the exploration parameter
β was set in the experiments).

3.4 SUMMARY

To wrap up, an iteration in probabilistic DAG search consists
of the following steps: A new node is added to the explored
DAG and roll-out is carried out. The reward from the roll-
out is used to update the generative scores of all nodes on
the boundary via a Gaussian regression. Marginals for the
optimal values of boundary nodes are inferred by adding
up the marginals for the generative scores g and the pre-
computed optimal increments ∆. The optimal values of all
of the remaining nodes in the explored part of the DAG are
updated using the Gaussian approximation scheme.

4 EXPERIMENTS

We test our method in three different settings: The first
experiment is on a synthetically generated DAG/tree,
where the covariance structure of the ground truth is in
full accordance with the generative model assumed by
the probabilistic DAG search. The second experiment,
Tic-Tac-Toe, is an example for an adversarial search
problem. The last one is a high-dimensional feature
selection experiment on MNIST with a branching factor
b = 784, higher than (but not as deep as) that of the Go
game tree. See Figure 2 for how to formulate features
selection as DAG search. We compare our algorithm both to
the probabilistic tree search of Hennig et al. [2010], as well
as classic UCT and UCT on DAGs (UCD) [Saffidine et al.,
2012], as discussed in Section 2.1. We use the simplest
version of UCD, where only the traversed ancestors are
updated.

4.1 SYNTHETIC SEARCH PROBLEM

In this first problem, the underlying search space is a DAG
G = (X,E) with nodes X = {x ⊂ F ∣∣x∣ ≤ m} and edges
E = {(x1, x2)∣x2 = x1 ⊍ f ∈ F}, where F = {1, ...,N}. We
impose a covariance Σ ∈ R∣X ∣×∣X ∣ on the generative scores
of nodes xi and xj defined as Σij = (∣x1 ∩x2∣+1)/(m+1).
The ground-truth rewards at the leaf nodes are sampled
from N (0,Σ). The ground truth covariance structure is
known to the probabilistic versions. N = 15 and m = 5,

0 100 200 300 400 500

−1

−0.5

0

0.5

1

1.5

2

step

re
w

ar
d

UCT
UCD
probabilistic
probabilistic (simplified)

Figure 4: Comparison on synthetic DAG/tree. Average and
standard deviation of reward from 100 repetitions. Black
line indicates maximal reward.

0 200 400 600 800 1,000

−0.8

−0.6

−0.4

−0.2

0

number of steps

av
er

ag
e

re
w

ar
d

probabilistic DAG
probabilistic DAG (simplified)
UCT
UCD
probabilistic tree

Figure 5: Empirical performance on the Tic-Tac-Toe task.
Average reward from 20 search runs. Standard deviations
over 25 such repetitions (of 20 runs) as shaded regions.

i.e. the DAG has ∣X ∣ = 4944 nodes of which 3003 are leaf
nodes. λ was set to 10−4 for the probabilistic versions. β ∈

{0.01,0.1,1,
√

2,10} for all versions and Figure 4 shows
the results from the best choice, respectively. It is clearly
advantageous to use the covariance, whereas the reduction
in number of nodes from tree to DAG has only a negligible
effect on performance. We also note that, here, the simplified
inference rule achieves nearly the same performance as the
fully probabilistic version.

4.2 TIC-TAC-TOE

The outcome of Tic-Tac-Toe is either a win (r = 1), a draw
(r = 0) or a loss (r = −1). All search versions are evaluated
after each step against an optimally playing MIN player. In
this case the best outcome that the MAX player can reach is
a draw. During evaluation the MAX player selects its move
based on the maximum-a-posterior estimates of the v values
or selects its move randomly if reaches a previously unex-
plored node. We used the hyperparameters c = 0.5, λ = 0.1
for the probabilistic DAG and tree version and λ = 0.001
for the softmax-based simplification (we did not perform
extensive hyperparameter search, as these are relatively nat-

1430



0 200 400 600 800 1,000 1,200

0.3

0.4

0.5

0.6

number of steps

ac
cu

ra
cy

probabilistic tree UCT UCD
UCT RAVE probabilistic DAG probabilistic DAG (simplified)
random

Figure 6: Empirical performance on the MNIST pixel selec-
tion task. Average reward from 10 rounds.

ural choices). The exploration constant is set to β = 1 for
all search versions. Figure 5 shows the average reward for
the MAX player with respect to the number of search steps.
The probabilistic search on the DAG is able to use its sim-
ilarity metric to outperform the other algorithms by a few
hundred steps. Another factor for the better performance of
the probabilistic DAG search could be that several nodes (all
children) are added to the DAG in each search step. We also
found that UCD worked better than UCT, supporting the
expected gain from the reduced overall number of states. A
comparison of the probabilistic DAG version using the fully
probabilistic updates and the softmax-based simplification
suggests that the lead of the probabilisic DAG version is
not only due to the covariance structure, but also due to the
probabilistic treatment of the optimal value estimation.

4.3 PIXEL SELECTION FOR MNIST IMAGES

Our final experimental task is to select a subset of 10 pixels
from the MNIST images based on which the images are
classified. As a classifier for this task, we use a Convnet
(cf. Appendix B.1). The classifier is trained with images
where all but 10 randomly selected pixels are masked. 1000
randomly selected images of the MNIST train set are held
back as validation set. During the search, the classifier is
evaluated on this set to obtain estimates of the accuracy.
Before the search, 20 random roll-outs are performed and
the standard deviation and mean of the observed accura-
cies are used to standardize the rewards. We use β = 0.5 as
exploration constant for all search versions and, since the
classification accuracy can be evaluated to high precision,
λ = 10−4 as noise parameter for the likelihood in the proba-
bilistic methods. For the approximation of maxima and ∆
we use a standard Gaussian prior. For this high-dimensional
feature selection problem, UCT explores the search space

0
1

2
3 456

7

8

9

Figure 7: Final set of selected pixels, show on randomly
selected images from the MNIST test set.

almost uniformly, due to the high branching factor. Gaudel
and Sebag [2010] propose a heuristic based on RAVE scores
in order to make UCT applicable for large scale feature se-
lection problems. A detailed description of this heuristic
can be found in Appendix B.2. Figure 6 shows the highest
validation accuracy obtained by previous evaluations of leaf
nodes. We observe a difference in performance between the
search versions that generalize across the state – probabil-
isitic DAG, probabilistic DAG (simplified), UCT-RAVE –
and the remaining ones. This indicates that the exploitation
of similarity relations among states was more important
than just a reduction in the number of states based on iden-
tity relations and even essential to learn anything on this
problem. We also find a headstart of the probabilistic DAG
version(s) as compared to UCT-RAVE and an advantage of
the full-probabilistic update over the simplified, softmax-
based updates.

Figure 7 shows 10 pixels selected by our method after 1200
steps. Figure 8 shows, for each class and each pixel, the pro-
portion of images in the test dataset for which the respective
pixel has a positive value. They give an intuition for their
discriminative power. For example, pixel 3 separates classes
0 and 7 well from classes 1 and 8.

5 CONCLUSION

We have presented a probabilistic search algorithm for prob-
lems whose state-spaces can be represented by DAGs. A
benefit of this formulation over tree search, beyond the ob-
vious reduction in the size of the state-space itself, is that
it allows for an exploitation of similarities between states.
The key ingredients of our method are an approximate in-
ference scheme for extremal values, which we constructed
as an instance of expectation propagation, and an ad-hoc
prior for the optimal value of unexplored parts of the search
space, for which we extended earlier work on tree-structured
problems. Our experiments in the adversarial setting of Tic-
Tac-Toe and the non-adversarial case of feature selection
demonstrate not just good performance but also scalabil-
ity. In addition, we examined a simplified version for the
inference of optimal values as opposed to the one in Hen-
nig et al. [2010], that is based on the softmax function as
a relaxation of the argmax function. While it is relatively

1431



0123456789
0

1

class

pixel 0

0123456789
0

1

class

pixel 1

0123456789
0

1

class

pixel 2

0123456789
0

1

class

pixel 3

0123456789
0

1

class

pixel 4

0123456789
0

1

class

pixel 5

0123456789
0

1

class

pixel 6

0123456789

0

1

class

pixel 7

0123456789

0

1

class

pixel 8

0123456789

0

1

class

pixel 9

Figure 8: Proportion of images per class with positive value
for the 10 selected pixels in Figure 7 (labelled accordingly).

straightforward to include correlations between child nodes
in the approximate inference scheme, it is challenging to
construct a model to identify such correlations across the
state space, a task that we reserve for future work.

Author Contributions

All authors contributed to the idea. Julia Grosse imple-
mented the experiments and wrote the paper. Philipp Hennig
and Cheng Zhang made smaller edits and Philipp Hennig
created Figure 2.

Acknowledgements

This work was supported by Microsoft Research through
its PhD Scholarship Programme. The authors thank the
International Max Planck Research School for Intelligent
Systems (IMPRS-IS) for supporting Julia Grosse by non-
financial means. The authors gratefully acknowledge finan-
cial support by the European Research through ERC StG
Action 757275 / PANAMA; the DFG Cluster of Excellence
"Machine Learning - New Perspectives for Science", EXC
2064/1, project number 390727645; the German Federal
Ministry of Education and Research (BMBF) through the
Tübingen AI Center (FKZ: 01IS18039A); and funds from
the Ministry of Science, Research and Arts of the State of

Baden-Württemberg.

References

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and
Robert E Schapire. Gambling in a rigged casino: The
adversarial multi-armed bandit problem. In Proceedings
of IEEE 36th Annual Foundations of Computer Science,
pages 322–331. IEEE, 1995.

Eric B Baum and Warren D Smith. A Bayesian approach
to relevance in game playing. Artificial Intelligence, 97
(1-2):195–242, 1997.

Li Deng. The mnist database of handwritten digit images
for machine learning research [best of the web]. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

Romaric Gaudel and Michele Sebag. Feature selection
as a one-player game. In International Conference on
Machine Learning (ICML), 2010.

Sylvain Gelly and David Silver. Combining online and
offline knowledge in uct. In Proceedings of the 24th
International Conference on Machine Learning (ICML),
pages 273–280, 2007.

Alan Genz and Frank Bretz. Computation of Multivariate
Normal and t Probabilities. Lecture Notes in Statistics
195. Springer, 2009.

Philipp Hennig. Expectation propagation on the maxi-
mum of correlated normal variables. Technical report,
Cavendish Laboratory: University of Cambridge, July
2009.

Philipp Hennig, David Stern, and Thore Graepel. Coherent
inference on optimal play in game trees. In International
Conference on Artificial Intelligence and Statistics (AIS-
TATS), volume 13, pages 326–333, 2010.

James Hensman, Nicolo Fusi, and Neil D Lawrence. Gaus-
sian processes for big data. In Uncertainty in Artificial
Intelligence, page 282. Citeseer, 2013.

Thomas P Minka. Expectation propagation for approxi-
mate Bayesian inference. In Uncertainty in Artificial
Intelligence (UAI), volume 17, pages 362–369. Morgan
Kaufmann Publishers Inc., 2001a.

Thomas P Minka. A family of algorithms for approximate
Bayesian inference. PhD thesis, Massachusetts Institute
of Technology, 2001b.

Judea Pearl. Intelligent search strategies for computer prob-
lem solving. Addision Wesley, 1984.

1432



Aurélien Pélissier, Atsuyoshi Nakamura, and Koji Tabata.
Feature selection as monte-carlo search in growing single
rooted directed acyclic graph by best leaf identification. In
Proceedings of the 2019 SIAM International Conference
on Data Mining, pages 450–458. SIAM, 2019.

Damien Pellier, Bruno Bouzy, and Marc Métivier. An uct ap-
proach for anytime agent-based planning. In Advances in
Practical Applications of Agents and Multiagent Systems,
pages 211–220. Springer, 2010.

Aske Plaat, Jonathan Schaeffer, Wim Pijls, and Arie
De Bruin. Exploiting graph properties of game trees.
In AAAI/IAAI, Vol. 1, pages 234–239, 1996.

Rune Rasmussen, Frederic Maire, and Ross Hayward.
A template matching table for speeding-up game-tree
searches for hex. In Australasian Joint Conference on
Artificial Intelligence, pages 283–292. Springer, 2007.

Ashish Sabharwal, Horst Samulowitz, and Chandra Reddy.
Guiding combinatorial optimization with UCT. In In-
ternational Conference on Integration of Artificial Intel-
ligence (AI) and Operations Research (OR) Techniques
in Constraint Programming, pages 356–361. Springer,
2012.

Abdallah Saffidine, Tristan Cazenave, and Jean Méhat.
Ucd: Upper confidence bound for rooted directed acyclic
graphs. Knowledge-Based Systems, 34:26–33, 2012.

Edward Snelson and Zoubin Ghahramani. Sparse gaussian
processes using pseudo-inputs. In Advances in Neural
Information Processing Systems (NeurIPS), pages 1257–
1264, 2006.

David Stern, Ralf Herbrich, and Thore Graepel. Learning to
solve game trees. In Proceedings of the 24th International
Conference on Machine Learning (ICML), pages 839–
846, 2007.

Gerald Tesauro, VT Rajan, and Richard Segal. Bayesian
inference in monte-carlo tree search. arXiv preprint
arXiv:1203.3519, 2012.

Michalis Titsias. Variational learning of inducing variables
in sparse gaussian processes. In Artificial Intelligence
and Statistics, pages 567–574, 2009.

Joel Veness and Alan Blair. Effective use of transposition
tables in stochastic game tree search. In 2007 IEEE
Symposium on Computational Intelligence and Games,
pages 112–116. IEEE, 2007.

Tony Warnock and Burton Wendroff. Search tables in com-
puter chess. ICGA Journal, 11(1):10–13, 1988.

1433


	Introduction
	Problem Definition and Notation
	Background: Tree Search

	Related Work
	Search Space as DAG
	Generalization between Related States

	Method
	Generative Model
	Inference
	Approximation of the Maximum of Gaussian Distributed Variables
	Inference on Generative Scores
	Inference on Optimal Values
	Simplified Estimation of Optimal Values

	Policy
	Summary

	Experiments
	Synthetic search problem
	Tic-Tac-Toe
	Pixel Selection for MNIST Images

	Conclusion

