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Abstract

Natural gradient descent, which preconditions a gradient descent update with the
Fisher information matrix of the underlying statistical model, is a way to capture
partial second-order information. Several highly visible works have advocated
an approximation known as the empirical Fisher, drawing connections between
approximate second-order methods and heuristics like Adam. We dispute this
argument by showing that the empirical Fisher—unlike the Fisher—does not
generally capture second-order information. We further argue that the conditions
under which the empirical Fisher approaches the Fisher (and the Hessian) are
unlikely to be met in practice, and that, even on simple optimization problems, the
pathologies of the empirical Fisher can have undesirable effects.

1 Introduction

Consider a supervised machine learning problem of predicting outputs y ∈ Y from inputs x ∈ X.
We assume a probabilistic model for the conditional distribution of the form pθ(y|x) = p(y|f(x, θ)),
where p(y|·) is an exponential family with natural parameters in F and f : X×RD → F is a prediction
function parameterized by θ ∈ RD. Given N iid training samples (xn, yn)Nn=1, we want to minimize

L(θ) := −∑n log pθ(yn|xn) = −∑n log p(yn|f(xn, θ)). (1)

This framework covers common scenarios such as least-squares regression (Y = F = R and p(y|f) =
N (y; f, σ2) with fixed σ2) or C-class classification with cross-entropy loss (Y = {1, . . . , C},
F = RC and p(y = c|f) = exp(fc)/

∑
i exp(fi)) with an arbitrary prediction function f .

Eq. (1) can be minimized by gradient descent, which updates θt+1 = θt − γt∇L(θt) with step size
γt ∈ R. This update can be preconditioned, θt+1 = θt − γtB−1t ∇L(θt), with a matrix Bt that
incorporates additional information such as local curvature. Choosing Bt to be the Hessian yields
Newton’s method, but its computation is often computationally burdensome and might not even be
desirable for non-convex problems. A prominent variant in machine learning is natural gradient
descent [NGD; Amari, 1998], which preconditions with the Fisher information matrix (or simply
“Fisher”) of the probabilistic model,

F(θ) :=
∑
n Epθ(y|xn)

[
∇θ log pθ(y|xn)∇θ log pθ(y|xn)>

]
. (2)

This adapts to the information geometry of the model. While this motivation is conceptually distinct
from approximating the Hessian, the Fisher coincides with a generalized Gauss-Newton [GGN;
Schraudolph, 2002] approximation of the Hessian for the problems presented here. We discuss this in
detail in Section 2. This gives NGD theoretical grounding as an approximate second-order method.

A number of recent works in machine learning have relied on a certain approximation of the Fisher,
which is often called the empirical Fisher (EF) and is defined as

F̃(θ) :=
∑
n∇θ log pθ(yn|xn)∇θ log pθ(yn|xn)>. (3)
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Figure 1: Fisher vs. empirical Fisher as preconditioners for linear least-squares regression on the data
shown in the left-most panel. The second plot shows the gradient vector field of the (quadratic) loss
function and sample trajectories for gradient descent. The remaining plots depict the vector fields of
the natural gradient and the “EF-preconditioned” gradient, respectively. NGD successfully adapts to
the curvature whereas preconditioning with the empirical Fisher results in a distorted gradient field.

At first glance, this approximation is merely replacing the expectation over y in Eq. (2) with a sample
yn. However, yn is a training label and not a sample from the model’s predictive distribution pθ(y|xn).
Therefore, and contrary to what its name suggests, the empirical Fisher is not an empirical (i.e. Monte
Carlo) estimate of the Fisher. Due to the unclear relationship between the model distribution and
the data distribution, the theoretical grounding of the EF approximation is dubious. Despite that,
the empirical Fisher approximation has seen widespread adoption, possibly because it is convenient
to compute as a simple sum of outer products of individual gradients. We will provide a survey of
papers using the EF in Section 1.3.

1.1 Motivation

The main purpose of this work is to provide a detailed critical discussion of the empirical Fisher
approximation. While the discrepancy between the EF and the Fisher has been mentioned in
the literature before [Pascanu and Bengio, 2014, Martens, 2014], we see the need for a detailed
elaboration of the subtleties of this important issue. The intricacies of the relationship between the
empirical Fisher and the Fisher remain opaque from the current literature. Not all authors using the
EF seem to be fully aware of the heuristic nature of this approximation and overlook its shortcomings,
which can be seen clearly even on simple linear regression problems, see Fig. 1.

The ubiquity of the EF approximation reaches the extent that the EF is sometimes just called the
Fisher [e.g., Chaudhari et al., 2017, Wen et al., 2019]. Possibly as a result of this, there are examples
of algorithms involving the Fisher, such as Elastic Weight Consolidation [EWC; Kirkpatrick et al.,
2017] and KFAC [Martens and Grosse, 2015], which have been re-implemented by third parties
using the empirical Fisher. Interestingly, there is also at least one example of an algorithm that
was originally developed using the empirical Fisher and later found to work better with the Fisher
[Wierstra et al., 2008, Sun et al., 2009]. As the empirical Fisher is now used beyond preconditioning,
for example as an approximation of the Hessian in empirical works studying properties of neural
network training objectives [Chaudhari et al., 2017, Jastrzebski et al., 2018], the pathologies of
the EF approximation may lead the community to subtly erroneous conclusions; an arguably more
worrysome outcome than a suboptimal preconditioner.

The poor theoretical grounding stands in stark contrast to the practical success that EF-based methods
have seen. This paper is in no way meant to negate these practical advances but rather points out that
the existing justifications for the EF approximation are insufficient and do not stand the test of simple
examples. This indicates that there are effects at play that currently elude our understanding, which is
not only unsatisfying, but might also prevent advancement of these methods. We hope that this paper
helps spark interest in understanding these effects; our final chapter explores a possible direction.

1.2 Overview and contributions

We discuss related work in Section 1.3 and provide a short but complete overview of generalized
Gauss-Newton and natural gradient in Section 2. We then proceed to the main contribution in
Section 3, a critical discussion of the specific arguments used to advocate the empirical Fisher
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approximation. A principal conclusion is that, while the EF follows the formal definition of a
generalized Gauss-Newton matrix, it is not guaranteed to capture any useful second-order information.
We propose a clarifying amendment to the definition of a GGN. Furthermore, while there are
conditions under which the EF approaches the true Fisher, we argue that these are unlikely to be met
in practice. We illustrate that using the EF in such cases can lead to highly undesirable effects; Fig. 1
shows a first example.

This raises the question: Why are EF-based methods empirically successful? In Section 4, we
point to an alternative explanation of EF-preconditioning as adapting to gradient noise in stochastic
optimization, instead of adapting to curvature.

1.3 Related work

The generalized Gauss-Newton [Schraudolph, 2002] and natural gradient descent [Amari, 1998]
methods have inspired a line of work on approximate second-order optimization [Martens, 2010,
Botev et al., 2017, Park et al., 2000, Pascanu and Bengio, 2014, Ollivier, 2015]. A successful
example in modern deep learning is the KFAC algorithm [Martens and Grosse, 2015], which uses a
computationally efficient structural approximation to the Fisher.

Numerous papers have relied on the empirical Fisher approximation for preconditioning and other
purposes. Our critical discussion is in no way intended as an invalidation of these works. All of them
provide important insights and the use of the empirical Fisher is usually not essential to the main
contribution. However, there is a certain degree of vagueness regarding the relationship between the
Fisher, the EF, Gauss-Newton matrices and the Hessian. Oftentimes, only limited attention is devoted
to possible implications of the empirical Fisher approximation.

The most prominent example of preconditioning with the EF is Adam, which uses a moving average
of squared gradients as “an approximation to the diagonal of the Fisher information matrix” [Kingma
and Ba, 2015]. The EF has been used in the context of variational inference by various authors
[Graves, 2011, Zhang et al., 2018, Salas et al., 2018, Khan et al., 2018, Mishkin et al., 2018], some
of which have drawn further connections between NGD and Adam. There are also several works
building upon KFAC which substitute the EF for the Fisher [George et al., 2018, Osawa et al., 2018].

The empirical Fisher has also been used as an approximation of the Hessian for other purposes than
preconditioning. Chaudhari et al. [2017] use it to investigate curvature properties of deep learning
training objectives. It has also been employed to explain certain characteristics of SGD [Zhu et al.,
2018, Jastrzebski et al., 2018] or as a diagnostic tool during training [Liao et al., 2018].

Le Roux et al. [2007] and Le Roux and Fitzgibbon [2010] have considered the empirical Fisher in its
interpretation as the (non-central) covariance matrix of stochastic gradients. While they refer to their
method as “Online Natural Gradient”, their goal is explicitly to adapt the update to the stochasticity
of the gradient estimate, not to curvature. We will come back to this perspective in Section 4.

Before moving on, we want to re-emphasize that other authors have previously raised concerns about
the empirical Fisher approximation [e.g., Pascanu and Bengio, 2014, Martens, 2014]. This paper is
meant as a detailed elaboration of this known but subtle issue, with novel results and insights.

2 Generalized Gauss-Newton and natural gradient descent

This section briefly introduces the generalized Gauss-Newton method and natural gradient descent,
summarizes the known relationship between the GGN and the Fisher, and explains in which sense
they approximate the Hessian. Details can be found in the appendix.

2.1 Generalized Gauss-Newton

The original Gauss-Newton algorithm is an approximation to Newton’s method for nonlinear least
squares problems, L(θ) = 1

2

∑
n(f(xn, θ)− yn)2. By the chain rule, the Hessian can be written as

∇2 L(θ) =
∑
n∇θf(xn, θ)∇θf(xn, θ)

>︸ ︷︷ ︸
:=G(θ)

+
∑
n rn∇2

θf(xn, θ)︸ ︷︷ ︸
:=R(θ)

(4)
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where rn = f(xn, θ)− yn are the residuals. The first part, G(θ), is the Gauss-Newton matrix. For
small residuals, R(θ) will be small and G(θ) will approximate the Hessian. In particular, when the
model perfectly fits the data, the Gauss-Newton is equal to the Hessian.

Schraudolph [2002] generalized this idea to objectives of the form L(θ) =
∑
n an(bn(θ)), with

bn : RD → RM and an : RM → R, for which the Hessian can be written as1

∇2 L(θ) =
∑
n(Jθbn(θ))> ∇2

ban(bn(θ)) (Jθbn(θ)) +
∑
n,m[∇ban(bn(θ))]2m∇2

θb
(m)
n (θ). (5)

The generalized Gauss-Newton matrix (GGN) is defined as the part of the Hessian that ignores the
second-order information of bn,

G(θ) :=
∑
n[Jθbn(θ)]> ∇2

ban(bn(θ)) [Jθbn(θ)]. (6)

If an is convex, as is customary, the GGN is positive (semi-)definite even if the Hessian itself is not,
making it a popular curvature matrix in non-convex problems such as neural network training. The
GGN is ambiguous as it crucially depends on the “split” given by an and bn. As an example, consider
the two following possible splits for the least-squares problem from above:

an(b) = 1
2 (b− yn)2, bn(θ) = f(xn, θ), or an(b) = 1

2 (f(xn, b)− yn)2, bn(θ) = θ. (7)

The first recovers the classical Gauss-Newton, while in the second case, the GGN equals the Hessian.
While this is an extreme example, the split will be important for our discussion.

2.2 Natural gradient descent

Gradient descent follows the direction of “steepest descent”, the negative gradient. But the definition
of steepest depends on a notion of distance and the gradient is defined with respect to the Euclidean
distance. The natural gradient is a concept from information geometry [Amari, 1998] and applies
when the gradient is taken w.r.t. the parameters θ of a probability distribution pθ. Instead of measuring
the distance between parameters θ and θ′ with the Euclidean distance, we use the Kullback–Leibler
(KL) divergence between the distributions pθ and pθ′ . The resulting steepest descent direction is the
negative gradient preconditioned with the Hessian of the KL divergence, which is exactly the Fisher
information matrix of pθ,

F(θ) := Epθ(z)
[
∇θ log pθ(z)∇θ log pθ(z)

T
]

= Epθ(z)
[
−∇2

θ logθ p(z)
]
. (8)

The second equality may seem counterintuitive; it crucially depends on the expectation being taken
over the model distribution at θ, see Appendix A. This equivalence highlights the relationship of the
Fisher to the Hessian. In our setting, where we only model the conditional distribution pθ(y|x), the
Fisher is given by Eq. (2).

2.3 Connections between the Fisher, the GGN and the Hessian

While NGD is not explicitly motivated as an approximate second-order method, the following result,
noted by several authors,2 shows that the Fisher captures partial curvature information about the
problem defined in Eq. (1).
Proposition 1 (Martens [2014], §9.2). If p(y|f) is an exponential family distribution with natural
parameters f , then the Fisher information matrix coincides with the GGN of Eq. (1) using the split

an(b) = − log p(yn|b), bn(θ) = f(xn, θ), (9)

and reads F(θ) = G(θ) = −∑n[Jθf(xn, θ)]
> ∇2

f log p(yn|f(xn, θ)) [Jθf(xn, θ)].

For completeness, a proof can be found in Appendix A. The key insight is that∇2
f log p(y|f) does not

depend on y for exponential families. One can see Eq. (9) as the “canonical” split, since it matches
the classical Gauss-Newton for the probabilistic interpretation of least-squares. From now on, when
referencing “the GGN” without further specification, we mean this particular split.

1 Jθbn(θ) ∈ RM×D is the Jacobian of bn; we use the shortened notation∇2
ban(bn(θ)) := ∇2

ban(b)|b=bn(θ);
[·]m selects the m-th component of a vector; and b

(m)
n denotes the m-th component function of bn.

2 Heskes [2000] showed this for regression with squared loss, Pascanu and Bengio [2014] for classification
with cross-entropy loss, and Martens [2014] for general exponential families. However, this has been known
earlier in the statistics literature in the context of “Fisher Scoring” (see Wang [2010] for a review).
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The GGN, and under the assumptions of Proposition 1 also the Fisher, are well-justified approxi-
mations of the Hessian and we can bound their approximation error in terms of the (generalized)
residuals, mirroring the motivation behind the classical Gauss-Newton.

Proposition 2. Let L(θ) be defined as in Eq. (1) with F = RM . Denote by f (m)
n the m-th component

function of f(xn, ·) : RD → RM and assume each f (m)
n is β-smooth. Let G(θ) be the GGN (Eq. 6).

Then, ∥∥∇2 L(θ)−G(θ)
∥∥2
2
≤ r(θ)β, (10)

where r(θ) =
∑N
n=1 ‖∇f log p(yn|f(xn, θ))‖1 and ‖ · ‖2 denotes the spectral norm.

The approximation improves as the residuals in r(θ) diminish, and is exact if the data is perfectly fit.

3 Critical discussion of the empirical Fisher

Two arguments have been put forward to advocate the empirical Fisher approximation. Firstly, it has
been argued that the EF follows the definition of a generalized Gauss-Newton matrix, making it an
approximate curvature matrix in its own right. We examine this relation in §3.1 and show that, while
technically correct, it does not entail the approximation guarantee usually associated with the GGN.

Secondly, a popular argument is that the EF approaches the Fisher at a minimum if the model “is a
good fit for the data”. We discuss this argument in §3.2 and point out that it requires strong additional
assumptions, which are unlikely to be met in practical scenarios. In addition, this argument only
applies close to a minimum, which calls into question the usefulness of the empirical Fisher as a
preconditioner. We discuss this in §3.3, showing that preconditioning with the EF leads to adverse
effects on the scaling and the direction of the updates far from an optimum.

We use simple examples to illustrate our arguments. We want to emphasize that, as these are counter-
examples to arguments found in the existing literature, they are designed to be as simple as possible,
and deliberately do not involve intricate state-of-the art models that would complicate analysis. On a
related note, while contemporary machine learning often relies on stochastic optimization, we restrict
our considerations to the deterministic (full-batch) setting to focus on the adaptation to curvature.

3.1 The empirical Fisher as a generalized Gauss-Newton matrix

Bottou et al. [2018] point out that the EF matches the construction of a GGN (Eq. 6) using the split
an(b) = − log b, bn(θ) = p(yn|f(xn, θ)). (11)

Although technically correct3, we argue that this split does not provide a reasonable approximation.

For example, consider a least-squares problem which corresponds to the log-likelihood log p(y|f) =
log exp[− 1

2 (y − f)2]. In this case, Eq. (11) splits the identity function, log exp(·), and takes into
account the curvature from the log while ignoring that of exp. This questionable split runs counter to
the basic motivation behind the classical Gauss-Newton matrix, that small residuals lead to a good
approximation to the Hessian: The empirical Fisher

F̃(θ) =
∑
n∇θ log pθ(yn|xn)∇θ log pθ(yn|xn)> =

∑
n r

2
n ∇θf(xn, θ)∇θf(xn, θ)

>, (12)
approaches zero as the residuals rn = yn − f(xn, θ) become small. In that same limit, the Fisher
F (θ) =

∑
n∇f(xn, θ)∇f(xn, θ)

> does approach the Hessian, which we recall from Eq. (4) to
be given by ∇2 L(θ) = F (θ) +

∑
n rn∇2

θf(xn, θ). This argument generally applies for problems
where we can fit all training samples such that ∇θ log pθ(yn|xn) = 0 for all n. In such cases, the EF
goes to zero while the Fisher (and the corresponding GGN) approaches the Hessian (Prop. 2).

For the generalized Gauss-Newton, the role of the “residual” is played by the gradient ∇ban(b);
compare Equations (4) and (5). To retain the motivation behind the classical Gauss-Newton, the
split should be chosen such that this gradient can in principle attain zero, in which case the residual
curvature not captured by the GGN in (5) vanishes. The EF split (Eq. 11) does not satisfy this
property, as ∇b log b can never go to zero for a probability b ∈ [0, 1]. It might be desirable to amend
the definition of a generalized Gauss-Newton to enforce this property (addition in bold):

3 The equality can easily be verified by plugging the split (11) into the definition of the GGN (Eq. 6) and
observing that∇2

ban(b) = ∇ban(b)∇ban(b)> as a special property of the choice an(b) = − log(b).
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Figure 2: Quadratic approximations of the loss function using the Fisher and the empirical Fisher
on a logistic regression problem. Logistic regression implicitly assumes identical class-conditional
covariances [Hastie et al., 2009, §4.4.5]. The EF is a good approximation of the Fisher at the
minimum if this assumption is fulfilled (left panel), but can be arbitrarily wrong if the assumption
is violated, even at the minimum and with large N . Note: we achieve classification accuracies of
≥ 85% in the misspecified cases compared to 73% in the well-specified case, which shows that a
well-performing model is not necessarily a well-specified one.

Definition 1 (Generalized Gauss-Newton). A split L(θ) =
∑
n an(bn(θ)) with convex an, leads to a

generalized Gauss-Newton matrix of L, defined as

G(θ) =
∑
nGn(θ), Gn(θ) := [Jθbn(θ)]> ∇2

ban(bn(θ)) [Jθbn(θ)], (13)

if the split an, bn is such that there is b∗n ∈ Im(bn) such that∇ban(b)|b=b∗n = 0.

Under suitable smoothness conditions, a split satisfying this condition will have a meaningful error
bound akin to Proposition 2. (To avoid confusion, we want to note that this condition does not assume
the existence of θ∗ such that bn(θ∗) = b∗n for all n; only that the residual gradient for each data point
can, in principle, go to zero.)

3.2 The empirical Fisher near a minimum

An oft-repeated argument is that the empirical Fisher converges to the true Fisher when the model
is a good fit for the data [e.g., Jastrzebski et al., 2018, Zhu et al., 2018]. Unfortunately, this is
often misunderstood to simply mean “near the minimum”. The above statement has to be carefully
formalized and requires additional assumptions, which we detail in the following.

Assume that the training data consists of iid samples from some data generating distribution
ptrue(x, y) = ptrue(y|x)ptrue(x). If the model is realizable, i.e., there exists a parameter setting
θT such that pθT(y|x) = ptrue(y|x), then clearly by an MC sampling argument, as the number of data
points N goes to infinity, F̃(θT )/N → F(θT )/N . If, additionally, the maximum likelihood estimate
for N samples, θ?N , is consistent in the sense that pθ?N (y|x) converges to ptrue(y|x) as N →∞, then

1

N
F̃(θ?N )

N→∞−→ 1

N
F(θ?N ). (14)

That is, the empirical Fisher converges to the Fisher at the minimum as the number of data points
grows. (Both approach the Hessian, as can be seen from the second equality in Eq. 8 and detailed
in Appendix C.3.) For the EF to be a useful approximation, we thus need (i) a “correctly-specified”
model in the sense of the realizability condition, and (ii) enough data to recover the true parameters.

Even under the assumption that N is sufficiently large, the model needs to be able to realize the true
data distribution. This requires that the likelihood p(y|f) is well-specified and that the prediction
function f(x, θ) captures all relevant information. This is possible in classical statistical modeling of,
say, scientific phenomena where the effect of x on y is modeled based on domain knowledge. But it
is unlikely to hold when the model is only approximate, as is most often the case in machine learning.
Figure 2 shows examples of model misspecification and the effect on the empirical and true Fisher.

It is possible to satisfy the realizability condition by using a very flexible prediction function f(x, θ),
such as a deep network. However, “enough” data has to be seen relative to the model capacity. The
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Figure 3: Fisher (NGD) vs. empirical Fisher (EFGD) as preconditioners (with damping) on linear
classification (BreastCancer, a1a) and regression (Boston). While the EF can be a good approximation
for preconditioning on some problems (e.g., a1a), it is not guaranteed to be. The second row shows
the cosine similarity between the EF direction and the natural gradient, over the path taken by EFGD,
showing that the EF can lead to update directions that are opposite to the natural gradient (see Boston).
Even when the direction is correct, the magnitude of the steps can lead to poor performance (see
BreastCancer). See Appendix E for details and additional experiments.

massively overparameterized models typically used in deep learning are able to fit the training data
almost perfectly, even when regularized [Zhang et al., 2017]. In such settings, the individual gradients,
and thus the EF, will be close to zero at a minimum, whereas the Hessian will generally be nonzero.

3.3 Preconditioning with the empirical Fisher far from an optimum

The relationship discussed in §3.2 only holds close to the minimum. Any similarity between pθ(y|x)
and ptrue(y|x) is very unlikely when θ has not been adapted to the data, for example, at the beginning
of an optimization procedure. This makes the empirical Fisher a questionable preconditioner.

In fact, the empirical Fisher can cause severe, adverse distortions of the gradient field far from the
optimum, as evident even on an elementary linear least-squares problem in Fig. 1. As a consequence,
EF-preconditioned gradient descent compares unfavorably to NGD even on simple linear regression
and classification tasks, as shown in Fig. 3. The cosine similarity plotted in Fig. 3 shows that the
empirical Fisher can be arbitrarily far from the Fisher in that the two preconditioned updates point in
almost opposite directions.

One particular issue is the scaling of EF-preconditioned updates. As the empirical Fisher is the sum
of “squared” gradients (Eq. 3), multiplying the gradient by the inverse of the EF leads to updates of
magnitude almost inversely proportional to that of the gradient, at least far from the optimum. This
effect has to be counteracted by adapting the step size, which requires manual tuning and makes the
selected step size dependent on the starting point; we explore this aspect further in Appendix D.

4 Variance adaptation

The previous sections have shown that, interpreted as a curvature matrix, the empirical Fisher is a
questionable choice at best. Another perspective on the empirical Fisher is that (in contrast to the
Fisher) it contains useful information to adapt to the gradient noise in stochastic optimization.

In stochastic gradient descent [SGD; Robbins and Monro, 1951], we sample n ∈ [N ] uniformly
at random and use a stochastic gradient g(θ) = −N ∇θ log pθ(yn|xn) as an inexpensive but noisy
estimate of∇L(θ). The empirical Fisher, as a sum of outer products of individual gradients, coincides
with the non-central second moment of this estimate and can be written as

N F̃(θ) = Σ(θ) +∇L(θ)∇L(θ)>, Σ(θ) := cov[g(θ)]. (15)

Gradient noise is a major hindrance to SGD and the covariance information encoded in the EF may
be used to attenuate its harmful effects, e.g., by scaling back the update in high-noise directions.

A small number of works have explored this idea before. Le Roux et al. [2007] showed that the
update direction Σ(θ)−1g(θ) maximizes the probability of decreasing in function value, while Schaul
et al. [2013] proposed a diagonal rescaling based on the signal-to-noise ratio of each coordinate,
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Dii := [∇L(θ)]2i / ([∇L(θ)]2i + Σ(θ)ii). Balles and Hennig [2018] identified these factors as
optimal in that they minimize the expected error E

[
‖Dg(θ)−∇L(θ)‖22

]
for a diagonal matrix D.

A straightforward extension of this argument to full matrices yields the variance adaptation matrix

M =
(
Σ(θ) +∇L(θ)∇L(θ)>

)−1∇L(θ)∇L(θ)> = (N F̃(θ))−1∇L(θ)∇L(θ)>. (16)

In that sense, preconditioning with the empirical Fisher can be understood as an adaptation to
gradient noise instead of an adaptation to curvature. (Note that Eq. (16) involves a multiplication
with∇L(θ)∇L(θ)> which will counteract the poor scaling discussed in §3.3.)

This perspective on the empirical Fisher is currently not well studied. Of course, there are obvious
difficulties ahead: Computing the matrix in Eq. (16) requires the evaluation of all gradients, which
defeats its purpose. It is not obvious how to obtain meaningful estimates of this matrix from, say, a
mini-batch of gradients that would provably attenuate the effects of gradient noise. Nevertheless, we
believe that variance adaptation is a possible explanation for the practical success of existing methods
using the EF, and an interesting avenue for future research. To put it bluntly: It may just be that
the name “empirical Fisher” is a fateful historical misnomer, and the quantity should instead just be
described as the gradient’s non-central second moment.

As a final comment, it is worth pointing out that some works actually precondition with the square-
root of the EF, the prime example being Adam. While this avoids the “inverse gradient” scaling
discussed in §3.3, it further widens the conceptual gap between those methods and natural gradient.
In fact, such a preconditioning effectively cancels out the gradient magnitude, which has recently
been examined more closely as “sign gradient descent” [Balles and Hennig, 2018, Bernstein et al.,
2018].

5 Conclusions

We offered a critical discussion of the empirical Fisher approximation, summarized as follows:

• While the EF follows the formal definition of a generalized Gauss-Newton matrix, the
underlying split does not retain useful second-order information. We proposed a clarifying
amendment to the definition of the GGN.

• A clear relationship between the empirical Fisher and the Fisher only exists at a minimum
under strong additional assumptions: (i) a correct model and (ii) enough data relative to
model capacity. These conditions are unlikely to be met in practice, especially when using
overparametrized general function approximators and settling for approximate minima.

• Far from an optimum, EF preconditioning leads to update magnitudes which are inversely
proportional to that of the gradient, complicating step size tuning and often leading to poor
performance even for linear models.

• As a possible alternative explanation of the practical success of EF preconditioning, and an
interesting avenue for future research, we have pointed to the concept of variance adaptation.

Hence, the existing arguments do not justify the empirical Fisher as a reasonable approximation to
the Fisher or the Hessian. Of course, this does not rule out the existence of certain model classes
for which the EF might give reasonable approximations. However, as long as we have not clearly
identified and understood these cases, the true Fisher is the “safer” choice as a curvature matrix and
should be preferred in virtually all cases.

Contrary to conventional wisdom, the Fisher is not inherently harder to compute than the EF. As shown
by Martens and Grosse [2015], an unbiased estimate of the true Fisher can be obtained at the same
computational cost as the empirical Fisher by replacing the expectation in Eq. (2) with a single sample
ỹn from the model’s predictive distribution pθ(y|xn). Even exact computation of the Fisher is feasible
in many cases. We discuss computational aspects further in Appendix B. The apparent reluctance to
compute the Fisher might have more to do with the current lack of convenient implementations in
deep learning libraries. We believe that it is misguided—and potentially dangerous—to accept the
poor theoretical grounding of the EF approximation purely for implementational convenience.
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Limitations of the Empirical Fisher Approximation
Supplementary Material

Table of contents

§A: Details on natural gradient descent provides additional exposition on the natural gradient
and the generalized Gauss-Newton; its relation to distances in probability distribution space (§A.1), a
note regarding the treatment of the distribution over inputs (§A.2), the expression of the Fisher for
common loss functions (§A.3) and the view of the generalized Gauss-Newton as a linearization of
the model (§A.4).

§B: Computational aspects discusses the challenges of computing the empirical Fisher and the
Fisher, and possible options.

§C: Additional proofs provides proof of the propositions and statements skipped in the main
paper; the relation between the expected Hessian and expected outer product of gradients (Eq. 8),
the equivalence between the generalized Gauss-Newton (Prop. 1), and the bound on the difference
between the generalized Gauss-Newton and the Hessian (Prop. 2).

§D: Additional plots shows the experiments on different datasets.

§E: Experimental details gives the necessary details to reproduce our experiments.

A Details on natural gradient descent

We give an expanded version of the introduction to natural gradient descent provided in Section 2.2

A.1 Detailed introduction

Gradient descent minimizes some objective function by greedily updating in the “direction of steepest
descent”. But what, precisely, is meant by the direction of steepest descent? Consider the following
definition,

limε→0
1
ε

(
arg minδ f(θ + δ)

)
s.t. d(θ, θ + δ) ≤ ε), (17)

where d(·, ·) is some distance function. This definition says that we are looking for the update step δ
which minimizes f within an ε-ball around the current θ, and subsequently let the radius ε go to zero
(to make δ finite, we have to divide by ε). This definition makes clear that the direction of steepest
descent is intrinsically tied to the geometry which we impose on the parameter space by the definition
of the distance function. If we choose d(θ, θ′) =

∥∥θ − θ′∥∥
2
, the Euclidean distance, Eq. (17) reduces

to the (normalized) negative gradient.

Now, assume that θ parameterizes a statistical model pθ(z). The parameter vector θ is not the main
quantity of interest; the distance between θ and θ′ would be better measured in terms of distance
between the distributions pθ and pθ′ . A canonical distance function for probability distributions is the
Kullback–Leibler (KL) divergence. If we choose d(θ, θ′) = DKL

(
pθ′ ‖ pθ

)
, the steepest descent

direction becomes the natural gradient, F(θ)−1∇L(θ), where

F(θ) := Epθ(z)
[
∇ log pθ(z)∇ log pθ(z)

T
]

= Epθ(z)
[
−∇2 log pθ(z)

]
(18)

is the Fisher information matrix of the statistical model, which arises in this context as the Hessian of
the KL divergence

F(θ) = ∇2
θ′ DKL

(
pθ′ ‖ pθ

)∣∣∣
θ′=θ

. (19)
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A.2 What about the distribution over the inputs?

When going from Eq. (18) (Eq. 8 in the main text) to the expression for the Fisher of a conditional
probability distribution p(y|f(x, θ)) with samples (xn, yn)n=1,...,N (Eq. 2 in the main text),

F(θ) =
∑
n Epθ(y|xn)

[
∇θ log pθ(y|xn)∇θ log pθ(y|xn)>

]
, (20)

we considered our statistical model to be only on the conditional distribution y|x and restricted x
to the empirical distribution, i.e., a mixture of Dirac distributions centered at the training points xn,
n ∈ [N ]. An alternative is to consider a statistical model for the joint distribution (x, y) given by

pθ(x, y) = p(y|f(x, θ)) ptrue(x), (21)

where ptrue(x) is the true distribution over x. In this case the Fisher would be

F(θ) = Eptrue(x)

[
Ep(y|f(x,θ))

[
∇θ log pθ(y|x)∇θ log pθ(y|x)>

]]
. (22)

However, since ptrue is generally unknown (and the expectation over it intractable), this is impractical
usually approximated using the empirical distribution over the inputs. In the statistic literature, this
quantity is occasionally referred to as the empirical Fisher, due to the approximation of p(x) by the
empirical distribution but this is not what is referred to as the empirical Fisher in the main text and
in the literature we cite. Going from Eq. (22) to Eq. (20) replaces the expectation over ptrue(x) with
N samples from that distribution. In contrast to that, going from Eq. (2) to Eq. (3) replaces the
expectation over pθ(y|xn) with a single sample yn from a different distribution.

A.3 The Fisher for common loss functions

For a probabilistic conditional model of the form p(y|f(x, θ)) where p is an exponential family
distribution, the equivalence between the Fisher and the generalized Gauss-Newton leads to a
straightforward way to compute the Fisher without expectations, as

F(θ) =
∑
n

(Jθf(xn, θ))
>(∇2 log p(yn|f(xn, θ)))(Jθf(xn, θ)) =

∑
n

J>n HnJn, (23)

where Hn = ∇2 log p(yn|f(xn, θ)) and Jn = Jθf(xn, θ), and Hn often has an exploitable structure.

The squared-loss used in regression, 1
2

∑
n

∥∥yn − f(xn, θ)
∥∥2, can be cast in a probabilistic setting

with a Gaussian distribution with unit variance, p(yn|f(xn, θ)) = N
(
yn; f(xn, θ), 1

)
,

p(yn|f(xn, θ)) = exp
(
− 1

2

∥∥yn − f(xn, θ)
∥∥2) .

The Hessian of the negative log-likelihood w.r.t. f is then simply given by

∇2
f − log p(yn|f) = ∇2

f

[
− log exp

(
− 1

2‖yn − f‖
2
)]

= ∇2
f

[
1
2‖yn − f‖

2
]

= 1. (24)

The cross-entropy loss used inC-class classification can be cast as an exponential family distribution
by using the softmax function on the mapping f(xn, θ),

p(yn = c|f(xn, θ)) = [softmax(f)]c = efc∑
i e
fi

= πc,

Taking the Hessian of the negative log-likelihood w.r.t. f , we can simply write the Hessian as

∇2
f (− log p(y = c|f)) = ∇2

f

[
−fc + log

(∑
i e
fi
)]

= ∇2
f

[
log
(∑

i e
fi
)]
.

Checking the partial derivatives individually, we get that

∂2

∂f2i
log

(∑
c

efc

)
=

efi

(
∑
c e
fc)
− efi

2

(
∑
c e
fc)2

, and
∂2

∂fi∂fj
log

(∑
c

efc

)
= − efiefj

(
∑
c e
fc)2

.

Or, using π as the vector of predicted probabilities

∇2
f (− log p(y|f)) = diag(π)− ππ>. (25)
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A.4 The generalized Gauss-Newton as a linear approximation of the model

In §2.1, we mentioned that the generalized Gauss-Newton with a split L(θ) =
∑
n an(bn(θ)) can

be interpreted as an approximation of L where the second-order information of an is kept but the
second-order information of bn is ignored as bn is approximated by a linear function. To see this
connection, note that if bn is a linear function, then the Hessian and the GGN are equal as the Hessian
of bn w.r.t. to θ is zero,

∇2 L(θ) =
∑
n(Jθbn(θ))> ∇2

ban(bn(θ)) (Jθbn(θ)) +
∑
n,m[∇ban(bn(θ))]2m∇2

θb
(m)
n (θ)︸ ︷︷ ︸
=0

. (26)

Let us write b̄(θ)n (θ′) := bn(θ)+Jθbn(θ)(θ′−θ) for the first-order Taylor approximation of bn around
θ, which is now a function of θ′. We now approximate L(θ′), in the vicinity of θ, by replacing bn by
its linear approximation b̄(θ)n (θ′). The generalized Gauss-Newton is the Hessian of this approximation,
evaluated at θ′ = θ,

G(θ) = ∇2
θ′
∑
n an(b̄

(θ)
n (θ′))

∣∣∣
θ′=θ

=
∑
n(Jθbn(θ))> ∇2

ban(bn(θ)) (Jθbn(θ)) (27)

B Computational aspects

The empirical Fisher approximation is often motivated as an easier-to-compute alternative to the
Fisher. While there is some merit to this argument, we argued in the main text that the empirical
Fisher computes a wrong quantity. However, it is possible to compute an actual approximation to the
Fisher at the same computational complexity and using a very similar implementation: just sample
one output ỹn from the model distribution p(y|f(xn, θ)) for each input xn and compute the outer
product of the gradients ∑

n∇ log p(ỹn|f(xn, θ))∇ log p(ỹn|f(xn, θ))
>. (28)

While noisy, this one-sample Monte Carlo estimate is unbiased and will not suffer from the issues
mentioned in the main text. This is the approach used by Martens and Grosse [2015] as well as Zhang
et al. [2018].

As a side note, some implementations use a biased estimate in which, instead of sampling ỹn
from p(y|f(xn, θ)), they compute the most likely output ŷn = arg maxy p(y|f(xn, θ)). This scheme
could be beneficial in some circumstances, as it reduces variance, but it can also backfire by increasing
the bias of the estimation. For the least-squares loss, as p(y|f(xn, θ)) is a Gaussian distribution
centered as f(x, θ), the most likely output is f(xn, θ) and the gradient log p(y|f(xn, θ))|y=f(xn,θ)
is zero, which defeats the purpose of sampling.

For high quality estimates, however, sampling additional outputs and averaging the results is
inefficient. If M MC samples ỹ1, . . . , ỹM per input xn are used to compute the gradients
gm = ∇− log p(ỹm|f(xn, θ)), most of the computation is repeated. The gradient gm is

gm = −∇ log p(ỹm|f(xn, θ)) = −(Jθf(xn, θ))
>∇f log p(ỹm|f), (29)

where the Jacobian of the model output, Jθf , does not depend on ỹm. As the Jacobian of the model
is much more complex to compute than the gradient of the log-likelihood w.r.t. the model output, this
approach repeats the most difficult computation, especially when the model is a neural network. The
expectation can instead be computed in closed form using the generalized Gauss-Newton equation
(Eq. 23, or Eq. 6 in the main text), which requires the computation of the Jacobian only once per
sample xn.

The main issue with this approach is that computing Jacobians is currently not well supported by
deep learning auto-differentiation libraries, such as TensorFlow or Pytorch. However, the current the
implementations relying on the empirical Fisher also suffer from this lack of support, as they need
access to the individual gradients to compute their outer-product. Access to the individual gradients is
equivalent to computing the Jacobian of the vector [− log p(y1|f(x1, θ)), ...,− log p(yN |f(xN , θ)]

>.
The ability to efficiently compute Jacobians and/or individual gradients in parallel would drastically
improve the practical performance of methods based on the Fisher and empirical Fisher, as most of
the computation of the backward pass can be shared between samples.
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C Additional proofs

C.1 The Fisher as the expected Hessian

In §2.2 Eq. (8), we mentioned that the two following representations of the Fisher are equivalent:

Epθ(z)
[
∇θ log pθ(z)∇θ log pθ(z)

>] = Epθ(z)
[
−∇2

θ log pθ(z)
]
. (30)

To see why, apply the chain rule on the log to split the equation in terms of the Hessian and the outer
product of the gradients of pθ,

Epθ(z)
[
−∇2

θ log pθ(z)
]

= Epθ(z)
[
− 1
pθ(z)
∇2
θpθ(z)

]
+ Epθ(z)

[
1

pθ(z)2
∇θpθ(z)∇θpθ(z)>

]
. (31)

The first term on the right-hand side is zero, since

Epθ(z)
[
− 1
pθ(z)
∇2
θpθ(z)

]
:= −

∫
z

1

pθ(z)
∇2
θpθ(z)pθ(z) dz =

∫
z

∇2
θpθ(z) dz,

= ∇2
θ

∫
pθ(z) dz = ∇2

θ[1] = 0. (32)

The second term of Eq. (31) is the expected outer-product of the gradients, as ∂θ log f(θ) = 1
x∂θf(θ),

1
pθ(z)2

∇θpθ(z)∇θpθ(z)> =

(
1

pθ(z)
∇θpθ(z)

)(
1

pθ(z)
∇θpθ(z)

)>
,

= ∇θ log pθ(z)∇θ log pθ(z)
>. (33)

The same technique also shows that if the empirical distribution over the data is equal to the model
distribution pθ(y|f(x, θ), then the Fisher, empirical Fisher and the Hessian are all equal.

C.2 Proof of Propositon 1

In §2.3, Prop. 1, we mentioned that the Fisher and the generalized Gauss-Newton are equivalent for
the problems considered in the introduction;

Proposition 1 (Martens [2014], §9.2). If p(y|f) is an exponential family distribu-
tion with natural parameters f , then the Fisher information matrix coincides with
the GGN of Eq. (1) using the split

an(b) = − log p(yn|b), bn(θ) = f(xn, θ),

and reads F(θ) = G(θ) =
∑
n[Jθf(xn, θ)]

> ∇2
f log p(yn|f(xn, θ)) [Jθf(xn, θ)].

Plugging the split into the definition of the GGN (Eq. 6) yields G(θ), so we only need to show that
the Fisher coincides with this GGN. By the chain rule, we have

∇θ log p(y|f(xn, θ)) = Jθf(xn, θ)
> ∇f log p(y|f(xn, θ)), (34)

and we can then apply the following steps.

F(θ) =
∑
n

E
y∼pθ(y|xn)

[
Jθf(xn, θ)

> ∇f log p(y|fn)∇f log p(y|fn)>Jθf(xn, θ)
]
, (35)

=
∑
n

Jθf(xn, θ)
> E
y∼pθ(y|xn)

[
∇f log p(y|fn)∇f log p(y|fn)>

]
Jθf(xn, θ), (36)

=
∑
n

Jθf(xn, θ)
> E
y∼pθ(y|xn)

[
−∇2

f log p(y|fn)
]

Jθf(xn, θ), (37)

Eq. (35) rewrites the Fisher using the chain rule, Eq. (36) take the Jacobians out of the expectation as
they do not depend on y and Eq. (37) is due to the equivalence between the expected outer product of
gradients and expected Hessian shown in the last section.

If p is an exponential family distribution with natural parameters (a linear combination of) f , its log
density has the form log p(y|f) = fTT (y)−A(f) + log h(y) (where T are the sufficient statistics,
A is the cumulant function and h is the base measure). The Hessian w.r.t. f is simply∇2

fA(f) and is
independent of y, and hence,

F(θ) =
∑
n Jθf(xn, θ)

>∇2
f (− log p(yn|fn))Jθf(xn, θ), (38)
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C.3 Proof of Proposition 2

In §2.3, Prop. 2, we show that the difference between the Fisher (or the GNN) and the Hessian can be
bounded by the residuals and the smoothness constant of the model f ;

Proposition 2. Let L(θ) be defined as in Eq. (1) with F = RM . Denote by f (m)
n

the m-th component function of f(xn, ·) : RD → RM and assume each f (m)
n is

β-smooth. Let G(θ) be the GGN (Eq. 6). Then,∥∥∇2 L(θ)−G(θ)
∥∥2
2
≤ r(θ)β, (39)

where r(θ) =
∑N
n=1 ‖∇f log p(yn|f(xn, θ))‖1 and ‖ · ‖2 denotes the spectral

norm.

Dropping θ from the notation for brevity, the Hessian can be expressed as

∇2 L = G+
∑N
n=1

∑M
m=1 r

(m)
n ∇2

θf
(m)
n , where r(m)

n =
∂ log p(yn|f)

∂f (m)

∣∣∣∣
f=fn(θ)

(40)

is the derivative of − log p(y|f) w.r.t. the m-th component of f , evaluated at f = fn(θ).

If all f (m)
n are β-smooth, we have −βI � ∇2

θf
(m)
n � βI and, consequently,

−
∣∣∣∑n,m r

(m)
n

∣∣∣β I � ∇2 L−G �
∣∣∣∑n,m r

(m)
n

∣∣∣β I . (41)

Pulling the absolute value inside the double sum gives the upper bound∣∣∣∑n,m r
(m)
n

∣∣∣ ≤∑n

∑
m

∣∣∣∣ ∂ log p(yn|f)
∂f(m)

∣∣∣
f=fn(θ)

∣∣∣∣ =
∑
n ‖∇f log p(yn|fn(θ))‖1, (42)

and the statement about the spectral norm (the largest singular value of the matrix) follows.

D Additional plots

Fig. 4 repeats the experiment described in Fig. 2 (§3.2), on the effect of model misspecification on the
Fisher and empirical Fisher at the minimum, on linear regression problems instead of a classification
problem. Similar issues in scaling and directions can be observed.

Fig. 5 repeats the experiment described in Fig. 3 (§3.3) on additional linear regression problems.
Those additional examples show that the poor performance of empirical Fisher-preconditioned
updates compared to NGD is not isolated to the examples shown in the main text.

Fig. 6 show the linear regression problem on the Boston dataset, originally shown in Fig. 3, where
each line is a different starting point, using the same hyperparameters as in Fig. 3. The starting points
are selected from [−θ?, θ?], where θ? is the optimum. When the optimization starts close to the
minimum (low loss), the empirical Fisher is a good approximation to the Fisher and there are very
few differences with NGD. However, when the optimization starts far from the minimum (high loss),
the individual gradients, and thus the sum of outer product gradients, are large, which leads to very
small steps, regardless of curvature, and slow convergence. While this could be counteracted with a
larger step size in the beginning, this large step size would not work close to the minimum and would
lead to oscillations. The selection of the step size therefore depends on the starting point, and would
ideally be on a decreasing schedule.

E Experimental details

In contrast to the main text of the paper, which uses the sum formulation of the loss function,

L(θ) =
∑
n

log p(yn|f(xn, θ)),

the implementation—and thus the reported step sizes and damping parameters—apply to the average,

L(θ) =
1

N

∑
n

log p(yn|f(xn, θ)).

The Fisher and empirical Fisher are accordingly rescaled by a 1/N factor.
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Figure 4: Quadratic approximations of the loss function using the Fisher and the empirical Fisher
on a linear regression problem. The EF is a good approximation of the Fisher at the minimum if
the data is indeed generated by y ∼ N (xθ∗ + b∗, 1) as the model assumes (left panel), but can
be arbitrarily wrong if the assumption is violated, even at the minimum and with large N. In the
middle (A), the model is misspecified as it under-estimates the observation noise (data is generated
by y ∼ N (xθ∗ + b∗, 2)). In the right plot (B), the model is misspecified as it fails to capture the
quadratic relationship between x and y.
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Figure 5: Comparison of the Fisher (NGD) and the empirical Fisher (EFGD) as preconditioners
on additional linear regression problems. The second row shows the cosine similarity between the
EF-preconditioned gradient and the natural gradient at each step on the path taken by EFGD.
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Figure 6: Linear regression on the Boston dataset
with different starting points (each line is a differ-
ent initialization). When the optimization starts
close to the minimum (low initial loss), the empir-
ical Fisher is a good approximation to the Fisher
and there are very few differences with NGD, but
the performance degrades as the optimization pro-
cedure starts farther away (large initial loss).
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E.1 Vector field of the empirical Fisher preconditioning

The problem used for Fig. 1 is a linear regression on N = 1000 samples from

xi ∼ Lognormal
(
0, 3/4

)
, εi ∼ N (0, 1) , yi = 2 + 2xi + εi. (43)

To be visible and of a similar scale, the gradient, natural gradient and empirical Fisher-preconditioned
gradient were relatively rescaled by 1/3, 1 and 3, respectively. The trajectories of each method is
computed by running each update,

GD: θt+1 = θt − γ∇L(θt). (44)

NGD: θt+1 = θt − γ(F(θt) + λ I)−1∇L(θt), (45)

EFGD: θt+1 = θt − γ(F̃(θt) + λ I)−1∇L(θt), (46)

using a step size of γ = 10−4 and a small damping parameter of λ = 10−8 to ensure stability for
50′000 iterations. The vector field was computed using the same damping parameter. The starting
points for the problem are[

2
4.5

]
,

[
1
0

]
,

[
4.5
3

]
,

[
−0.5

3

]
.

E.2 EF as a quadratic approximation at the minimum for misspecified models

The problems for using the Scipy [Jones et al., 2001] implementation of BFGS4 to find the minimum
of the problem, and then plots the quadratic approximation of the loss function using the matrix
M (the Fisher or empirical Fisher), L(θ) ≈ 1

2 (θ − θ?)M(θ − θ?), for‖θ − θ?‖2 = 1. The datasets
used for the logistic regression problem of Fig. 2 are N = 1′000 samples from the data generating
processes described in Table 1. Fig. 4 shows additional examples of model misspecification on a
linear regression problem using the data generating processes described in Table 2.

Table 1: Datasets used for Fig. 2. For all datasets, p(y = 0) = p(y = 1) = 1/2.
Model p(x|y = 0) p(x|y = 1)

Correct model: N
([

1
1

]
,

[
2 0
0 2

])
N
([
−1
−1

]
,

[
2 0
0 2

])

Misspecified (A): N
([

1.5
1.5

]
,

[
3 0
0 3

])
N
([
−1.5
−1.5

]
,

[
1 0
0 1

])

Misspecified (B): N
([
−1
−1

]
,

[
1.5 −0.9
−0.9 1.5

])
N
([

1
1

]
,

[
1.5 0.9
0.9 1.5

])

Table 2: Datasets used for Fig. 4. For all datasets, x ∼ N (0, 1).
Model y ε

Correct model: y = x+ ε ε ∼ N (0, 1)
Misspecified (A): y = x+ ε ε ∼ N (0, 2)
Misspecified (B): y = x+ 1

2x
2 + ε ε ∼ N (0, 1)

E.3 Optimization with the empirical Fisher as preconditioner

The optimization experiment uses the update rules described in §E.1 by Eq. (44, 45, 46). The cosine
similarity is computed between the gradient preconditioned with the empirical Fisher and the Fisher,
without damping, at each step along the path taken by the empirical Fisher preconditioned updates.

4https://docs.scipy.org/doc/scipy/reference/optimize.minimize-bfgs.html
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The problems are initialized at θ0 = 0 and run for 100 iterations. Note that this initialization is
favorable to the empirical Fisher for the logistic regression problems. Not only is it guaranteed to not
be arbitrarily wrong, but the empirical Fisher and the Fisher actually coincide when the predicted
probabilities are uniform. For the sigmoid activation of the output of the linear mapping, σ(f), the
gradient and Hessian of the log-probability w.r.t. f , are given by

∇f (− log p(y|f)) = σ(f), ∇2
f (− log p(y|f)) = σ(f)(1− σ(f)). (47)

The gradient squared and the Hessian thus coincide (only) when σ(f) = 1
2 , which happens when the

model is initialized at 0.

The step size and damping hyperparameters are selected by a gridsearch, selecting for each optimizer
the run with the minimal loss after 100 iterations. The grid used is described in Table 4 as a log-space5.
Table 3 describes the datasets used and Table 5 the hyperparameters selected by the gridsearch.

5https://docs.scipy.org/doc/numpy/reference/generated/numpy.logspace.html
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Table 3: Datasets
Dataset # Features # Samples Type Figure

a1a6 1′605 123 Classification Fig. 3
BreastCancer7 683 10 Classification Fig. 3
Boston Housing8 506 13 Regression Fig. 3
Yacht Hydrodynamics9 308 7 Regression Fig. 5
Powerplant10 9′568 4 Regression Fig. 5
Wine11 178 13 Regression Fig. 5
Energy12 768 8 Regression Fig. 5

Table 4: Grid used for the hyperparameter search for the opti-
mization experiments, in log10. The number of samples to gen-
erate was selected as to generate a smooth grid in base 10, e.g.,
100, 10.25, 10.5, 10.75, 101, 101.25, . . .

Parameter Grid

Step size γ logspace(start=-20, stop=10, num=241)
Damping λ logspace(start=-10, stop=10, num=41)

Table 5: Selected hyperparameters, given in log10.
Dataset Algorithm γ λ

Boston GD −5.250
NGD 0.125 −10.0
EFGD −1.250 −8.0

BreastCancer GD −5.125
NGD 0.125 −10.0
EFGD −1.250 −10.0

a1a GD 0.250
NGD 0.250 −10.0
EFGD −0.375 −8.0

Wine GD −5.625
NGD 0.000 −8.5
EFGD −1.375 −6.0

Energy GD −5.500
NGD 0.000 −7.5
EFGD 0.875 −3.0

Powerplant GD −5.750
NGD −0.625 −8.0
EFGD 3.375 −1.0

Yacht GD −1.500
NGD −0.750 −7.5
EFGD 1.625 −6.5

6www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html#a1a
7www.csie.ntu.edu.tw/c̃jlin/libsvmtools/datasets/binary.html#breast-cancer
8scikit-learn.org/stable/modules/generated/sklearn.datasets.load_boston.html
9archive.ics.uci.edu/ml/datasets/Yacht+Hydrodynamics

10archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
11archive.ics.uci.edu/ml/datasets/Wine
12archive.ics.uci.edu/ml/datasets/Energy+efficiency
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