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The cerebral cortex of mammals houses an enormously com-
plex intercellular interaction network implemented via neu-
ronal processes that are long and thin, branching, and 
extremely densely packed. Early estimates reported an ex-
pected 4 km of axons and 400 m of dendrites compressed into 
a cubic millimeter of cortical tissue (1). This high packing 
density of cellular processes has made the locally dense map-
ping of neuronal networks in the cerebral cortex challenging. 

So far, reconstructions of cortical tissue have been either 
sparse (2–7) or restricted to small volumes of up to 1,500 μm3 
(8–10). Consequently the detailed network architecture of the 
cerebral cortex is unknown. Particular open questions are to 
what degree local neuronal circuits are explainable by geo-
metric rules alone (1, 2, 11–13) – and on which spatial scales 
cortical connectivity is only explainable by innervation pref-
erences beyond such geometric models (5, 8, 9, 14, 15). Simi-
larly, while numerous cortical neuronal cell types have been 
described based on protein expression, morphology and elec-
trophysiological characteristics (16), and these have been 
shown to have particular synaptic target patterns (17), the in-
verse question whether at the level of the dense cortical cir-
cuit, axons represent a continuum of synaptic preference or 
rather a set of distinct innervation paradigms which would 
allow for a purely connectomic cell type definition (as has 
been successful in the retina (18, 19)) is still open. Next, at the 
level of synaptic input to the primary dendrites of cortical ex-
citatory cells, it is not known whether the typically 3-10 pri-
mary dendrites of a cortical neuron that leave the cell body 
sample a homogeneous set of available excitatory and 

inhibitory synaptic inputs, or whether there is an enhanced 
heterogeneity of synaptic input composition, making it pos-
sible to exploit the numerous mechanisms that have been dis-
cussed for the non-linear integration of local synaptic inputs 
(20–23). Finally, while the change of synaptic weights in re-
sponse to electrical and sensory stimulation has been widely 
studied (24–28), and connectomic data consistent with LTP 
has been described (29, 30), the question what fraction of a 
given cortical circuit is plausibly shaped by processes related 
to Hebbian learning under undisturbed conditions is still un-
known. 

We used the dense connectomic reconstruction to quan-
titatively address these questions about the formational 
principles of a dense cortical circuit.  
 
Results 
We acquired a 3-dimensional EM dataset from a 28-day old 
mouse from upper layer 4 of primary somatosensory cortex 
(Fig. 1, A to D, likely located within a barrel, see supplemen-
tary materials) using serial block-face electron microscopy 
(SBEM, (31); dataset size: 61.8x94.8x92.6μm3, voxel size: 
11.24x11.24x28nm3). For dense reconstruction (Fig. 1, E to H), 
we 3D-aligned the images and applied a sequence of auto-
mated analyses (SegEM, (32), SynEM (33), ConnectEM and 
TypeEM; Fig. 2, supplementary materials and methods, and 
table S2) followed by focused manual annotation (FocusEM). 
We reconstructed 89 neurons that had their cell body in the 
dataset (Fig. 1, E and F). These neurons constituted only 2.6% 
of the total path length (69 mm, Fig. 1G). To reconstruct 
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axons, which constitute the majority of wiring in the dense 
circuit (1.79 m, 66.6%, Fig. 1H), we applied a scalable distrib-
uted annotation strategy, that identified locations of uncer-
tainty in the automated reconstruction, which were then 
resolved by targeted manual annotation. To reduce the re-
quired manual annotation time, it was critical to obtain an 
automated reconstruction with low error rates; to use effi-
cient algorithms for identifying locations for focused manual 
inspection (queries); and to minimize the time spent per user 
query. For this (Fig. 2A), we developed artificial intelligence-
based algorithms that evaluated the EM image data and 
CNN-filtered versions of the image data in the surrounding 
of interjunctions between segmented pieces of neurites (Fig. 
2B). Together with classifiers that computed the probability 
of volume segments to belong to an axon, a dendrite, a spine 
head or a glial process (using, among others, shape features, 
Fig. 2C), this allowed us to automatically connect parts of 
dendrites, attach spine heads to dendritic shafts (by a greedy 
step-wise agglomeration initiated at the spine head, Fig. 2D; 
58.9% of spine heads unaffected by the dataset boundary 
were automatically attached), and reconstruct parts of axons. 
Similarly, synapses were automatically detected by evaluat-
ing pre- and postsynaptic volumes at neurite interfaces (Fig. 
2E and figs. S2 to S5 (33); for shaft synapses, additional CNN-
based classifiers for vesicle clouds and mitochondria were 
used). To manually correct remaining errors in axons (Fig. 2, 
F to H), we detected ending locations of automatically recon-
structed axon pieces (Fig. 2F) and directed user queries to 
these locations. For this, we used an egocentric 3D image dis-
play mode [“flight mode,” Fig. 2G (34)] and oriented the user 
annotation along the axis of the neurite for which a local an-
notation (“query”) was requested (movie S2). Together with 
data pre-loading, this yielded a low-latency targeted neurite 
annotation in which single user queries took 29.4 s to resolve 
(traveled path length per query: 5.49 μm). These queries 
could be easily distributed among 87 annotators. Similarly, 
we detected locations of likely mergers between axons (Fig. 
2H, “chiasmata”) and directed user queries to reconnect the 
chiasma exits along actual axons. Thanks to this scalable an-
notation architecture, we obtained a dense reconstruction of 
2.69 m of neuronal processes (Fig. 1, G and H) with a total 
investment of 3,981 human work hours – about 10 times 
faster than a recent dense reconstruction in the fly larval 
brain (35) (Fig. 2, I and J), about 20 times faster than the pre-
vious dense reconstruction from the mammalian retina (18), 
and about 25 times faster than the previous dense reconstruc-
tion from mammalian cortex (9) (Fig. 2, I and J). To quantify 
remaining reconstruction error rates in this dense neuropil 
reconstruction, we measured the remaining errors in a set of 
10 randomly chosen axons and found 12.8 errors per millime-
ter of path length (of these 8.7 per millimeter continuity er-
rors, see materials and methods). This is indistinguishable 

from the error rates previously found in fast human annota-
tions (18, 34, 36). 

We obtained a connectome (Fig. 3) between 34,221 pre-
synaptic axonal processes and a total of 11,400 post-synaptic 
processes (6,979 by 3,719 connectivity matrix (Fig. 3E) when 
restricted to those pre- and postsynaptic neurites that estab-
lished at least 10 synapses). Among the post-synaptic pro-
cesses we classified n=169 apical dendrites (ADs) that 
traversed the dataset along the cortical axis without connec-
tion to one of the neuronal cell bodies in the dataset (Fig. 2A), 
246 smooth dendrites (SDs, Fig. 2B), 80 somata, 116 axon in-
itial segments (AIS, Fig. 2C), and 94 proximal dendritic trees 
connected to a soma in the dataset (PDs, movie S1; note that 
some of these neurons also had apical dendrites that were 
classified as PDs and not included in the AD definition above; 
see materials and methods and tables S1 and S2). 

 
Connectomic definition of axon types 
We investigated whether based solely on connectomic infor-
mation (Fig. 3) we could extract the rules of subcellular in-
nervation preference described for inhibitory axons in the 
mammalian cortex (17), and whether such synaptic target 
preference could also be found for excitatory axons. We first 
measured the preference of each axon for innervating den-
dritic spine heads versus dendritic shafts and other targets 
(Fig. 4, A and B), because in the mammalian cortex, most ax-
ons of inhibitory interneurons preferentially innervate the 
dendrites’ shafts or neuronal somata (17), and most excitatory 
glutamatergic axons preferentially innervate the spine heads 
of dendrites (1). The fraction of primary spine synapses per 
axon (out of all synapses of that axon) accordingly allowed 
the identification of spine-preferring, likely excitatory axons 
with at least 50% primary spine innervations (n=5,894 axons) 
and shaft-preferring, likely inhibitory axons with less than 
20% primary spine innervations (n=893 axons; 13.2% of all 
axons; for exceptions to this rule and control measurements, 
see supplementary materials and tables S1 and S2). 

We then determined for each of the subcellular synaptic 
target classes defined above (Figs. 3 and 4C) the per-synapse 
innervation probability that would best explain whether an 
inhibitory axon establishes at least one synapse onto each of 
these targets. These inhibitory “single-hit” binomial innerva-
tion probabilities were 4.2% (Somata), 17.8% (PD), 4.9% (SD), 
3.3% (AD), and 0.5% (AIS) (Fig. 4D). We then computed the 
expected distribution of synapses per axon made onto each 
target class assuming the double-hit, triple-hit, etc. innerva-
tion probabilities are the same as the probability to establish 
at least one synapse onto that target. When comparing these 
target distributions to the actually measured distributions of 
synapses per axon onto each target class (Fig. 4E), we found 
that inhibitory axons established enhanced preference for 
cell bodies (p=2.4x10−34, n=893, one-sided Kolmogorov-
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Smirnov test), proximal dendrites (p=6.0x10−77), apical den-
drites (p=2.5x10−4) and to a lesser degree for smooth den-
drites (p=1.7x10−3, table S1), but no enhanced preference for 
axon initial segments in L4 (p=0.648). AIS were synaptically 
innervated by 0.172 input synapses per μm AIS length, but 
these innervations were not made by axons with an enhanced 
preference for AIS, unlike in supra- and infragranular layers 
(37)). 

When performing the same analysis for excitatory axons 
(Fig. 4F), we found clear target preference for apical den-
drites (p=2.5x10−34, Fig. 4F), for smooth dendrites 
(p=7.6x10−25) and for proximal dendrites (p=1.3x10−169). 
Thalamocortical axons [detected using the criteria reported 
in (38); see fig. S6 and materials and methods), to the con-
trary, showed indication of target preference for proximal 
dendrites (p=2.5x10−31), but not for apical (p=0.019) or 
smooth dendrites (p=0.723). In order to determine the frac-
tion of inhibitory and excitatory axons that had an unexpect-
edly high synaptic preference for one (or multiple) of the 
subcellular target classes, we used the false detection rate cri-
terion used for the determination of significantly expressed 
genes (q value (39), see materials and methods) and obtained 
lower bounds on the fractions of axons in the tissue that are 
preferentially innervating the various subcellular target clas-
ses (Fig. 4G; at least 58.0% of inhibitory and 24.4% of excita-
tory axons). Inhibitory (Fig. 4H) but not excitatory axons (Fig. 
4I) showed higher-order innervation preferences indicating 
that at the level of the dense cortical circuit, synaptic target 
preferences established by axons were not a continuum but 
allowed cell type classification without the need for measure-
ments of neuronal morphology, electrical activity, protein ex-
pression or transcription levels. 
 
Geometric sources of synaptic innervations 
Could these local connectivity rules have been derived solely 
from the geometry of axons and dendrites? We first quanti-
fied the overall relation between the spatial distribution of 
axons and dendrites and the establishment of synapses be-
tween them (Fig. 5). One paradigm, originally proposed by 
Peters (11), states that thalamocortical axons entering a cer-
tain cortical tissue volume would sample the available corti-
cal dendrites for synaptic innervation according to their 
relative prevalence in the tissue (1). This model (Fig. 5A) pre-
dicted the thalamocortical innervation of most cortical den-
drites rather well with the exception of smooth dendrites (an 
exception reported by (14)) and the enhanced TC innervation 
of proximal dendrites of layer 4 cells (21). When applied to 
corticortical excitatory and inhibitory axons (Fig. 5A), we 
found that this model predicted excitatory innervation of 
most spiny dendrites rather well, but again failed to predict 
innervation of smooth dendrites and the proximal bias of in-
hibitory synapses. Since this model (which has been most 

widely used for circuit inference, (2, 12)) implicitly accounts 
for the density of synapses along the presynaptic axons, it was 
capable of capturing the increased synapse density of 
thalamocortical axons (Fig. 5A). A simpler variant of Peters’ 
model (1, 15) (Fig. 5B), which uses the density of pre- and 
postsynaptic path length as basis for the synaptic innervation 
prediction, failed at predicting the thalamocortical innerva-
tion, but captured the corticocortical innervation of spiny 
dendrites (Fig. 5B). We then analyzed whether a “Peters’” 
model normalized for postsynaptic synapse density (Fig. 5C) 
would better capture synaptic innervation since it implicitly 
accounts for the postsynaptic synapse density, and found that 
in fact, the dendritic model was a far better predictor of syn-
aptic innervation (compare Fig. 5, C and B). This showed that 
smooth dendrites and apical dendrites sampled synaptic in-
put according to the relative path length of the presynaptic 
axons (Fig. 5C). We then investigated whether a Peters’ model 
accounting for pre- and postsynaptic synapse densities would 
improve the innervation prediction (Fig. 5D). In this model, 
both the output and the input of cortical excitatory neurites 
were properly predicted, but the suppressed innervation of 
smooth and apical dendrites by thalamocortical axons and 
the proximal bias of inhibitory axons was not. Notably, none 
of the Peters’ models could account for this proximal bias of 
inhibitory synapses [Fig. 5D; for other failures of Peters’ pre-
dictions see for example (3, 6, 8, 9)]. 

More recently, the Peters’ model has been investigated for 
the close proximity between axons and dendrites on the scale 
of few micrometers (8, 9) and concluded poor (8) or absent 
(9) geometric predictability of synaptic innervation. We used 
our larger dense reconstruction to investigate the geometric 
prediction over a substantially broader spatial scale to about 
30μm, and accounted for inhibitory, excitatory axons and 
postsynaptic target types (Fig. 5, E to H). We measured 
whether the postsynaptic membrane surface available within 
a certain radius rpred around a given axon (Fig. 5E) would be 
a predictor of synaptic innervation for that given axon. We 
measured the available membrane surface belonging to the 5 
subcellular target classes around all 6,979 axons (Fig. 5F) and 
used a linear multinomial regression model to predict synap-
tic innervation from this data (Fig. 5G). Then we computed 
the coefficient of determination (R2) reporting the fraction of 
axonal synaptic innervation variance that could be explained 
purely based on the geometrical information (Fig. 5H; for de-
tails, see supplementary materials and materials and meth-
ods for details). In fact, for small spatial scales of 1-5 μm, the 
membrane surface available around an axon was a rather 
good predictor of synaptic innervation from excitatory axons 
(range 16-90%, Fig. 5H; less so for inhibitory axons: 23-79%). 

Would this imply that axonal and dendritic proximity at 
the single-axon level can be used to infer synaptic connectiv-
ity in the cortex (13)? We found that for the spatial alignment 
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scales that can be achieved in light-microscopy based neuron 
reconstructions from multiple animals (10-20 μm), predicta-
bility dropped dramatically (Fig. 5H), making circuit infer-
ence by an emulation of growth processes based on light-
microscopically aligned data (13, 40) implausible. 
 
Subcellular synapse placement 
We used our dense segmentation to study the spatial distri-
bution of synapses along somata and dendrites in the cortical 
neuropil. The density of thalamocortical synapses had a sub-
stantial dependence on cortex depth (Fig. 6, A to D): the ab-
solute density of TC synapses in the volume increased by 
about 93% over 50 μm cortex depth (Fig. 6, A and B; the TC 
excitatory synapse fraction TC/(TC+CC) increased by 82.6%, 
corresponding to an absolute increase in the TC synapse frac-
tion of 5.8% per 50 μm cortex depth, Fig. 6D). This gradient 
was consistent with light-microscopic analyses of TC synap-
ses indicating a decrease of TC synapse density from lower to 
upper L4 (41) which is most substantial when analyzed at the 
level of single VPM axons (41). Neither the inhibitory nor the 
corticocortical excitatory synapse densities showed a compa-
rable spatial profile (Fig. 6C). 

How was the synaptic TC gradient mapped onto the den-
drites of L4 neurons along the cortex axis (Fig. 6, E to G)? One 
possibility was that the TC synapse gradient was used to en-
hance the variability of synaptic input composition between 
different primary dendrites of the L4 neurons such that a 
neuron’s dendrites pointing upwards toward the pia would 
sample relatively less TC input than dendrites pointing to-
ward the white matter. Alternatively, mechanisms to estab-
lish synaptic target preference (as those reported in Fig. 4) 
could be used to counterbalance this synaptic gradient and 
equilibrate the synaptic input fractions on the differently ori-
ented dendrites. Our analysis showed that in fact, even at the 
level of single primary dendrites, TC input fractions were 
1.28-fold higher for dendrites pointing upwards toward the 
cortical surface vs downwards toward the white matter (Fig. 
6, F and G; TC input fractions of each dendrite were corrected 
for the entire neuron’s TC input fraction for this analysis, see 
materials and methods). We then asked whether this differ-
ential composition of the excitatory inputs was accompanied 
by different compositions of the inhibitory input synapses 
(Fig. 6, H to L). We found that the fraction of TC input to a 
neuron’s dendrites was anticorrelated to the fraction of in-
hibitory synapses that originated from apical-dendrite prefer-
ring inhibitory axons (Figs. 6I and 4) - both at the level of the 
input to L4 neurons and at the level of single primary den-
drites of L4 neurons (Fig. 6, I and J). The effect was absent 
for all other synapse classes, most notably the soma-prefer-
ring inhibitory axons (Fig. 6K; see Discussion). 
 
 

Connectomic mapping of the plasticity-consistent cir-
cuit fraction 

The concept of Hebbian plasticity, thought to be at the 
core of experience-dependent changes of synaptic weights in 
the brain, makes predictions about the temporal evolution of 
synaptic weights in multiple synaptic contacts between the 
same pre- and postsynaptic neurons (joint synapses, Fig. 7, A 
and B): Because Hebbian synaptic plasticity is dependent on 
the electrical activity of the pre- and postsynaptic neurons, 
which in a first approximation can be assumed to be similar 
at joint synapses, long-term potentiation (LTP) predicts joint 
synapses to become stronger and relatively more similar in 
weight (especially if synaptic weight saturates); and long-
term depression (LTD) predicts joint synapses to become 
weaker and relatively more dissimilar in weight (but more 
similar if synaptic weights saturate, Fig. 7A). With this, mod-
els of LTP and LTD make particular predictions about the 
temporal evolution of joint synaptic weights, and the map-
ping of synaptic weights and synaptic weight similarity in the 
connectome allows the quantification of upper bounds on the 
fraction of the circuit that can have undergone such particu-
lar patterns of weight change prior to the connectomic exper-
iment (we denote those synapse pairs for which such patterns 
of weight change occurred to a sufficient degree as “having 
undergone LTP/LTD”; see Discussion). 

We set out to leverage our large connectomic dataset 
(n=5,290 of excitatory joint synaptic pairs onto spines, Fig. 
7C) to map the relation between synaptic size and synaptic 
size similarity in joint synapse pairs [Fig. 7E; for visualiza-
tion, the figure panels report relative synaptic size dissimilar-
ity on the x-axis; for the utilization of axon-spine interface 
area (Fig. 7D) as indicator of synaptic weight (42, 43)]. This 
data would allow us to determine upper bounds on the plas-
ticity-consistent fraction of the circuit, beyond the previous 
finding that in joint synapse pairs, synaptic size is more sim-
ilar than for randomly shuffled synapse pairs (9, 29, 30, 44). 

Synaptic size similarity in joint synapse pairs showed a 
broad distribution (Fig. 7E). When comparing this distribu-
tion to the synaptic size and synaptic size similarity distribu-
tion obtained from a random assignment of the same 
synapses into “random pairs” (Fig. 7F and fig. S7, C and D), 
we observed that the population of over-similar synapse pairs 
(Fig. 7F) is split into a region of over-similar and large synap-
ses (mean synaptic size 0.23-1.19 μm2; in this region, 16-20% 
of all joint synapse pairs are found; the above-random syn-
apse pairs constitute 3.6-3.9% of all joint synapse pairs, see 
fig. S7, C and D, and materials and methods for details of the 
region definition and statistics), and over-similar and small 
synapses (mean synaptic size 0.06-0.2 μm2; in this region, 15-
19% of all joint synapse pairs were found; 3.0-3.4% of all joint 
synapse pairs were above-random in this region). With this 
we obtained upper bounds on the fraction of the circuit that 
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can have undergone LTP and LTD with weight saturation 
(compare Fig. 7, F and A). 

To what degree was the observed synaptic weight similar-
ity a result of subtypes of neurons establishing differently 
sized synapses? While the quantification of the upper bounds 
of the plasticity-consistent circuit fraction would remain un-
affected, we could use this more detailed analysis to under-
stand whether the plasticity-consistent circuit fractions were 
specific to types of neuronal connections. 

First, we considered the possibility that certain presynap-
tic cell types made consistently larger or consistently smaller 
synapses (Fig. 7G). In this case, the distribution of synaptic 
weight similarity for same-axon different-dendrite synapse 
pairs would also show a bias toward more similarly sized syn-
apses. However, we found no such evidence (Fig. 7H), exclud-
ing cell-type specific synapse size of either presynaptic 
(axonal) or postsynaptic (dendritic) origin as the cause of the 
observed over-similar synapse pairs. 

Then, we separated those connections established by TC 
axons from those made by the remaining excitatory (i.e., CC) 
axons (Fig. 7I and fig. S7, A and B). We found an excess of 
over-similar synapse pairs in the TC connections, as well, 
with 6-15% of pairs found in a region of overly similar and 
large synapses (i.e., upper bound of 15% on LTP). The region 
of overly similar and small synapse pairs, however, only com-
prised 2-7% of joint synapse pairs. This remaining number of 
overly similar small synapse pairs could in fact be induced by 
the overly similar and large synapse pairs (see supplementary 
materials). At 28 days of age, about 3 weeks after the pro-
posed critical period during which LTP can be induced in 
thalamocortical connections (45, 46), a fraction of up to 15% 
of joint synapse pairs was still consistent with previous epi-
sodes of LTP that led to stabilized potentiated synapse pairs 
at dendritic spines (47, 48), but 85% were not. 

Repeating these analyses for other combinations of pre- 
and postsynaptic neurite types (Fig. 7J), we found upper 
bounds for LTP and LTD of 10-20%. For each of these sub-
type-specific connections we could then again analyze 
whether any purely presynaptic or purely postsynaptic sub-
type within the already type-selected connections (corre-
sponding to squares in the table of Fig. 7J) could be the cause 
of the observed synapse similarity. For example, the connec-
tions from corticortical axons onto spiny L4 neurons (49) 
showed no evidence for presynaptic axonal subtypes yielding 
over-similar synapses (Fig. 7K; for additional controls of 
these findings, see supplementary materials; fig. S7, A and B; 
and table S1). 

Together, these results provided a first quantitative upper 
bound on the fraction of the circuit consistent with previous 
episodes of saturated Hebbian synaptic plasticity leading to 
strengthening or weakening of synapses (a “connectomic fin-
gerprint” of the maximum possible plasticity fraction of the 

circuit), and excluded obvious cell-type based connection 
strength differences as the origin of these observations. Be-
cause these results were obtained from brains of un-trained 
animals, and not as a result of electrical or other stimulation 
(“plasticity induction”), these data may represent an unbi-
ased screening of upper bounds of plasticity traces in local 
cortical circuits, for which the dense connectomic mapping 
was essential. 
 
Discussion 
Using FocusEM, we obtained the first dense circuit recon-
struction from the mammalian cerebral cortex at a scale that 
allowed the analysis of axonal rules of subcellular innervation 
- about 300 times larger than previous dense reconstructions 
from cortex (9). Inhibitory axonal types preferentially inner-
vating certain postsynaptic subcellular compartments could 
be defined solely based on connectomic information (Figs. 3 
and 4). In addition to inhibitory axons, a fraction of excitatory 
axons also exhibited such subcellular innervation preferences 
(Fig. 4). The geometrical arrangement of axons and dendrites 
explained only a moderate fraction of synaptic innervation, 
revoking random models of cortical wiring (Fig. 5). A sub-
stantial thalamocortical synapse gradient in L4 gave rise to 
an enhanced heterogeneity of synaptic input composition at 
the level of single cortical dendrites (Fig. 6), which was ac-
companied by a reduced innervation from apical dendrite-
preferring inhibitory inputs. The consistency of synapse size 
between pairs of axons and dendrites signified fractions of 
the circuit consistent with saturated synaptic plasticity, plac-
ing an upper bound on the “learned” fraction of the circuit 
(Fig. 7). Together, FocusEM allowed the dense mapping of 
circuits in the cerebral cortex at a throughput that enables 
connectomic screening. 
 
Synaptic input composition along L4 dendrites 
Our finding of a covariation of enhanced TC inputs to L4 ex-
citatory cells with reduced direct inhibitory input from api-
cal-dendrite preferring interneurons (Fig. 6, H to K) could be 
interpreted in the context of a disinhibitory circuit described 
before (50, 51). Taking into account the preferential targeting 
of apical dendrites and of soma-preferring PV-positive inter-
neurons by SST-positive INs, this could imply that SST-IN 
based disinhibition can enhance TC input by silencing periso-
matic PV inputs recruited via feedforward inhibition (52), 
and concomitantly reducing the direct inhibitory component 
from SST INs. In any case this finding of per-dendrite input 
variation points to a circuit configuration in which TC input 
variability is enhanced between neurons of the same excita-
tory type in cortical layer 4, and furthermore provides evi-
dence for a per-dendrite synaptic input composition of 
enhanced heterogeneity. 
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Connectomic traces of plasticity 
We interpreted the joint synapse data (Fig. 7) in terms of up-
per bounds of synapse pairs that can have undergone certain 
models of plasticity. While this analysis detects those synapse 
pairs that were exposed to saturating plasticity (i.e., the pos-
sible plasticity event led to a final weight state of both synap-
ses), an alternative interpretation is a dynamic circuit in 
which at any given point in time, only a fraction of synapses 
has expressed saturated plasticity, while other (or all) synap-
ses are in the process of undergoing plastic changes. We ex-
pect that such more elaborate plasticity models of entire 
circuits will make testable predictions that are accessible by 
connectomic snapshot experiments as shown here. 
 
Outlook 
The presented methods and results open the path to the con-
nectomic screening of mammalian tissue from various corti-
ces, layers, species, developmental stages, sensory experience 
and disease conditions. The fact that even a small piece of 
mammalian cortical neuropil contains a high density of rele-
vant information, so rich as to allow the extraction of possible 
connectomic signatures of the “learnedness” of the circuit, 
makes this approach a promising endeavor for the study of 
the structural setup of mammalian nervous systems. 
 
Materials and Methods 
Animal experiments 
A wild-type (C57BL/6) male mouse was transcardially per-
fused at postnatal day 28 under isoflurane anesthesia using a 
solution of 2.5% paraformaldehyde and 1.25% glutaraldehyde 
(pH 7.4) following the protocol in (53). All procedures fol-
lowed the animal experiment regulations of the Max Planck 
Society and were approved by the local animal welfare au-
thorities (Regierungspräsidien Oberbayern and Darmstadt). 
 
Tissue sampling and staining 
The fixated brain was removed from the skull after 48h of 
fixation and sliced coronally using a vibratome. Two samples 
were extracted using a 1 mm biopsy punch (Integra Miltex, 
Plainsboro, NJ) from a 1 mm thick slice at 5 mm distance 
from the front of the brain targeted to layer 4 in somatosen-
sory cortex of the right hemisphere. The corresponding tissue 
from the left hemisphere was further sliced into 70 μm-thick 
slices followed by cytochrome oxidase staining indicating the 
location of the coronal slice to be in barrel cortex. 

Afterwards the extracted tissue was stained as in (53). 
Briefly, the tissue was immersed in a reduced Osmium tetrox-
ide solution (2% OsO4, 0.15 M CB, 2.5 M KFeCN) followed by 
a 1% Thiocarbohydrazide step and a 2% OsO4 step for ampli-
fication. After an overnight wash, the sample was further in-
cubated with 1.5% Uranyl Acetate solution and a 0.02 M 
Lead(II) Nitrate solution. The sample was dehydrated with 

Propylenoxide and EtOH, embedded in Epon Hard (Serva 
Electrophoresis GmbH, Germany) and hardened for 48 hours 
at 60°C. 
 
3D EM experiment 
The embedded sample was placed on an aluminum stub and 
trimmed such that on all four sides of the sample the tissue 
was directly exposed. The sides of the sample were covered 
with gold in a sputter coater (Leica Microsystems, Wetzlar, 
Germany). Then, the sample was placed into a SBEM setup 
((31), Magellan scanning electron microscope, FEI Company, 
Hillsboro, OR, equipped with a custom-built microtome cour-
tesy of W Denk). The sample was oriented so that the radial 
cortex axis was in the cutting plane. The transition between 
L4 and L5A was identified in overview EM images by the sud-
den drop in soma density between the two layers (Fig. 1C). A 
region of size 96 μm × 64 μm within L4 was selected for im-
aging using a 3 by 3 image mosaic, a pixel size of 11.24 × 11.24 
nm2, image acquisition rate of 10 MHz, nominal beam current 
of 3.2 nA (thus a nominal electron dose of 15.8 e-/nm2), accel-
eration voltage of 2.5 kV and nominal cutting thickness of 28 
nm. The effective data rate including overhead time spent 
during motor movements for cutting and tiling was 0.9 MB/s. 
3,420 image planes were acquired, yielding 194 GB of data. 
 
Image alignment 
After 3D EM dataset acquisition, all images were inspected 
manually and marked for imaging artifacts caused by debris 
present on the sample surface during imaging. Images with 
debris artifacts were replaced by the images at the same mo-
saic position from the previous or subsequent plane. First, 
rigid translation-only alignment was performed based on the 
procedures in (53). The following modifications were applied: 
When shift vectors were obtained that yielded offsets of more 
than 100 pixels, these errors were iteratively corrected by 
manually reducing the weight of the corresponding entry in 
the least-square relaxation by a factor of 1000 until the high-
est remaining residual error was less than 10 pixels. Shift cal-
culation of subsequent images in cutting direction was found 
to be the most reliable measurement and was therefore 
weighted 3-fold in the weighted least-square relaxation. The 
resulting shift vectors were applied (shift by integer voxel 
numbers) and the 3D image data was written in KNOSSOS 
format (34, 36). For further improvement, sub-image align-
ment was applied (see Supplementary Methods). 
 
Methods description for software code 
All routines described in the following are available as soft-
ware at https://gitlab.mpcdf.mpg.de/connectomics/L4dense, 
which is the relevant reference for the exact sequence of pro-
cessing steps applied. The following descriptions and the 
more detailed ones in the Supplementary Methods are aimed 
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at pointing to the key algorithmic steps rather than enumer-
ating all detailed computations. 
 
Workflow for dense circuit reconstruction 
The workflow for volume reconstruction of the acquired 3D 
EM volume (Fig. 2 and fig. S1) was as follows. We first de-
tected blood vessels and cell bodies using automated heuris-
tics, and then processed the remaining image volume using 
machine-learning-based image segmentation [convolutional 
neural network (CNN) and watershed as described in SegEM, 
(32)]. The result of this processing were 15 million volume 
segments corresponding to pieces of axons, dendrites and so-
mata (volume: 0.0295 ± 0.3846 μm3; mean ± s.d.). We then 
constructed the neighborhood graph between all these vol-
ume segments and computed the properties of interfaces be-
tween directly adjacent volume segments. Based on these 
features we trained a connectivity classifier (ConnectEM, Fig. 
2, A and B) to determine whether two segments should be 
connected (along an axon or a dendrite or a glial cell) or 
whether they should be disconnected. Using the SynEM clas-
sifier (33), we determined whether an interface between two 
disconnected processes corresponded to a chemical synapse, 
and if so, which was the pre- and which the postsynaptic neu-
rite segment (see below for more details). We furthermore 
trained a set of classifiers (TypeEM, Fig. 2C) to compute for 
each volume segment the probability to be part of an axon, a 
dendrite, a spine head or a glia cell (precision and recall were 
91.8%, 92.9% for axons, 95.3%, 90.7% for dendrites, 97.2%, 
85.9% for astrocytes, and 92.6%, 94.4% for spine heads, re-
spectively, see table S2). 
 
Cell body-based neuron reconstruction 
Then, we reconstructed those neurons, which had their cell 
bodies in the tissue volume (Fig. 1, E and F, cell gallery in 
movie S1; n=125 cell bodies, of these 97 neuronal, of these 89 
reconstructed with dendrites in the dataset). For this, we 
used a set of simple growth rules for automatically connect-
ing neurite pieces based on the segment-to-segment neigh-
borhood graph and the connectivity and neurite type 
classifiers (fig. S1, “automated agglomeration,” see Suppl. 
Methods). As a result, we obtained fully automated recon-
structions of the neuron’s soma and dendritic processes. No-
tably with a minimal additional manual correction 
investment of 9.7 hours for 89 cells (54.5 mm dendritic and 
2.1 mm axonal path length), the dendritic shafts of these neu-
rons could be reconstructed without merge errors, but 37 re-
maining split errors, at 87.3% dendritic length recall (table 
S2). This reconstruction efficiency compares favorably to re-
cent reports of automated segmentation of neurons in 3D EM 
data from the bird brain obtained at about 2-fold higher im-
aging resolution (54), which reports soma-based neuron re-
construction at an error rate of beyond 100 errors per 66 mm 

dendritic shafts at lower (68%) dendritic length recall, with a 
similar resource investment (see Suppl. Methods). 

In addition to the dendritic shafts, the dendritic spines 
constitute a major fraction of the dendritic path length in 
cortical neuropil (Fig. 1G). Using our spine head classifier 
(part of the TypeEM classifiers, Fig. 2C), we found 415,797 
spine heads in the tissue volume i. e. density of 0.784 per μm3 
(0.98 per μm3 of neuropil, when excluding somata and blood 
vessels). In order to connect these to the corresponding den-
dritic shafts we trained a spine neck continuity algorithm 
that was able to automatically attach 58.9% of these spines 
(evaluated in the center of the dataset, at least 10 μm from 
the dataset border) yielding a dendritic spine density of 0.672 
per μm dendritic shaft length (comparable to spine densities 
in the bird brain, (55)). However in mammalian cerebral cor-
tex, the density of spines along dendrites is even higher (at 
least 1 per μm dendritic shaft length). The remaining spine 
heads were then attached to their dendritic shafts by seeding 
manual reconstructions at the spine heads and asking anno-
tators to continue along the spine necks to the dendritic 
shafts. This annotation was carried out in the “orthogonal 
mode” configuration of webKnossos (34) in which the anno-
tator viewed 3 orthogonal image planes to decide where to 
continue the respective spine neck (as in KNOSSOS (36)). The 
annotation of all remaining spine necks consumed an addi-
tional 900 hours of human work for the attachment of 98,221 
spines, resulting in a final overall spine density of 0.959 per 
μm dendritic shaft length. 
 
Dense tissue reconstruction 
The reconstruction of neurons starting from their cell bodies 
was however not the main challenge. Rather, the remaining 
processes, that is axons and dendrites not connected to a cell 
body within the dataset and densely packed in the tissue, con-
stitute about 97% of the total neuronal path length in this 
volume of cortex (Fig. 1G). To reconstruct this vast majority 
of neurites (Fig. 1H), we first used our connectivity and neu-
rite type classifiers (ConnectEM and TypeEM, Fig. 2) to com-
bine neurite pieces into larger dendritic and axonal 
agglomerates (“automated agglomeration,” fig. S1 and sup-
plementary materials and methods). Then, we took those ag-
glomerates that had a length of at least 5 μm (n=74,074 axon 
agglomerates), detected their endings that were not at the da-
taset border and directed focused human annotation to these 
endings (“queries,” Fig. 2, F and G). 

For human annotation, we used an egocentric directed 3D 
image data view (“flight mode” in webKnossos), which we 
had previously found to provide maximized human recon-
struction speed along axons and dendrites in cortex (34). 
Here, however, instead of asking human annotators to recon-
struct entire dendrites or axons, we only queried their judge-
ment at the endings of automatically reconstructed neurite 
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parts. To make these queries efficient, we made three addi-
tions to webKnossos: We oriented the user along the esti-
mated direction of the neurite at its ending, reducing the time 
the user needs to orient within the 3D brain tissue; we dy-
namically stopped the user’s flight along the axon or dendrite 
whenever another of the already reconstructed neurite ag-
glomerates had been reached; and we pre-loaded the next 
query while the user was annotating (Fig. 2, F and G). Movie 
S2 illustrates this annotation process for cases of splits and 
mergers, respectively. Note that the user was able to switch 
quickly to the next query, and based on its 3D orientation 
spent little time orienting in the tissue at the novel location. 

With this, the average user interaction time was 21.3 ± 
36.1 s per query, corresponding to an average of 5.5 ± 8.8 μm 
traveled per query. In total, 242,271 axon ending queries con-
sumed 1,978 paid out work hours (i.e., including all over-
heads, 29.4 s per query). 

However, we had to account for a second kind of recon-
struction error, so-called mergers, which can originate from 
the original segmentation, the agglomeration procedure, or 
erroneous flight paths from human queries (Fig. 2H). In or-
der to detect such mergers, we started with the notion that 
most of these merger locations will yield a peculiar geomet-
rical arrangement of a 4-fold neurite intersection once all 
neurite breaks have been corrected (“chiasma,” Fig. 2H). 
Since such chiasmatic configurations occur rarely in branch-
ing neurites, we directed human focused annotation to these 
locations. First, we automatically detected these chiasmatic 
locations using a simple heuristic to detect locations at which 
axon-centered spheres intersected more than three times 
with the axon (Fig. 2H, n=55,161 chiasmata; for approaches 
to detect such locations by machine learning, see (56, 57)). 
Then, we positioned the user queries at a certain distance 
from the chiasma location, pointing inward (Fig. 2H) and 
then used a set of case distinctions to query a given chiasma 
until its configuration had been resolved (see Methods for de-
tails). Chiasma annotation consumed an additional 1,132 
work hours (note that the detection of endings and chiasmata 
was iterated 8 times for axons, see Methods, and that in a 
final step we also detected and queried 3-fold neurite config-
urations to remove remaining mergers). 
 
Synapse detection, types of postsynaptic targets and 
connectome reconstruction 
Given the reconstructed pre- and postsynaptic neurites in the 
tissue volume, we then went on to extract their connectome. 
For this we used SynEM (33) to detect synapses between the 
axonal presynaptic processes and the postsynaptic neurites. 
For synapses between axons and spine heads (for non-spine 
synapses, improvements to SynEM were made to enhance 
precision and recall, see Methods). 

In particular, we trained a dedicated interface classifier 

for shaft synapses using training data containing only shaft 
and soma synapses. Furthermore this classifier also used four 
additional texture filters compared to SynEM in (33), which 
originated from the voxelwise predictions of a multi-class 
CNN trained on synaptic junctions, vesicle clouds, mitochon-
dria and a background class. 

Since we were interested in analyzing the subcellular 
specificity of neuronal innervation, we had to also classify 
which of the post-synaptic membranes belong to cell bodies; 
to classify spiny dendrites as belonging to excitatory cells, 
smooth dendrites belonging to interneurons; and to detect 
axon initial segments and those dendrites that were likely ap-
ical dendrites of neurons located in deeper cortical layers. We 
developed semi-automated heuristics to detect these subcel-
lular compartments (Fig. 3, A to D; see supplementary mate-
rials and methods for details). 
 
Definition of excitatory and inhibitory axons 
We used the fraction of primary spine synapses per axon (out 
of all synapses of that axon; only axons with at least 5 μm 
path length and at least 10 synapses were analyzed), which 
had a peak at about 80% (Fig. 4, A and B), to identify spine-
preferring, likely excitatory axons with at least 50% primary 
spine innervations. Similarly, we identified shaft-preferring, 
likely inhibitory axons with less than 20% primary spine in-
nervations. Together this yielded 6,449 axons with clear shaft 
or spine preferences. For the remaining n=528 axons with 
primary spine innervations above 20% and below 50%, we 
first wanted to exclude remaining mergers between excita-
tory and inhibitory axons (that would yield intermediate 
spine innervation rates) and split these axons at possible mer-
ger locations (at least 3-fold intersections). Of these, 338 now 
had at least 10 synapses and spine innervation rates below 
20% or above 50%. The remaining n=192 axons (2.75% of all 
axons with at least 10 synapses) were not included in the fol-
lowing analyses. This together yielded n=5,894 excitatory and 
n=893 inhibitory axons in our data. For additional controls, 
see supplementary materials. 

Thalamocortical axons were defined following parameters 
described by (38), see Supplementary Methods. 
 
Analysis of subcellular synaptic target preference 
First, we assumed that all synapses of a given axon class have 
the same probability to innervate a particular postsynaptic 
target class (as above). We then inferred this single-hit inner-
vation rate for each axon- and postsynaptic target-class by 
determining the probability which best explains whether or 
not an axon innervated the target class under a binomial 
model. The optimized binomial model was then used to-
gether with the measured number of synapses of each axon 
to calculate the expected distribution of target innervation 
rates. A one-sided Kolmogorov-Smirnov was used to test for 
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the existence of a subpopulation with increased target inner-
vation rate. To identify those axons that innervated a given 
target class beyond chance (Fig. 4G), we computed the prob-
ability p(t)

meas,i,k of finding at least the measured fraction of 
synapses onto target t for each axon i from axon class k. The 
p-values were also calculated for the expected distribution of 
target innervation rates and combined with p(t)

meas,i,k to esti-
mate the p-value threshold p̂(t)

k at which the false discovery 
rate q (39) crosses 20%. 80% of the axons with p(t)

meas,i,k < p̂(t)
k 

are innervating target t with a rate above the single-hit inner-
vation probability and are thus called to be t-preferring. 

For the analysis of 2nd order innervation preference (Fig. 
4, H and I), we reported the fraction of synapses onto target 
τ by t-preferring axons of class k after removal of synapses 
onto t. This innervation rate was compared against the frac-
tion of synapses onto target τ by all axons of class k. 
 
Geometrical predictability analysis 
Peters’ rule (1) stipulates that synapses between classes of ax-
ons and dendrites are established in proportion to the preva-
lence of these classes. The first variant of Peters’ rule 
considered (Fig. 5A) makes the prediction that the fraction of 
synapses from axon class A onto target class T is the product 
of pA and qT, where pA is the proportion of axonal path length 
made up by class A, and qT is the proportion of dendritic path 
length (excluding spines) made up by class T. The measured 
synapse fractions were compared against the predictions by 
calculating the ratio of observed to predicted synapse frac-
tions. 

This formulation predicts that a fraction qT of the synap-
ses is established onto target T, independent of the axon class 
(Fig. 5B). Similarly, all dendrite types are expected to receive 
a fraction pA of their synapses from axon class A (Fig. 5C). 
Deviations from these predictions were quantified by normal-
izing the class connectome row- and column-wise and by cal-
culating the ratio of observed synapse fractions to the 
marginal distributions along the columns and rows, respec-
tively. 

To assess the effect of incorporating explicit knowledge 
about the synapse densities of different axon and dendrite 
classes, a second variant of Peters’ rule (Fig. 5D) was consid-
ered in which the predicted synapse fraction from axon class 
A onto target class T is the product of p’A and q’T, with p’A and 
q’T being the overall fractions of synapses originating from A 
and innervating T, respectively. 

How much additional information about the neuropil 
composition around an axon helps to predict its postsynaptic 
targets was assessed as follows: For each axon we determined 
the total surface area of the target classes that were contained 
within the cylinder of radius rpred around the axon (Fig. 5E) 
and compared it to the actually innervated target fraction of 
each axon (Fig. 5, E and F). We then analyzed the correlation 

between the availability of the target surfaces and the actu-
ally established synapses on these target classes (Fig. 5G). 

To obtain an overall predictability quantification, we then 
computed the coefficient of determination (R2) using the fol-
lowing model: For all axons of given type, we used the frac-
tion of target innervations and fractional surface 
availabilities in a given surround of radius rpred to find the 
optimal multivariate linear regression parameters. To esti-
mate best-case geometric predictability, we then calculated 
the R2 value as 1 minus the ratio of the residuals to synaptic 
variance on the same axons used for parameter optimization, 
while correcting for the variance introduced by the finite 
number of synapses per axon. Accordingly, we used the ax-
ons’ fractional surface availabilities within rpred and absolute 
synapse numbers to calculate the expected binomial variance, 
and subtracted it from the squared residuals. 

This analysis made several assumptions that were in favor 
of a geometrical explanation of synaptic innervation [there-
fore the conclusions about a minimal predictability (Fig. 5H) 
are still upper bound estimates]: it was assumed that the 
number of synapses for a given axon was already known; in 
most settings, only average synapse rates are known for a 
given circuit; it also assumed that a precise knowledge of the 
axonal trajectory and the surrounding target surface frac-
tions were available; again, this is usually only available as an 
average on the scale of rpred of several 10’s of micrometers. 

To relax the assumption of complete knowledge about tar-
get availabilities, we repeated the above R2 analysis for a 
model in which the predicted fractional innervation of a tar-
get is the fractional surface availability of that target. 

The employed computational routine can be found at 
https://gitlab.mpcdf.mpg.de/connectomics/L4dense in+con-
nectEM/+Connectome/plotGeometricPredictability.m. 
 
Synapse-size consistency analysis 
To determine the consistency of primary spine synapses be-
tween a given axon-dendrite pair, we calculated the axon-
spine interface area (ASI, (33, 43)) of a synapse as the total 
contact area between the corresponding axon and spine head 
agglomerates. For axon-dendrite pairs connected by exactly 
two primary spine synapses, we then calculated the coeffi-
cient of variation (CV) of the ASI areas by CV = 21/2 (ASI1 – 
ASI2) / (ASI1 + ASI2) with ASI1 and ASI2 being the larger and 
smaller of the two ASI areas, respectively. To avoid false 
same-axon same-dendrite (AADD) pairs caused by remaining 
merge errors in the axon reconstruction, this analysis was 
performed only after splitting axons at their branch points. 
The measured distribution of CV values was compared 
against the CV values obtained by randomly drawing pairs 
from all AADD synapses and against the CV values of ob-
served synapse pairs from the same axon onto different den-
drites (AADd), from different axons onto the same dendrite 
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(AaDD), and from different axons onto different dendrites 
(AaDd; Fig. 7H). To test whether AADD primary spine syn-
apse pairs are more similar in size than pairs in the control 
conditions, a one-sided Kolmogorov-Smirnov test was used. 
We calculated the decimal logarithm of the average ASI area 
(in μm2) and the CV of the ASI areas of each synapse pair to 
map the size-similarity plane (Fig. 7, F and I). The kernel den-
sity estimate of the observed distribution was compared 
against the distribution expected from random pairs (5,000 
Monte Carlo samples; fig. S7C) to identify statistically signif-
icantly overrepresented regions. Contour lines show the in-
tersection of the significance regions for p-value thresholds 
of 0.5% up to 5% (Fig. 7, E, F, I, and fig. S7, C and D) with the 
convex hull around the set of all data points. The fraction of 
data points contained within a contour was used as upper 
bound on the fraction of connections consistent with satu-
rated Hebbian plasticity (Fig. 7J). 
 
Statistical methods 
The following statistical tests were performed (in order of 
presentation in the figures): 

The existence of axon subpopulation with unexpectedly 
high synapse rate onto a given target class was tested using 
the one-sided Kolmogorov-Smirnov test (Fig. 4, E and F). Ax-
ons belonging to a given target-preference class were identi-
fied based on the false detection rate criterion [q=20% (39)] 
(Fig. 4G). 

The degree to which synaptic variance is explainable by 
geometry-based models was evaluated using the coefficient 
of determination (R2) (Fig. 5H). Binomial variance was cor-
rected for by subtracting the surface fraction-based expected 
binomial variance from the squared residuals. 

F-tests were used to evaluate synaptic gradients as func-
tion of cortical depth (Fig. 6, B and D) or dendritic orienta-
tion (Fig. 6, F and G). For correlation of TC input fraction 
with other synaptic input fractions along dendrites, inhibi-
tory input fraction and 7 target-preferential inhibitory and 
excitatory synapse types were tested. AD-preferring inhibi-
tory synapses were the only with significant and substantial 
correlation (Pearson correlation after Bonferroni correction 
for n=8 multiple tests). The correlation was also significant 
at the soma-level (Pearson correlation). Both correlations 
were also significant using Spearman rank correlation. 

The four variants of Peters’ rule (Fig. 5, A to D) were com-
pared using a likelihood-ratio test based on the following 
multinomial model: It was assumed that the pre- and 
postsynaptic classes of each synapse in the connectome were 
sampled either following the path length fractions of these 
classes (pA and qT) or following the product of the path length 
and a class-specific likelihood-maximizing relative synapse 
density. Wilk’s theorem was used to compute the correspond-
ing p-values. 

To test whether the axon-spine interface areas of a given 
spine synapse pair configuration were more similar than ran-
domly sampled pairs, a one-sided Kolmogorov-Smirnov test 
was used (Fig. 7, H and K). 
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Fig. 1. Dense connectomic reconstruction of cortical neuropil from layer 4 of mouse primary somatosensory 
cortex. (A to D) Location (A, red) of 3D EM dataset (B), WM: white matter; high-resolution example images (C 
and D). Asterisk, examples of dendritic spines. Direct links to data browser webknossos: https://wklink.org/9276 
(B), https://wklink.org/7101 (C), https://wklink.org/8906 (D). (E) Reconstruction of all n=89 neurons with a cell 
body and dendrites in the dataset. (F) 3 spiny neurons (SpNs) and 2 interneurons (INs); see movie S1. (G) 
Quantification of circuit components in the dense reconstruction. Note the majority of circuit path length (total: 
2.69 m) is contributed by non-proximal axons (1.79 m, 66.6%), spine necks (0.55 m, 20.5%), and dendritic shafts 
(0.28 m, 10.3%) not connected to any cell body in the volume. (H) Display of all reconstructed 34,221 axons 
contained in the dataset. Scale bars (D) as (C); 10 μm (F). 

on N
ovem

ber 4, 2019
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
https://wklink.org/9276
https://wklink.org/9276
https://wklink.org/7101
https://wklink.org/7101
https://wklink.org/8906
https://wklink.org/8906
http://science.sciencemag.org/


First release: 24 October 2019  www.sciencemag.org  (Page numbers not final at time of first release) 14 
 

  

Fig. 2. Methods for the efficient dense connectomic reconstruction. (A) Simplified diagram of reconstruction 
steps [fig. S1, detailed in (B) to (H)]; wh: annotation work hours. (B) ConnectEM-Classifier for combining neurite 
pieces from the CNN-based volume segmentation (32): at junctions of volume segments (bottom right), raw data, 
CNN and shape features were evaluated. (C) TypeEM: classifier for assigning cellular identity to volume segments: 
probability of axons, dendrites, spine heads and glial processes. Illustration of spine head (purple) and astrocyte 
(cyan) classification; one of the 985 features is illustrated (segment thickness). Numbers: probability of the 
segment to be a spine head. Precision and recall of spine head detection were 92.6 and 94.4%, respectively. (D) 
Process for automatically attaching spine heads to dendritic shaft by stepwise agglomeration of volume segments 
along the highest-probability transition between neighboring segments [according to the ConnectEM score (B)]. 
Example of 6 neighboring spine heads that were all automatically attached. In total, 58.9% of spine heads were 
automatically attached (A). (E) Automated detection of spine and shaft synapses (here, vesicle clouds (green) and 
mitochondria (blue) were classified and used as additional features for the SynEM (33) classifier). (F to H) Focused 
annotation strategy for directing human annotation queries (Q, red) to ending locations of the automatically 
reconstructed axon pieces (F, blue), oriented along the axon’s main axis (traced in webKnossos using flight mode 
[G (34)] yielding flight paths of 5.5 ± 8.8 μm length (21.3 ± 36.1s per annotation, n=242,271, movie S2). Neurite 
mergers (H) were detected as “chiasmatic” configurations, and queries (Q) directed from the exits of the chiasma 
toward its center to determine correct neurite continuities (fig. S1). (I and J) Quantification of circuit size and 
invested work hours for dense circuit reconstructions in connectomics, and resulting order-of-magnitude 
improvement provided by FocusEM compared to previous dense reconstructions (m). Fish o.b.: Zebrafish 
olfactory bulb (59); M. retina: Mouse retina IPL (18); Fly larva: mushroom body in larval stage of D. melanogaster 
(35); M. cortex: (9) and this study (magenta). Only completed dense reconstructions were included in the 
comparison. 
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Fig. 3. Postsynaptic target classes and dense cortical connectome. (A to D) Display of all apical dendrites (AD, A, 
magnified one apical dendrite bundle (left), and top view in tangential plane illustrating AD bundles), smooth dendrites 
(SD) [(B), magnification inset illustrates low rate of spines], axon initial segments (AIS) (C) and their respective path 
length and spine density distributions (D). Note spine density is underestimated by about 20% (table S1). (E) Display 
of connectome between all axons (n=6,979) and postsynaptic targets (n=3,719) in the volume with at least 10 synapses, 
each; total of 153,171 synapses (of 388,554 synapses detected in the volume). For definition of postsynaptic target 
classes, see (A) to (D); definition of presynaptic axon classes: see Fig. 4 and fig. S6. AIS with less than 10 input synapses 
shown. SOM: neuronal somata; PD: proximal dendrites connected to a soma in the dataset (note that some of these PD 
dendrites are L4 apical dendrites not included in the AD definition above); asterisk, remaining unassigned axons. 
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Fig. 4. Connectomic definition of axon classes. (A) Example axons with high (top) and low (bottom) fraction of output 
synapses made onto dendritic spines. (B) Distribution of spine targeting fraction over all n=6,979 axons; dashed lines 
indicates thresholds applied to distinguish non-spine preferring, likely inhibitory (<20% spine innervation, n=893, 12.8% of 
all axons) from spine-preferring, mostly excitatory (>50% spine innervation, n=5,894, 84.5%) axons. Sketch: definition of 
primary spine innervations. (C to I) Connectomic definition of axon classes via preferential synaptic innervation of subcellular 
targets. (C) Two example axons innervating three somata (left, n=6 synapses onto somata (S) of 14 total, arrows) and an 
apical dendrite (AD, right, n=2 synapses onto AD of 13 total), respectively. All other cell bodies and ADs in gray. (D) Fraction 
of synapses onto Somata, PDs, ADs, SDs, AIS for all axons. Binomial probabilities over axons to establish at least one synapse 
onto the respective target (arrows; magenta, excitatory; black, inhibitory). Black lines, average over axons. (E) Comparison 
of predicted synapse fraction onto target classes per inhibitory axon based on the binomial probability to innervate the target 
at least once (gray shaded, see arrows in D) and measured distribution of synapse fractions onto targets (black lines). (F) 
Same as (E) for excitatory axons. (G) Fraction of target-preferring excitatory (Exc) and inhibitory (Inh) axons identified using 
the false detection rate criterion [q=5..30% (39)]. Colored bars: distribution for q=5% (left) and q=30% (right). Mixed colors: 
axons specific for both Somata and PD. (H and I) 2nd order innervation preference by target-preferring axons; numbers report 
fractional innervation by remaining synapses per axon; colors indicate under- (black) or over-(blue)-frequent innervation. 
Diagonal entries: fraction of synapses onto same target (black boxes). 
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Fig. 5. Contribution of neurite geometry and membrane availability to cortical wiring. (A to D) quantitative test of 
various formulations of Peters’ rule: comparison of actual synaptic innervation to the prediction of synaptic innervation 
based on the availability of postsynaptic path length in the dataset (A), the product of pre- and postsynaptic path length 
(B), the sampling of presynaptic partners by their relative prevalence (C) and the product of pre- and postsynaptic 
synapse density (D). Log likelihood ratios were: -1.1×103 (A), -11×103 (C), -12×103 (D), all compared to simple model in 
(B), p<10−14 (corrected for degrees of freedom). (E to H) Prediction of single-axon synaptic target preference by 
distance-dependent postsynaptic surface sampling. (E) Sketch of the surface area of the various subcellular 
postsynaptic target classes (colors) within a distance rpred from a given axon (black) and example surfaces around two 
axons within a prediction radius rpred=5μm. (F) Surface fraction of target classes around all n=6,979 axons in 
dependence of rpred around axons. Colors: fraction of synapses of a given axon actually innervating the respective target. 
(G) Relation between the surface fraction around all axons and synaptic innervation by these axons for each target 
(rpred=10μm). Black lines: linear regression for geometrical innervation prediction. (H) Coefficient of determination (R2) 
reporting the fraction of synaptic innervation variance [over all axons, see (G)] explained by a multivariate linear 
innervation model using the available postsynaptic surface area around axons (shaded area; red, excitatory axons; blue, 
inhibitory axons; lower end of shades indicates prediction; upper ends indicate correction by the variance contributed 
by the multinomial sampling of targets along axons; solid lines represent direct prediction of innervation from surface 
fraction. Dashed lines: modeled prediction for a purely geometric forward model at rpred=10μm. Insets (right) show 
sampling-corrected predictive power of excitatory (top) and inhibitory (bottom) axons for the innervation of target 
classes.  
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Fig. 6. Gradient of thalamocortical synapse density in L4 and ensuing variability of 
synaptic input composition in L4 neurons. (A to D) Distribution of TC synapses within L4 
dataset (A): gradient along cortical axis (B), which is absent for inhibitory (yellow) or CC 
(blue) synapses (C). (D) Resulting gradient in TC synapse fraction (increase by 83% from 
7.0% to 12.8% (+5.8%) within 50 μm along the cortical axis; line fit, p<1.1×10−12, n=134,537 
synapses). (E to G) Analysis of the variability of TC input onto the primary dendrites of 
neurons possibly resulting from the TC synapse gradient (D): example reconstructions (E) 
aligned to the somata; (F) fraction of excitatory input synapses originating from TC axons 
evaluated for each primary dendrite, plotted according to the direction of the dendrite 
relative to cortical axis (-1: aligned toward pia; +1: toward WM). TC input fraction 
(TC/(TC+CC)) of each dendrite compared to the TC input fraction of its entire parent 
neuron, ratios shown. (G) Summary analysis of relation between dendrite direction and 
relative TC input fraction showing that TC input fraction is determined by the dendrites’ 
orientation relative to the cortex axis (1.28-fold higher relative TC fraction for downwards 
than upwards pointing dendrites, n=183, p=0.026, two-sided t test for dendrites with a 
normalized absolute projection >0.5; bars correspond to ranges -1..-0.5; -0.5..0.5; 0.5..1). 
(H to K) Enhanced thalamocortical synaptic input (red spheres) is correlated to reduced 
inhibitory input from AD-preferring inhibitory axons (purple spheres and arrows in H) at 
the level of single dendrites (r=-0.24, p=0.0095, n=183, Pearson correlation after 
Bonferroni correction) and for neurons (J, r=-0.27, p=0.01, n=84), but not soma-preferring 
inhibitory axons (green in H, K, r=0.08, p=0.49, n=84). 
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Fig. 7. Connectomic mapping of the plasticity-consistent circuit fraction. (A) Hebbian LTP makes predictions 
about the temporal evolution of synaptic size and size similarity in pairs of synapses between the same axon and 
the same dendrite (green, insets show example model trajectories of synapse pairs exposed to LTP with and 
without weight saturation), yielding a region in the size-similarity plane (right) where synaptic pairs that have 
undergone LTP are predicted to be found (colors in right panel as in temporal plots on the left). For Hebbian LTD, 
pairs of synapses behave accordingly only if synaptic size saturates at low values (red). Arrows: trajectories of 
synapse pairs with randomly drawn initial size that undergo LTP with (dark green) or without (light green) weight 
saturation; LTD with (red) and without (rosé and yellow; linear and exponential decay, respectively) weight 
saturation. (B) Example synapse pair (arrows) onto dendritic spines between the same axon (blue) and same 
dendrite (red). Direct link to dataset: https://wklink.org/3356 (synapse 1), https://wklink.org/6145 (synapse 2). 
(C) Frequency of joint synapse pairs in the dataset (n=5,290 spine-synapse pairs, shaded, analyzed here). (D) 
Axon-spine-interface (ASI) as representative measure of synapse weight (42, 43). https://wklink.org/5780 (E) 
Distribution of mean synaptic size and synaptic size similarity (coefficient of variation, CV) for all pairs of synapses 
between same excitatory axon and same dendrite (AADD, connections onto spines, only), each dot corresponds to 
one synapse pair. Isolines: statistical regions defined in (F). (F) Map of the relation between synaptic size and 
synaptic size similarity in same-axon same-dendrite synapse pairs, reported as difference of (E) to random synapse 
pairs (fig. S7, C and D). Isolines: significance levels (p=0.05;0.005) outlining over-frequency of synapse pairs that 
are similar in size and large (upper area), and similar and small (lower area). (G and H) Analysis of same-axon 
different-dendrite and same-dendrite different-axon synapse pairs which would indicate a contribution of cell-type 
dependent connection size differences. No over-similarity can be found in these cases (H). (I) Analysis as in (E) and 
(F) for thalamocortical connections (TC). Note upper bound of 15% of connections consistent with stabilized LTP. 
(J and K) Summary of fraction of synapse pairs that resided in the regions identified in (F and I) as significantly 
over-abundant as upper bounds, for interaction between the two upper bounds, see supplementary materials). 
Numbers: ranges for different significance thresholds [see (F) and (I) and fig. S7, C and D). (K) Analysis as in (G) 
and (H) for CC-to-L4 neuron connections, only, refuting subtypes of CC connections as the source of the observed 
oversimilarity (see fig. S7, A and B). 2 μm image width (B and D). 
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