
Late-Phase Second-Order Training

Lukas Tatzel, Philipp Hennig & Frank Schneider
University of Tübingen, Tübingen AI Center

Maria-von-Linden-Straße 6, Tübingen, Germany
[lukas.tatzel | philipp.hennig | frank.schneider]@uni-tuebingen.de

Abstract

Towards the end of training, stochastic first-order methods such as SGD and ADAM
go into diffusion and no longer make significant progress. In contrast, Newton-
type methods are highly efficient “close” to the optimum, in the deterministic
case. Therefore, these methods might turn out to be a particularly efficient tool
for the final phase of training in the stochastic deep learning context as well. In
our work, we study this idea by conducting an empirical comparison of a second-
order Hessian-free optimizer and different first-order strategies with learning rate
decays for late-phase training. We show that performing a few costly but precise
second-order steps can outperform first-order alternatives in wall-clock runtime.

1 Introduction

Despite extensive research to improve first-order optimizers (see [13] for an overview), training
neural networks with these methods remains expensive, tedious, and brittle. Second-order methods
use curvature information in addition to gradients, and thus offer a conceptually different approach
that leads to faster convergence in the deterministic case. However, second-order methods are
rarely adopted in the high-dimensional and noisy deep learning setting. This may be due to the
higher per-iteration costs, increased complexity or due to not having a readily usable PYTORCH [11]
implementation at hand. Consequently, stochastic first-order methods, such as SGD [12] or ADAM
[5] remain the most popular deep learning optimizers.

Contributions: To make second-order deep learning optimizers more accessible to the community,
we develop a flexible and easy-to-use implementation of a Hessian-free (HF) optimizer [7, 9] in
PYTORCH (Section 2). This implementation is available open source at https://github.com/
ltatzel/PyTorchHessianFree. Next, we investigate the performance of the HF optimizer and
SGD across training phases. Our results suggest that the advantages of second-order methods are
most useful in the final phase of training (Section 3.1). Finally, we empirically compare the HF
optimizer to various learning rate adaptation strategies commonly used for late-phase training. Our
results show that second-order optimizers can outperform SGD in test set performance within the
same wall-clock runtime budget (Section 3.2).

Our experiments demonstrate that hybrid approaches, which autonomously switch to second-order
methods at the end of training, might be a viable option and a promising direction for future research.

2 An easy-to-use Hessian-free optimizer

First, we describe our Hessian-free (HF) optimizer which relies on components from [7, 9]. Al-
gorithm 1 shows pseudocode, more detail is in Appendix A.1. We see a need for a dedicated,
open-source implementation since no such optimizer is provided by the PYTORCH package, and
other second-order methods such as K-FAC [8] or L-BFGS [6] deviate further from the notion of
Newton steps.

Has it Trained Yet? Workshop at the Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/ltatzel/PyTorchHessianFree
https://github.com/ltatzel/PyTorchHessianFree


Notation: The objective function is the empirical risk LD(θ) =
1
M

∑
x∈D l(θ, x) over some training

set D = {x1, . . . , xM} of size M . The loss l(θ, x) quantifies the network’s performance on sample
x ∈ D for the parameter vector θ.

Algorithm 1 Hessian-free optimizer

Require: Initial parameters θ0, training data D
for k = 0, 1, . . . do

Draw two disjoint mini-batches B,B ⊂ D
Evaluate gradient and curvature on B, i.e.

g ← ∇LB(θk)
Define B(d) = Gd+ λkd

{pn} ← cg(B,−g)
λk+1 ← lm_heuristic(λk,LB(θk))
p← cg_backtracking({pn},LB(θk))
α← line_search(p,LB(θk))

Apply update θk+1 ← θk + αp
end for

Algorithm: In each step k, the local objective
function is approximated using a quadratic model,
and its minimum is estimated using conjugate
gradients (CG) [4]. The CG-subroutine returns
approximate solutions {pn} for the quadratic
model’s minimum. For this, CG requires an es-
timate of the gradient and multiplications with
the curvature matrix — both quantities are eval-
uated on the same mini-batch B ⊂ D. Following
[7], we use the positive semi-definite generalized
Gauss-Newton matrix (GGN) G as curvature
proxy. The damping parameter λk > 0 artifi-
cially increases the curvature in each direction,
which in turn leads to a smaller, i.e. more con-
servative step. The subsequent steps require an
estimation of the loss for which we use a second
mini-batch B ⊂ D. First, LB is used to adapt the damping constant using a Levenberg-Marquardt-
style heuristic. While the approximations {pn} lead to a reduction on the stochastic quadratic model,
this is not necessarily the case for the empirical risk LD. Thus, LB is used for finding a suitable
candidate p ∈ {pn} (cg_backtracking) and an appropriate step size α (line_search). Lastly,
the update step θk+1 ← θk + αp is applied.

Mini-batch overfitting: Initially, we used B ≡ B. However, we observed that evaluating the gradient,
curvature, and loss on the same data leads to an overestimation of the progress of the parameter
update, resulting in insufficient damping and overly large step sizes (see Appendix A.2 for details).
Instead, we separate the mechanisms responsible for “suggesting” and “assessing” an update step
into two independent instances: We use B with batch size m := |B| for the gradient and curvature
estimates and use B with fixed batch size |B| = 1024 for the damping heuristic, CG-backtracking,
and line search. This technique significantly stabilized the optimizer without sacrificing performance.

3 Experiments

We consider three problems from the DEEPOBS benchmark [14], mostly the ALL-CNN-C net
on CIFAR-100. Results on CIFAR-10 with the 3C3D net and on the SVHN data using the
WIDERESNET 16-4 are discussed in Section 3.3. For all experimental details, see Appendix B.

3.1 Efficiency of SGD and HF during training

The pros and cons of Newton steps: In the deterministic setting, Newton’s method is highly effective
near the optimum [e.g. 10, Thm. 3.5]. Therefore, it seems natural to apply Newton-based methods
such as HF at the end of the training process in the stochastic setting, too. [9, p. 23] suggests this but
also argues hat “precise convergence is often not necessary [...], or even undesirable (due to issues of
overfitting)”. Moreover, the signal-to-noise ratio of the curvature may decrease during training [2],
potentially making curvature-based methods unstable.

We conduct an empirical comparison between SGD and an HF optimizer to investigate how effective
these strategies are in the different phases of optimization. Our experiment consists of two steps:

1. Training: First, we train the network using SGD, with the training hyperparameters taken
from an existing benchmark [13] (see Table 1 in Appendix B). At ten equally spaced
checkpoints during training, the network’s parameters are stored. Figure 4 in Appendix B
shows the learning curves and checkpoints for all test problems.

2. Evaluation: Next, we empirically compare SGD with the learning rate from step 1 to a HF
optimizer, starting from the checkpoints we created during training. For a fair and practically
meaningful comparison, each optimizer is assigned the same runtime budget: 10% of the

2



0 100 200 300

epoch

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

tr
ai

n
lo

ss

0 100 200 300

epoch

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

te
st

ac
cu

ra
cy

SGD, α (m = 256) HF (m = 256) HF (m = 2048) HF (m = 6144) HF (m = 12288)

Figure 1: Relative to SGD, HF is most performant at the end: From each checkpoint of the
ALL-CNN-C net on CIFAR-100, we resume training for a fixed runtime budget using SGD (gray)
and HF optimizers (red) with different batch sizes m. Each setting is repeated for 5 random seeds.
For each checkpoint, all runs are scored from 0 (worst) to 1 (best) according to the best train loss
(left) and test accuracy (right) achieved within the budget. The markers’ x-positions are slightly
perturbed for better visibility.

time needed for training the networks in step 1. Every setting is repeated for 5 random seeds.

Results: For every checkpoint, we extract the best performance obtained by each optimizer within
the runtime budget. These performances are then linearly transformed to range between 0 (worst) and
1 (best) to enable comparisons between checkpoints. Figure 1 shows the results for the ALL-CNN-C
CIFAR-100 test problem. At the first checkpoint, SGD clearly outperforms the HF approaches.
This trend reverses over the course of training for both the train loss and test accuracy. Overall, these
results suggest that second-order methods are most beneficial towards the end of training.

3.2 Hessian-free as a late-phase optimizer

Motivated by the previous section, we focus on the use of second-order optimizers during the final
phase of training. In this section, we empirically compare HF approaches to popular late-phase
training strategies. The goal is to investigate, whether a few precise — but costly — second-order
steps are effective when the model is close to being fully trained. To investigate this, we resume
training from the very last checkpoint for 10% of the total original training time and compare HF
approaches using four different batch sizes to the following learning rate adjustments:

α For this baseline, we keep the constant learning rate that was originally used for training.
α/10 Here, the learning rate is reduced by a factor of 10 at the checkpoint.
αcos
k This cosine schedule gradually decays the original learning rate to 0 over the given budget.
αk Sets the learning rate dynamically according to PYTORCH’s ReduceLROnPlateau method.

This scheduler is initialized with the original learning rate and decreases it by a factor of 10
whenever the train loss cannot be improved significantly within a certain number of epochs.
This parameter is chosen such that the learning rate can be reduced up to three times within
the given budget (see Figure 7 for the resulting learning rate schedules).

Results: Figure 2 shows the result of the different late-phase training strategies for the ALL-CNN-C
net on CIFAR-100 (see Figure 6 for additional test problems). We make the following observations:

• Changing strategy pays off: All strategies outperform the SGD baseline with a constant
learning rate (shown as a solid gray line), both in terms of train loss and test accuracy.

• Second-order methods can generalize surprisingly well: Although SGD with the cosine
schedule performs the best in terms of train loss, the HF optimizers with m ≥ 2048
significantly outperform it in terms of test accuracy for a given wall-clock runtime budget.

• The HF optimizer requires larger batch sizes for top peak performance: For the HF
approaches, larger batch sizes are required to reach top peak performance. But surprisingly,

3



0 200 400 600 800 1000

budget used (in s)

1.1

1.2

1.3

1.4

1.5

1.6

tr
ai

n
lo

ss

0 200 400 600 800 1000

budget used (in s)

58

59

60

61

62

63

te
st

ac
cu

ra
cy

in
%

SGD, α (m = 256)
SGD, α/10 (m = 256)

SGD, αcos
k (m = 256)

SGD, αk (m = 256)
HF (m = 256)
HF (m = 2048)

HF (m = 6144)
HF (m = 12288)

Figure 2: In the final phase, second-order methods can outperform SGD in wall-clock time:
Comparison of different strategies for the ALL-CNN-C network on CIFAR-100 in terms of the train
loss (left) and test accuracy (middle) when starting from the very last checkpoint at training epoch
349. Each setting is repeated for five different seeds. The line shows the mean over these runs, the
shaded area ranges from the lower to the upper quartile.

even with the smallest batch size m = 256, the HF optimizer outperforms the SGD baseline
(solid gray line). It is also notable that the HF approaches generally optimize quite quickly,
requiring only a few steps to provide a significant performance boost, similar to the drastic
reduction of the learning rate of SGD with α/10 (green gray line).

3.3 Empirical results on other test problems

Most of these observations also apply to the 3C3D model on CIFAR-10, but not to WIDERESNET
16-4 network on SVHN. The HF optimizers again exhibit remarkable generalization ability on
the 3C3D model on CIFAR-10 (top subplot in Figure 6), with HF (m = 6144) reaching a similar
test accuracy as SGD with α/10 despite having a significantly worse train loss. In this scenario,
however, SGD with a cosine decay provides the best test accuracy. Surprisingly, however, none of
the observations hold for the WIDERESNET 16-4 model on SVHN (bottom subplot in Figure 6).
Here, SGD with a constant learning rate decreases the train loss significantly but the test accuracy is
unaffected. We also do not observe a good performance for the HF approaches. This might indicate
that the WIDERESNET 16-4 is not in the final phase of training or that the optimization problem is
structurally different from the other problems. Future work could investigate automatic methods for
detecting whether a model might be amenable to second-order methods, for example, by detecting if
the model has entered its final phase of training. Another explanation why HF is worse on CIFAR-10
and SVHN could be that the rank of the GGN is bounded by m · C [2], where C is the number of
classes. That means, for CIFAR-100 (C = 100) the GGN might be more “expressive” than for the
other two test problems (C = 10).

4 Conclusion

Our empirical comparison for late-phase training shows that second-order methods can significantly
outperform first-order approaches in wall-clock runtime. Although the strong results of the HF
approach with the ALL-CNN-C net on CIFAR-100 could not be observed to the same extent on the
other problems (see Section 3.3), our results still show the potential of Hessian-free methods.

Our runtime comparisons depend on the hardware used and on the efficiency of the underlying imple-
mentations. The bias of the results due to the implementation turns out to be a disadvantage for the
HF approach: While we use the efficient PYTORCH code for the SGD variants, our implementation
of the HF optimizer is certainly less optimal. Another advantage of SGD is that today’s commonly
used model architectures are designed to be trained by first-order methods.

We argue that the HF approach shows potential for future research, which we want to facilitate with
our open source implementation. Future work could study the individual components of the HF

4



optimizer, potentially leading to a simplified and more efficient method. Such work could lead to
hybrid training approaches that use second-order methods for late-phase training.

Acknowledgments and Disclosure of Funding

The authors gratefully acknowledge financial support by the European Research Council through
ERC StG Action 757275 / PANAMA; the DFG Cluster of Excellence “Machine Learning - New
Perspectives for Science”, EXC 2064/1, project number 390727645; the German Federal Ministry of
Education and Research (BMBF) through the Tübingen AI Center (FKZ: 01IS18039A); and funds
from the Ministry of Science, Research and Arts of the State of Baden-Württemberg. LT is also
grateful to the International Max Planck Research School for Intelligent Systems (IMPRS-IS) for
support. FS is supported by funds from the Cyber Valley Research Fund. The authors are also grateful
to Andres Fernandez Rodriguez, Felix Dangel and Runa Eschenhagen for feedback.

5



References
[1] Felix Dangel, Frederik Kunstner, and Philipp Hennig. BackPACK: Packing more into Backprop.

In International Conference on Learning Representations, 2020.

[2] Felix Dangel, Lukas Tatzel, and Philipp Hennig. ViViT: Curvature access through the general-
ized Gauss-Newton’s low-rank structure. arXiv:2106.02624, 2021.

[3] Yann N. Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and
Yoshua Bengio. Identifying and attacking the saddle point problem in high-dimensional non-
convex optimization. In Advances in Neural Information Processing Systems, 2014.

[4] Magnus R. Hestenes and Eduard Stiefel. Methods of Conjugate Gradients for Solving Linear
Systems. Journal of research of the National Bureau of Standards, 49(6):409–436, 1952.

[5] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In
International Conference on Learning Representations, 2015.

[6] Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical Programming, 45(1):503–528, 1989.

[7] James Martens. Deep learning via Hessian-free optimization. In International Conference on
Machine Learning, 2010.

[8] James Martens and Roger Grosse. Optimizing Neural Networks with Kronecker-Factored
Approximate Curvature. In International Conference on Machine Learning, 2015.

[9] James Martens and Ilya Sutskever. Training Deep and Recurrent Networks with Hessian-Free
Optimization. In Neural Networks: Tricks of the Trade - Second Edition, volume 7700, pages
479–535. Springer, 2012.

[10] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2. edition, 2006.

[11] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In Advances in Neural Information Processing
Systems, 2019.

[12] Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of
Mathematical Statistics, 22(3):400–407, 1951.

[13] Robin M. Schmidt, Frank Schneider, and Philipp Hennig. Descending through a Crowded
Valley - Benchmarking Deep Learning Optimizers. In International Conference on Machine
Learning, 2021.

[14] Frank Schneider, Lukas Balles, and Philipp Hennig. DeepOBS: A Deep Learning Optimizer
Benchmark Suite. In International Conference on Learning Representations, 2019.

6



Appendix

A Details of the Hessian-free optimizer 7

A.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

A.2 Mini-batch overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

B Experimental details 9

B.1 Training hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

B.2 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

B.2.1 Performance evaluation for training phases . . . . . . . . . . . . . . . . . 9

B.2.2 Detailed performance evaluation for the last checkpoint . . . . . . . . . . . 10

A Details of the Hessian-free optimizer

A.1 Implementation details

In this section, we provide more details concerning the implementation of the Hessian-free (HF) op-
timizer in PYTORCH, available at https://github.com/ltatzel/PyTorchHessianFree. The
optimizer relies on components described in [7] and [9].

Hessian & GGN: Our implementation allows the use of either the Hessian matrix or the general-
ized Gauss-Newton matrix (GGN) as a curvature matrix via the argument curvature_opt to the
optimizer’s constructor. As recommended in [7, Section 4.2] and [9, e.g. p. 10 f.], the default is the
symmetric positive semidefinite GGN. To compute matrix-vector products with these matrices, we
use functionality provided by the BACKPACK package [1].

Damping: As described in [7, Section 4.1], Tikhonov damping can be used to avoid overly large
steps. Our implementation also features the Levenberg-Marquardt style heuristic for adjusting the
damping parameter, which can be turned on and off via the adapt_damping switch. This heuristic
measures the actual reduction of the objective function against the expected reduction according to the
quadratic model. If this reduction ratio is small, i.e. the quadratic model does not seem trustworthy,
the damping constant is increased. If it is close to one, a smaller damping is applied in the next step.
By default, we use an initial damping of 1.0.

CG: Our implementation of the conjugate gradient method is based on the pseudocode given in
[9, Algorithm 2]. It supports preconditioning and features the termination criterion presented in [7,
Section 4.4] via the argument martens_conv_crit. In addition, CG is terminated after at most 250
iterations as in [7] (see [9, Section 8.7]).

In principle, our implementation of the CG method can handle non-positive directional curvature,
i.e. p⊤

i Api ≤ 0 (note that this is a violation of the assumption that A is positive definite) via the
nonpos_curv_option-argument to the postprocess_pAp function. For example, it allows using
the absolute value of the directional curvature — this idea is discussed in detail in [3].

As in [7, Section 4.5], we use the approximate CG solution from the last step as a starting point for
the next CG run. Using the argument cg_decay_x0 of the optimizer’s constructor, this initial search
direction can be scaled by a constant. The default value is 0.95, as in [9, Section 10].

The get_preconditioner-method implements the preconditioner suggested in [7, Section 4.7], the
diagonal of the empirical Fisher matrix. In our experiments, we do not use preconditioning.

CG-backtracking: When CG-backtracking is used, the CG method returns not only the final
“solution” to the linear system but also intermediate approximations for a subset of the iterations.
This grid of iterations is generated using the approach from [7, Section 4.6]. In a subsequent step, the
set of potential update steps is searched for a suitable candidate (without having to evaluate the loss
for all candidates), see [9, p. 36]. This requires evaluating the loss function possibly multiple times.
CG-backtracking is used by default but can be disabled using the use_cg_backtracking argument.

7

https://github.com/ltatzel/PyTorchHessianFree


Line search: Next, the proposed update step is iteratively scaled back by the line search until the loss
is decreased “significantly” as determined by the Armijo condition with c = 0.01, see [9, Section 8.8].
By default, an initial learning rate of 1.0 is used, which is scaled by a factor of β = 0.8 repeatedly
for at most 20 times.

Our implementation performs a line search by default (which is not the case in [7]) — but it can
be turned off using the use_linesearch switch. Empirically, it increases the stability of the HF
approach, e.g. in cases where the damping determined via the LM-heuristic is insufficient.

Handling large mini-batch sizes: For very large mini-batch sizes, the memory required for com-
puting the loss, gradient, and matrix-vector products might exceed the GPU’s capacity. In this case,
our implementation offers the method acc_step. It takes a list of smaller chunks of data that, when
added together, gives the mini-batch that is actually to be used. It evaluates e.g. the gradient only on
one list entry (i.e. one mini-batch) at a time and accumulates the individual gradients automatically.
This iterative approach slows down the computations. but it enables us to work with very large
mini-batches.

Tests: Our implementation also features methods that test (i) if loss and matrix-vector products
behave deterministically (this is important because “inconsistent” matrix-vector products in CG
would imply different quadratic models which might lead to unpredictable behavior) and (ii) if the
accumulation of mini-batches over multiple chunks of data works properly (this depends on the
reduction used by the loss function).

A.2 Mini-batch overfitting

In this section, we provide an example of overfitting to the mini-batch and show how our approach
(described in Section 2) addresses this issue. We compare the following two strategies:

1. The original version of the optimizer uses B ≡ B with |B| = |B| = 6144

2. Our alternative HF approach uses two disjoint mini-batches B,B: The first batch B with
batch size |B| = 6144 is used for estimating the gradient and curvature; The second batch B
with batch size |B| = 1024 is used for the damping heuristic, CG-backtracking, and the line
search.

We use the ALL-CNN-C CIFAR-100 test problem and apply both strategies described above to the
last checkpoint at epoch 349. The runtime budget is set to 3600 s (in order to provide enough time for
instabilities to develop even at this large batch size) and each setting is repeated for 5 random seeds.

Figure 3 shows the initial and final loss (before and after applying the parameter update) evaluated on
B for 5 runs with different random seeds. The original approach always manages to make progress

0.0 2.5 5.0 7.5 10.0 12.5

step

1.0

1.5

2.0

2.5

lo
ss

Original HF-approach

initial loss
final loss

0 50 100 150

step

1.2

1.4

lo
ss

Our alternative HF-approach

initial loss
final loss

Figure 3: Mini-batch overfitting: Comparison of the original HF approach using B ≡ B with
|B| = |B| = 6144 (left) and our alternative using disjoint mini-batches with |B| = 6144 and
|B| = 1024 (right). Both strategies are applied to the last checkpoint at epoch 349 of the ALL-CNN-
C CIFAR-100 test problem with 3600 s runtime budget. The initial (before applying the parameter
update) and final (after applying the parameter update) loss evaluated on B are shown for 5 runs with
different random seeds.

8



on the given mini-batch. However, a small final loss is not necessarily reflected in the initial loss of
the subsequent step. This indicates overfitting to the mini-batch. The final few optimization steps
even lead to an increase of the initial loss values.

Our alternative HF approach does not show such behavior: It quickly decreases the loss and keeps it
stable at a relatively small loss value. Additionally, our approach performs far more steps (a factor of
more than 10) due to the runtime we save by evaluating the loss on a smaller mini-batch.

B Experimental details

Our experiments are conducted on three classification problems from DEEPOBS [14]: 3C3D with
CIFAR-10, ALL-CNN-C with CIFAR-100, and WIDERESNET 16-4 with the SVHN dataset. All
test problems use the cross-entropy loss function. The experiments were executed on an NVIDIA
GeForce RTX 2080 Ti GPU (11 GB).

B.1 Training hyperparameters

The hyperparameters used for training these networks with SGD are extracted from an existing
benchmark [13]. They are summarized in Table 1. Figure 4 shows the training metrics for all test
problems.

Table 1: The training hyperparameters of SGD: We report SGD’s learning rate α, the batch size
used for training, and the number of training epochs for each test problem. The learning rates are
tuned for maximum accuracy on a validation dataset.

Network Dataset Learning rate Batch size Training epochs

3C3D CIFAR-10 α ≈ 0.067966 N = 128 100
ALL-CNN-C CIFAR-100 α ≈ 0.171234 N = 256 350
WIDERESNET 16-4 SVHN α ≈ 0.025378 N = 128 160

B.2 Performance evaluation

We empirically compare the performance of different SGD-based and HF approaches starting from
each checkpoint created during training (see Appendix B.1). Each optimizer is assigned the same
runtime budget: 10% of the time needed for training the networks. Every setting is repeated for 5
random seeds.

B.2.1 Performance evaluation for training phases

Here, we investigate how the performance of the optimizers changes during different training phases.
For every checkpoint, we extract the best train loss and test accuracy achieved by one of the tested
optimizers within the runtime budget. We then linearly transform all observed values — separately
for each checkpoint — such that the best performance (smallest loss/highest accuracy) is always at
relative performance 1 and the worst performance (highest loss/smallest accuracy) is assigned a value
of 0.

The results for all optimizers and test problems are shown in Figure 5. For the 3C3D CIFAR-10
and the ALL-CNN-C CIFAR-100 test problems, we observe that the relative performance of SGD
with the original learning rate used for training (gray) decreases over the course of the training time.
The alternative SGD approaches and HF optimizers show increasing relative performances over
the training phases. For ALL-CNN-C CIFAR-100, the best relative performance (in terms of the
test accuracy) for the second half of training is exhibited by the HF approaches with batch size
m ≥ 1024.

For the WIDERESNET 16-4 SVHN test problem, the distribution of the relative performances seems
quite static over the checkpoints: SGD with the original learning rate (gray) remains at a relative
train loss performance close to 1 over the entire training. Regarding test accuracy, SGD with the
reduced learning rate (green) and the cosine decay (blue) quickly achieve high relative performances.

9



3C3D, CIFAR-10

0 20 40 60 80 100

epoch

1

2

3

lo
ss

train loss
test loss

checkpoint

0 20 40 60 80 100

epoch

20

40

60

80

ac
cu

ra
cy

in
%

train acc.
test acc.

checkpoint

ALL-CNN-C, CIFAR-100

0 100 200 300

epoch

2

3

4

5

lo
ss

train loss
test loss

checkpoint

0 100 200 300

epoch

0

20

40

60

ac
cu

ra
cy

in
%

train acc.
test acc.

checkpoint

WIDERESNET 16-4, SVHN

0 25 50 75 100 125 150

epoch

0.5

1.0

1.5

2.0

2.5

lo
ss

train loss
test loss

checkpoint

0 25 50 75 100 125 150

epoch

20

40

60

80

100

ac
cu

ra
cy

in
%

train acc.
test acc.

checkpoint

Figure 4: Training metrics: The loss (left) and accuracy (right) on the train and the test data are
shown for all test problems. During training, we create 10 checkpoints ( ).

The worst performance in terms of training loss and test accuracy is consistently exhibited by the HF
approaches. It might be that we would have to run the training even longer (more than 160 epochs,
see Table 1) to observe a qualitative change in the ranking of the optimizers. The model architecture
(a residual network) might pose a structurally different optimization problem which might be one
reason for the overall different observations compared to the other test problems. Our results show
that HF can outperform SGD-based approaches in terms of the test accuracy, even with the same
wall-clock runtime budget.

B.2.2 Detailed performance evaluation for the last checkpoint

In this section, we report the optimizers’ performance for the last checkpoint in more detail. Figure 6
shows the train loss (left) and test accuracy (right) over the runtime budget for the SGD-based and
HF approaches starting from the very last checkpoint. Figure 7 shows the corresponding learning
rate progressions for the SGD-based optimizers over the training budget.

10



3C3D, CIFAR-10

0 20 40 60 80 100

epoch

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

tr
ai

n
lo

ss

0 20 40 60 80 100

epoch

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

te
st

ac
cu

ra
cy

SGD, α (m = 128)
SGD, α/10 (m = 128)

SGD, αcos
k (m = 128)

SGD, αk (m = 128)
HF (m = 128)
HF (m = 1024)

HF (m = 3072)
HF (m = 6144)

ALL-CNN-C, CIFAR-100

0 100 200 300

epoch

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

tr
ai

n
lo

ss

0 100 200 300

epoch

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

te
st

ac
cu

ra
cy

SGD, α (m = 256)
SGD, α/10 (m = 256)

SGD, αcos
k (m = 256)

SGD, αk (m = 256)
HF (m = 256)
HF (m = 2048)

HF (m = 6144)
HF (m = 12288)

WIDERESNET 16-4, SVHN

0 50 100 150

epoch

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

tr
ai

n
lo

ss

0 50 100 150

epoch

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

te
st

ac
cu

ra
cy

SGD, α (m = 128)
SGD, α/10 (m = 128)

SGD, αcos
k (m = 128)

SGD, αk (m = 128)
HF (m = 128)
HF (m = 1024)

HF (m = 3072)
HF (m = 6144)

Figure 5: Relative performance over checkpoints: From each checkpoint, we resume training for a
fixed runtime budget using SGD-based strategies or HF optimizers (red) with different batch sizes
m. We report the best train loss (left) and test accuracy (right) observed within this budget. Each
optimizer run is repeated for 5 random seeds. The performances are transformed linearly to range
from 0 (worst) to 1 (best). The markers’ x-positions are slightly perturbed for better visibility.

11



3C3D, CIFAR-10

0 50 100 150 200 250

budget used (in s)

0.55

0.60

0.65

0.70

0.75

tr
ai

n
lo

ss

0 50 100 150 200 250

budget used (in s)

82

83

84

85

te
st

ac
cu

ra
cy

in
%

SGD, α (m = 128)
SGD, α/10 (m = 128)

SGD, αcos
k (m = 128)

SGD, αk (m = 128)
HF (m = 128)
HF (m = 1024)

HF (m = 3072)
HF (m = 6144)

ALL-CNN-C, CIFAR-100

0 200 400 600 800 1000

budget used (in s)

1.1

1.2

1.3

1.4

1.5

1.6

tr
ai

n
lo

ss

0 200 400 600 800 1000

budget used (in s)

58

59

60

61

62

63
te

st
ac

cu
ra

cy
in

%

SGD, α (m = 256)
SGD, α/10 (m = 256)

SGD, αcos
k (m = 256)

SGD, αk (m = 256)
HF (m = 256)
HF (m = 2048)

HF (m = 6144)
HF (m = 12288)

WIDERESNET 16-4, SVHN

0 100 200 300 400 500

budget used (in s)

0.130

0.135

0.140

0.145

tr
ai

n
lo

ss

0 100 200 300 400 500

budget used (in s)

95.2

95.4

95.6

95.8

te
st

ac
cu

ra
cy

in
%

SGD, α (m = 128)
SGD, α/10 (m = 128)

SGD, αcos
k (m = 128)

SGD, αk (m = 128)
HF (m = 128)
HF (m = 1024)

HF (m = 3072)
HF (m = 6144)

Figure 6: Performance over budget: Comparison of different strategies for all test problems when
starting from the very last checkpoint. Each setting is repeated for five different seeds. The line shows
the mean over these runs and the shaded area ranges from the lower to the upper quartile.

12



3C3D, CIFAR-10

0 100 200

budget used (in s)

0.00

0.02

0.04

0.06

le
ar

ni
ng

ra
te

SGD, αk (m = 128)
SGD, αcos

k (m = 128)
SGD, α (m = 128)
SGD, α/10 (m = 128)

ALL-CNN-C, CIFAR-100

0 500 1000

budget used (in s)

0.00

0.05

0.10

0.15

le
ar

ni
ng

ra
te

SGD, αk (m = 256)
SGD, αcos

k (m = 256)
SGD, α (m = 256)
SGD, α/10 (m = 256)

WIDERESNET 16-4, SVHN

0 200 400

budget used (in s)

0.000

0.005

0.010

0.015

0.020

0.025

le
ar

ni
ng

ra
te

SGD, αk (m = 128)
SGD, αcos

k (m = 128)
SGD, α (m = 128)
SGD, α/10 (m = 128)

Figure 7: Learning rates over budget: Learning rate progressions for all test problems when starting
from the very last checkpoint. Each setting is repeated for five different seeds.

13


	Introduction
	An easy-to-use Hessian-free optimizer
	Experiments
	Efficiency of SGD and HF during training
	Hessian-free as a late-phase optimizer
	Empirical results on other test problems

	Conclusion
	Details of the Hessian-free optimizer
	Implementation details
	Mini-batch overfitting

	Experimental details
	Training hyperparameters
	Performance evaluation
	Performance evaluation for training phases
	Detailed performance evaluation for the last checkpoint



