
Large sample analysis of the median
heuristic

Damien Garreau∗†

e-mail: damien.garreau@tuebingen.mpg.de
and

Wittawat Jitkrittum†

e-mail: wittawat.jitkrittum@tuebingen.mpg.de
and

Motonobu Kanagawa†

e-mail: motonobu.kanagawa@tuebingen.mpg.de
†Max Planck Institute for Intelligent Systems

Abstract: In kernel methods, the median heuristic has been widely used
as a way of setting the bandwidth of RBF kernels. While its empirical
performances make it a safe choice under many circumstances, there is little
theoretical understanding of why this is the case. Our aim in this paper is
to advance our understanding of the median heuristic by focusing on the
setting of kernel two-sample test. We collect new findings that may be
of interest for both theoreticians and practitioners. In theory, we provide a
convergence analysis that shows the asymptotic normality of the bandwidth
chosen by the median heuristic in the setting of kernel two-sample test.
Systematic empirical investigations are also conducted in simple settings,
comparing the performances based on the bandwidths chosen by the median
heuristic and those by the maximization of test power.

1. Introduction

Kernel methods form an important class of algorithms in machine learning and
statistics (Schölkopf and Smola, 2002; Muandet et al., 2017). They make use of
rich feature spaces that depend only on the kernel chosen by the user. Given a
positive semi-definite kernel k and observations x1, . . . , xn, the first step of most
kernel-based methods is to compute the Gram matrix K = (k (xi, xj))1≤i,j≤n.
Thanks to the celebrated kernel trick , all ensuing computations need only the
knowledge of K.

In this paper, we are especially interested in data lying in a metric space (X , δ).
When this is the case, commonly used kernels are radial basis function (RBF)
kernels of the form

k (x, y) = f(δ (x, y) /ν) , x, y ∈ X , (1)
∗Corresponding author
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where f : R+ → R+ is a function and ν is a positive parameter called the
bandwidth. In many applications, the space X is Rd and δ is derived from the
Euclidean norm ‖x‖ =

√∑
i x

2
i , that is, δ (x, y) = ‖x− y‖. Numerous kernels

used in practice belong to this class of kernels. For instance, f(x) = exp
(
−x2

)
corresponds to the Gaussian kernel (Aizerman et al., 1964), arguably the most
popular positive definite kernel used in applications (see, for instance, Vert et al.,
2004). The function f(x) = exp (−x) yields the exponential kernel—also called
Laplace or Laplacian kernel—whereas more exotic f give rise to less common
kernels such as the rational quadratic kernel, the wave kernel or the Matérn
kernel (see Genton, 2001, and references therein).

It is well-known that the performance of kernel methods depends highly on
the kernel choice. In practice, this choice often reduces to the calibration of the
bandwidth ν, which may even be more important than the choice of f (Schölkopf
and Smola, 2002, Section 4.4.5). Since the Gram matrix depends only on the
‖xi − xj‖ /ν in this case, it is reasonable to pick ν in the same order as the
family of all pairwise distances (‖xi − xj‖)1≤i,j≤n. As an example, suppose that
we settled for the Gaussian kernel. Then when ν → 0, the Gram matrix K is the
identity matrix, and when ν →∞, the components of K are all equal to 1. All
relevant information about the data is lost in both these extreme cases. This is a
general phenomenon, even though the values taken by K in the degenerate cases
depend on the function f . Hence a reasonable middle-ground for choosing ν is to
pick a value “in the middle range” of the (‖xi − xj‖)1≤i,j≤n, that is, an empirical
quantile, which is often set to be the median. This strategy is called the median
heuristic; see Section 2.2 for a precise definition.

The median heuristic has been extensively used in practice.1 In fact, in unsu-
pervised learning where no principled way is available for bandwidth selection,
the median heuristic may be one of the first choice. This is the case for, among
many others, kernel PCA (Schölkopf et al., 1998), kernel CCA (Bach and Jor-
dan, 2002) and kernel two-sample test (Gretton et al., 2012a). It has also been
used in supervised learning, e.g., kernel SVM (Boser et al., 1992) or kernel
ridge regression (Hoerl and Kennard, 1970). There, one can choose ν from pre-
scribed candidate values by performing cross-validation, and it is common to
use the median heuristic to set the scale of these candidate values, e.g., ν may
be chosen from (2aHn)Ma=−M , where Hn denotes the value given by the median
heuristic and M is some positive integer. In fact, the empirical median is the
default bandwidth choice in the kernel SVM implementation of the kernlab R
package (Karatzoglou et al., 2004).

Despite its popularity, there is very little theoretical understanding of the
median heuristic. To the best of our knowledge, the only work in this direction
is contained in Reddi et al. (2015). They observe that the median of all the
pairwise distances has to be close to the mean pairwise distance, E ‖Xi −Xj‖.

1 As noted in Flaxman et al. (2016), the origin of the median heuristic is unclear and does
not appear in the monograph of Schölkopf and Smola (2002), while it has become the main
reference for this heuristic. The earliest appearance of the median heuristic that we know of
is in Sriperumbudur et al. (2009, Section 5). Gretton et al. (2012a) refers to Takeuchi et al.
(2006) and Schölkopf et al. (1997) for similar heuristics.
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Based on this observation, they obtain the asymptotic of the median heuristic
when the dimension of the data goes to infinity, using the asymptotic of the mean
pairwise distance. This argument can be made rigorous by observing that, given
a random variable X with a second order moment, |EX −med(X)| ≤

√
Var (X)

holds (Mallows, 1991). Hence the observation of Reddi et al. (2015) is correct,
up to a variance term. We will see in Section 3 that our results make this insight
more precise.

The aim of this article is to advance our understanding of the median heuris-
tic, both theoretically and empirically. To this end, we focus on the setting of
the kernel two-sample test (Gretton et al., 2012a), which has been used in a
wide range of applications including transfer learning (Long et al., 2015) and
generative adversarial learning (Li et al., 2017); see Muandet et al. (2017) for a
recent extensive survey. As kernel two-sample testing is an unsupervised prob-
lem, numerous authors report the use of the median heuristic in their experi-
ments (Sriperumbudur et al., 2009; Arlot et al., 2012; Reddi et al., 2015; Muan-
det et al., 2016; Zhang et al., 2017; Jitkrittum et al., 2017a; Sutherland et al.,
2017). On the other hand, there is a more principled approach for bandwidth (or
kernel) selection based on the maximization of the test power (Gretton et al.,
2012a; Jitkrittum et al., 2017a; Sutherland et al., 2017). Apart from theoretical
analysis, we will conduct empirical comparisons between these approaches, and
discuss when the median heuristic works and when it fails in simple examples;
see Section 4.

This paper is organized as follows. Our setting is made explicit in Section 2
and we show in the same section how it is relevant for this application. In Sec-
tion 3, we state our main result: the median heuristic is asymptotically normal
when the number of observations goes to +∞. In particular, the median heuris-
tic converges towards the theoretical median of a target distribution that we
describe in terms of the samples’ distributions. This result is obtained by the
mean of an auxiliary proposition that we think has an interest of its own, that
is, a central limit theorem for a certain class of U -statistics that we state in the
same section. Finally, we use this result in Section 4 to investigate the quality of
the median heuristic as a bandwidth choice in simple settings. While we provide
sketches of proofs, the complete proofs are deferred to the Appendix.

2. Setting

Given any random variable Z, the notation Z ′ will stand for an independent
copy of Z and we write Z ∼ π if Z follows the distribution of π. Unless spec-
ified in subscript, the expected value is taken with respect to all the random
variables that appear in the expression. For instance, E [h(X,Y )] stands for
EX,Y [h(X,Y )]. We also denote by L2(P ) the space of real-valued measurable
functions f such that E

[
f(X)2

]
< +∞ where X ∼ P , with P a probability

distribution. We use L−→ for convergence in law, and P−→ for convergence in
probability.

In the following, we suppose that we are given a triangular array of indepen-
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dent Rd-valued random variables. Namely, for each sample size n, we suppose
that we observe an entirely new sample Xn,1, . . . , Xn,n. We see later how this
asymptotic setting is adapted to the methods we consider. Let X (resp. Y ) be
a Rd-valued random variable following the law P (resp. Q). Our main assump-
tion on the distribution of the Xn,i is that our observations are split in two
contiguous segments such that, on the left segment they follow P , and on the
right segment they follow Q. That is,

Assumption 2.1 (Split sample). There is a fixed α ∈ (0, 1) such that, for
any i ≤ αn, Xn,i ∼ P and Xn,i ∼ Q if i > αn.

We will assume from now on that αn is an integer. Everything that follows
can be readily adapted by replacing αn with bαnc when it is needed.

2.1. Connections with kernel two-sample test

Let us briefly recall the modus operandi of the kernel two-sample test with our
notation. The goal of two-sample test is to decide whether P = Q or P 6= Q
given observations x1, . . . , xαn and xαn+1, . . . , xαn. Gretton et al. (2007) have
proposed a kernel method for two-sample testing, that relies on the mean embed-
dings of P and Q in the reproducing kernel Hilbert space H associated with k.
Let us call µP and µQ these embeddings; then a good measure of proximity
between the distributions P and Q is the so called maximum mean discrep-
ancy (MMD), which is defined as ‖µP − µQ‖H. It is also possible to write the
(squared) MMD as

MMD2(P,Q) = E [k (x, x′)]− 2E [k (x, y)] + E [k (y, y′)] ,

where x, x′ ∼ P and y, y′ ∼ Q are independent. Setting M = αn and N =
(1− α)n, Gretton et al. (2007) provide an unbiased estimate of this quantity,

MMD2
u(P,Q) =

1

M(M − 1)

M∑
i,j=1
j 6=i

k (xi, xj)

+
1

N(N − 1)

M+N∑
i,j=M+1
i 6=j

k (xi, xj)−
2

MN

M,N∑
i=1

j=M+1

k (xi, xj) .

In the following, we refer to MMD2
u as the quadratic-time statistic, since its

computational cost is quadratic in the number of samples. In the case α = 1/2,
that is M = N , Gretton et al. (2012a) also proposed a linear-time estimate,

MMD2
`(P,Q) =

2

M

M/2∑
i=1

k (x2i−1, x2i) + k (xM+2i−1, xM+2i)

− k (x2i−1, xM+2i)− k (x2i, xM+2i) .
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Letting n grow to infinity corresponds to let both M and N grow to infinity
with the ratio M/N constant equal to α/(1− α).
Remark 2.1. The two-sample test problem is very close to that of change-point
detection when there is a single change-point, the main difference being that α is
generally unknown in the change-point problem. Recently, some kernel change-
point detection methods have been proposed (Harchaoui and Cappé, 2007; Arlot
et al., 2012). These methods aim to detect a change-point by minimizing a
kernelized least-squares criterion, and the median heuristic is also used in this
case to set the bandwidth (Arlot et al., 2012; Garreau and Arlot, 2016). The
setting described in this section is also appropriate to study the median heuristic
in this case.

2.2. Median heuristic

Suppose that we use a kernel that has the form (1) for a fixed f with bandwidth
ν > 0. We define the median heuristic as the choice of bandwidth ν =

√
Hn/2,

where Hn > 0 is

Hn = Med
{
‖Xn,i −Xn,j‖2 | 1 ≤ i < j ≤ n

}
, (2)

where Med is the empirical median. More precisely, Hn is obtained by first
ordering the ‖Xn,i −Xn,j‖2 in increasing order, and then setting Hn to be the
central element if n(n−1)/2 is odd, or the mean of the two most central elements
if n(n− 1)/2 is even. Note that some authors choose simply ν =

√
Hn.

In order to investigate the asymptotic properties of Hn, rather than using
Eq. (2), we are going to define Hn via the empirical cumulative distribution
function of the ‖Xn,i −Xn,j‖2, that is,

∀t ∈ R, F̂n(t) =
2

n(n− 1)

∑
1≤i<j≤n

1‖Xn,i−Xn,j‖2≤t . (3)

For any p ∈ (0, 1), we define the generalized inverse of F̂n by F̂−1
n (p) = inf

{
t ∈

R | F̂ (t) ≥ p
}
. Then Hn may be written as

Hn = F̂−1
n

(
1

2

)
. (4)

Note that other empirical quantiles as F̂−1
n (p) for p ∈ (0, 1) can be used in

practice (e.g., p = 0.1 and p = 0.9). Though we are mainly concerned with Hn,
we will see that our main result still holds for arbitrary p.

3. Main results

3.1. Empirical cumulative distribution function of the pairwise
distances

For any 1 ≤ i, j ≤ n, set δ2
ij := ‖Xn,i −Xn,j‖2. Under Assumption 2.1, there

are only three possibilities for δ2
ij . Namely, for any fixed, distinct indices i and j
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Fig 1. Histogram of the ‖Xn,i −Xn,j‖2 with n = 400 for Gaussian distributions in dimension
d = 100 and proportion α = .25. Left panel: change in the mean, X ∼ N (0, Id) and Y ∼
N

(
1031, Id

)
. Right panel: change in the variance, X ∼ N (0, Id) and Y ∼ N (0, 2 Id). The

error bars correspond to the standard deviation over 10 repetitions of the experiment.

such that i < j,

(i) if i ≤ αn and j ≤ αn, then δ2
ij has the distribution of ‖X −X ′‖2;

(ii) if i > αn and j > αn, then δ2
ij has the distribution of ‖Y − Y ′‖2;

(iii) if i ≤ αn and j > αn, then δ2
ij has the distribution of ‖X − Y ‖2.

In the following, we set random variables TXX ∼ ‖X −X ′‖2, TY Y ∼ ‖Y − Y ′‖2,
and TXY ∼ ‖X − Y ‖2. There are αn(αn − 1)/2 occurrences of case (i), so
case (i) occurs with proportion α2 as n→ +∞. Similarly, case (ii) occurs with
proportion (1− α)2 and case (iii) with proportion 2α(1− α).

Define a mixture distribution T ∼ TXX , T ∼ TY Y and T ∼ TXY with
weights α2, (1 − α)2 and 2α(1 − α) respectively. Thereafter, we will call T the
target random variable and denote by F its cumulative distribution function.
Intuitively, when n → ∞, Tn should behave like a n-sample of the target T ,
provided that the dependency between the ‖Xn,i −Xn,j‖2 that have elements
in common is not too strong. Indeed, a specialization of a result stated in the
next paragraph shows that

∀t ∈ R, F̂n(t)
P−→ F (t) . (5)

We believe that Eq. (5) is already a step in the comprehension of the median
heuristic, since we are now able to think about Hn “approximately” as the
theoretical median of the target T . We refer to Figure 1 for two examples when
P and Q are known distributions.

Before presenting a rigorous statement of Eq. (5), we provide a result that
shows how a gap appears between on one side TXX and TY Y and TXY on the
other side if the distributions of P and Q are well-separated. This explains the
“two bumps” behavior depicted in the left panel of Figure 1. The left mode of
the empirical distribution corresponds to realizations of TXX and TY Y , that are
close to zero by definition, whereas the right mode corresponds to realizations
of TXY , which can be arbitrarily far from 0.

Lemma 3.1 (Gap between intra- and inter-distances). Set µX (resp. µY )
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the expectation and ΣX (resp. ΣY ) the covariance matrix of X (resp. Y ). As-
sume that there exists λ > 75 such that

‖µX − µY ‖2 ≥ λ (tr (ΣX) + tr (ΣY )) .

Then, with probability at least 1− 75/λ,

max (TXX , TY Y ) +
‖µX − µY ‖2

25
< TXY .

Remark 3.1. Recall that T is a mixture such that T ∼ TXX , T ∼ TY Y and
T ∼ TXY with respective proportions α2, (1 − α)2 and 2α(1 − α). Since α2 +
(1 − α)2 ≥ 2α(1 − α) holds, Lemma 3.1 therefore implies that the median is
determined by the scales of TXX or TY Y , and the influence of TXY is relatively
weak if α < 1/2.

3.2. Convergence of the empirical cumulative distribution function

It turns out that Eq. (5) is a trivial consequence of a much stronger statement.
Indeed, F̂n(t) can be seen as a sum of three dependent U -statistics with kernel
h(x, y) = 1‖x−y‖2≤t, and the following result shows that it follows a central limit
theorem. We refer to classical textbooks (Lee, 1990; Korolyuk and Borovskich,
2013) for an introduction to the theory of U -statistics.

Proposition 3.1 (CLT for non-identically distributed triangular array
U-statistic). Consider h : R×R→ R such that h ∈ L2(P )∩L2(Q)×L2(P )∩
L2(Q), and suppose that the (Xn,i)

n
i=1 satisfy Assumption 2.1. Define

Un =
2

n(n− 1)

∑
1≤i<j≤n

h(Xn,i, Xn,j) ,

and set

θ = α2E [h(X,X ′)] + 2α(1− α)E [h(X,Y )] + (1− α)2E [h(Y, Y ′)] . (6)

Then √
n(Un − θ)

L−→ N
(
0, σ2

)
, (7)

where σ = σ(h, P,Q) is defined as

σ2 = VarX ( αE [h(X,X ′)] + (1− α)E [h(X,Y )] ) (8)
+ VarY ( αE [h(X,Y )] + (1− α)E [h(Y, Y ′)] ) ,

with all of X,X ′ ∼ P and Y, Y ′ ∼ Q being independent.

Proof (sketch). The idea of the proof is the following: (i) split Un in three terms
depending on the relative position of the indices; (ii) write down the Hoeffding
decomposition of each of these terms; (iii) show that the remainders are negligi-
ble, and (iv) conclude thanks to the central limit theorem for triangular arrays.
The complete proof can be found in Appendix B.1.
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We make the following remarks.

— Central limit theorems for U -statistics are known since the fundamental
article of Hoeffding (1948). Prop. 3.1 is in the line of such results. An
asymptotic normality result also exists in the non-identically distributed
case; see Hoeffding (1948, Th. 8.1). However, this result was not appli-
cable in our setting. The material in Jammalamadaka and Janson (1986)
covers the case of a triangular array scheme, but does not cover the non-
identically distributed setting. Results regarding two-sample U -statistics are
closest in spirit but not directly applicable; see van der Vaart (1998, Sec-
tion 12.2) for an introduction and Dehling and Fried (2012) for recent de-
velopments. With our notation, the two-sample U -statistic is written as
(αn(1 − α)n)−1

∑αn
i=1

∑n
j=αn+1 h(Xn,i, Xn,j). The sole difference is the ab-

sence of “intra-segment” interactions: the previous display does not contain
terms in h(Xn,i, Xn,j) with i and j in the same segment. It is the existence
of these terms in our case which complicates the analysis.

— Suppose that h is degenerate, that is, Eh(X, y) = Eh(x, Y ) = 0 for x, y ∈ X .
Then the variance term in Eq. (7) is zero, and Proposition 3.1 remains true
in the following sense:

√
n(Un − θ) converges towards the constant 0, which

is a degenerate Gaussian distribution N (0, 0). In this case, we believe that
the convergence will be faster, but not toward a Gaussian distribution. We
refer to Lee (1990, Section 3.2.2) for results in this direction.

— It is possible to prove a version of Prop. 3.1 for the multiple change-point
setting. The proof follows the lines of Section B.1, with an additional techni-
cal difficulty due to the numerous inter-segment interactions—we only deal
with one in the present work.

3.3. Asymptotic normality of the squared sample median

We now turn to the statement of our main result. In the previous section, we
only obtained the convergence of the empirical distribution function. It is well-
known that such a result implies the convergence of the empirical quantiles
towards the theoretical quantiles of the target distribution, if the convergence
of the empirical distribution function is “strong enough” (van der Vaart, 1998,
Chapter 21), i.e., if the convergence is uniform or a CLT—as it is the case in
our setting.

Proposition 3.2 (Asymptotic normality of Hn). Suppose that Assump-
tion 2.1 holds, and define T as in Section 3.1. Define m = med(T ) = F−1(1/2)
the theoretical median of the target distribution, and suppose that F has a non-
zero derivative at m. Define σ = σ(h, P,Q) as in Eq. (8), where h(x, y) =
1‖x−y‖2≤m. Then, for Hn defined in Eq. (4), we have

√
n(Hn −m)

L−→ N
(

0,
σ2

F ′(m)2

)
. (9)

Before providing a sketch of the proof of Prop. 3.2, we make a few remarks.
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— Empirical U -quantiles are known to satisfy asymptotic normality in the
i.i.d. case (Serfling, 1980). Although a lot of work has been done to relax
the independence assumption, however, there is no result regarding the non-
identically distributed case. In the two-sample setting, some results exist,
both in the independent case (Lehmann, 1951) and with some dependence
structure (Dehling and Fried, 2012). Nevertheless, as noted before, in our
setting it is necessary to consider the intra-segment interactions, which com-
plicates the analysis.

— As it can be seen for instance in Figure 1, observations lying between
max(ETXX ,ETY Y ) and ETXY may be very scarce. In such a case, it is
possible for F ′(m) to be small, leading to a large variance term in Eq. (9).
Note however that F ′(m) 6= 0 for arbitrary continuous distributions.

Proof sketch. Set t ∈ R. The general idea of the proof is to rewrite statements
about the event

{√
n (Hn −m) ≤ t

}
as statements about a sum of U -statistics.

We then control these U -statistics with Prop. 3.1 for conveniently chosen h, and
conclude with Slutsky’s Lemma. Throughout this proof, we only suppose that
p ∈ (0, 1) to emphasize that Prop. 3.2 can be extended to any quantile, not only
the median. The complete proof can be found in Appendix B.2.

4. Empirical investigation

We empirically compare the median heuristic and an approach based on the
maximization of test power (Gretton et al., 2012b) in the setting of two-sample
test. The purpose is to gain insights about when the median heuristic performs
reasonably and when it could work poorly.

We consider the following setting. We focus on the use of the Gaussian kernel
kν(x, y) := exp

(
−‖x−y‖2

2ν2

)
, and consider the selection of bandwidth ν > 0. We

consider the following two scenarios for the distributions P and Q. (i) Mean:
A change in the mean of a univariate Gaussian distribution: P ∼ N (0, 1) and
Q ∼ N (µ, 1) with µ > 0; (ii) Var: A change in the variance of a univariate
Gaussian distribution: P ∼ N (0, 1) and Q ∼ N

(
0, σ2

)
with σ > 1. In both

these scenarios, we choose α = 1/2 in order to be able to compute the linear-
time estimate MMD`.

Since the kernel kν and distributions P and Q are Gaussian, it is possible to
compute the cumulative distribution function FT of T exactly, and thus to have
access to the “theoretical” value of the median heuristic given by solving in t
the equation F (t) = 1/2. This is done by solving this equation F (t) = 1/2 in
each scenario (see Section D), which gives rise to bandwidth choices νMean

med and
νVar
med—which are functions of µ and σ, respectively. In this way, we suppress the
noise coming from choosing empirically the median of the pairwise distance and
obtain some fast, precise insights.

Comparisons are made with the bandwidth selected by the maximization
of test power (Gretton et al., 2012b), where the criterion is defined as the
(squared) MMD divided by a certain variance. We show in Section E of the
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Fig 2. Gaussian kernel bandwidth selected by different means. The left panel corresponds
to the Mean scenario, where we vary the mean µ of Q. The right panel corresponds to the
Var scenario, where we vary the variance σ2 of Q. For each plot, the vertical axis depicts
the values of selected bandwidths. The black curves are obtained by computing the theoretical
median, the red curves by maximizing Ru (the power criterion with quadratic-time MMD),
and the red dotted curves by maximizing R` (the power criterion with linear-time MMD).

Appendix that, in both scenarios, it is possible to derive the power ratio crite-
rion in closed-form, both for MMDu and MMD`. We denote these ratios by Ru
and R` respectively. Let νMean

u and νVar
u be the bandwidths selected the maxi-

mization by Ru in scenariosMean and Var respectively, and νMean
` and νVar

` be
those by the maximization of R`. We now dispose of two different test statistics,
the quadratic-time statistic MMDu and the linear-time statistic MMD`. To each
of these statistics corresponds two different way to choose the bandwidth: on one
side the value given by the theoretical median, on the other side the value that
maximizes the corresponding power ratio criterion, giving rise to four different
tests.

Comparison of bandwidths selected by different approaches. Figure 2
shows bandwidths selected by different approaches in the two scenarios. In sce-
nario Mean, for large values of µ, the values of νMean

med chosen by the median
heuristic are almost identical to the values of νMean

u selected by the power ratio
maximization with quadratic-time MMD statistics, and are parallel with νMean

`

of linear-time MMD. We do not have a theoretical explanation for this phe-
nomenon, which looks like a remarkable coincidence in view of the way νMean

med
and νMean

u are computed—see Section D and E in the Appendix. On the other
hand, in the Var scenario, this behavior cannot be observed, supporting the
common sense that the median heuristic may not be always the best choice,
selecting a bandwidth too large for the scale of the changes.

Comparison of approximate Bahadur slopes. We turn to a measure of
performance of a testing procedure, the approximate Bahadur slope (Bahadur,
1960). Intuitively, this slope is the rate of convergence of p-values to 0 as n in-
creases. Therefore, the higher the slope, the faster the p-value vanishes, and thus
the lower the sample size required to reject H0 under θ (the higher the better).
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Fig 3. In this figure we plot the ABS of the different tests in the Mean ( left panel) and
Var ( right panel) scenarios. The black lines correspond to the MMDu test with the median
heuristic, the red lines to the MMDu test with bandwidth chosen by maximizing the power
criterion. Dotted lines correspond to the MMD` test. We report error bars corresponding to
the standard deviation over 5 experiments—the randomness comes from the estimation of λ1
from 103 sample points.

This was first used in the context of kernel two-sample test by Jitkrittum et al.
(2017b). We choose the ABS as a measure of quality of the two-sample testing
procedures associated to the different bandwidths choices that we exposed.

Let us give a formal definition of ABS for a general testing procedure between
H0 : θ ∈ Θ0 and H1 : θ ∈ Θ \ Θ0. Let Tn be the associated test statistic, and
denote by F the asymptotic distribution of Tn under the null. Assume that F is
continuous and common to all θ0 ∈ Θ0. Suppose that there exists a continuous
strictly increasing function R : R+ → R+ such that limn→+∞R(n) = +∞ and
−2 log(1−F (Tn))/R(n)

P−→ c(θ) where Tn is drawn under θ, for some function
c that is positive on Θ \ Θ0 and identically zero on Θ0. Then the function c is
known as the approximate Bahadur slope (ABS) of Tn. As it turns out, in our
setting, it is possible to compute the ABS associated to MMDu and MMD`:

Proposition 4.1 (Approximate Bahadur Slope computations). The ABS
of nMMD2

u is MMD2

4λ1
, where λ1 is the largest eigenvalue of the centered Gaus-

sian kernel integral operator. The ABS of
√
nMMD2

` is MMD4

8σ2
`

, where σ2
` is the

asymptotic variance of MMD2
` (Eq. (16) in the Appendix).

We refer to Section F of the Appendix for the proof of Prop. 4.1, which is an
adaptation of the proof of Th. 5 in Jitkrittum et al. (2017b). In the computation
of the ABS for MMD2

u, we estimate λ1 empirically, following Gretton et al. (2009,
Eq. (5)).

Figure 3 describes the approximate Bahadur slopes for the considered ap-
proaches. It shows that, for scenarioMean (left panel), the median heuristic pro-
vides almost identical slopes to that of the corresponding power-maximization
approaches, as suggested by the results in Figure 2. In scenario Var (right
panel), it is interesting to see that the slope by the median heuristic is almost
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identical to that of the power-maximization approach with linear-time MMD
statistic. A similar behavior can be observed for the quadratic time statistic, for
relatively small values of the variance.

5. Conclusion and future directions

In this article, we partly explained the behavior of the median heuristic for large
sample size, providing a convergence analysis in the setting of kernel two-sample
test. We believe that our work serves as a step towards a deeper understanding
of the median heuristic. In particular, it should open the door to more rigorous
statements regarding the optimality of bandwidth choice in kernel two-sample
test.

As future work, we first aim to explain the interesting behaviors observed
in Figures 2 and 3. Another direction for research is the case where α depends
on n. For instance, one could be interested in a situation where we observe
asymptotically much less samples of X than samples of Y . Finally, it would be
extremely interesting to perform a similar analysis in machine learning settings
other than kernel two-sample test. In particular, we suspect that for many tasks
where the distributions at hand are not “well-separated,” the median heuristic
leads to higher bandwidth than needed and is therefore a poor choice.
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Appendix
In this Appendix we collect the proofs of all the results stated in the main

paper and some further explanations regarding the computation of the band-
widths used in Section 4. It is organized as follows: Section A contains the proof
of Lemma 3.1, whereas the proofs of all the other main results can be found in
Section B, and the technical lemmas are collected in Section C. The derivation
of the cumulative distribution of T in closed form in exposed in Section D. Sec-
tion E contains further explanation about and computation of the power criteria
introduced in Section 4. Finally, Section F is dedicated to the proof of Prop. 4.1.

A. Proof of Lemma 3.1

Set r := ‖µX − µY ‖ /5. According to Chebyshev’s inequality,{
P (‖X − µX‖ > r) ≤ 25 tr(ΣX)

‖µX−µY ‖2

P (‖Y − µY ‖ > r) ≤ 25 tr(ΣY )

‖µX−µY ‖2
,

and this is also true for any independent copy of X and Y . By the union bound,
there exists an event ΩXX with probability greater than 1−50 tr (ΣX) / ‖µX − µY ‖2
such that ‖X − µX‖ ≤ r and ‖X ′ − µX‖ ≤ r. On this event,

T
1
2

XX = ‖X −X ′‖
(definition of TXX)

≤ ‖X − µX‖+ ‖µX −X ′‖
(triangle inequality)

T
1
2

XX < 2r .

The same reasoning shows that there exists an event ΩY Y with probability at
least 1−50 tr (ΣY ) / ‖µX − µY ‖2 such that T

1
2

Y Y < 2r. There also exists an event
ΩXY with probability greater than 1 − 25(tr (ΣX) + tr (ΣY ))/ ‖µX − µY ‖2 on
which ‖X − µX‖ ≤ r and ‖Y − µY ‖ ≤ r. On this event,

T
1
2

XY = ‖X − Y ‖
(definition of TXY )

≥ ‖µX − µY ‖ − ‖X − µX‖ − ‖µY − Y ‖
(triangle inequality)

≥ ‖µX − µY ‖ − 2r

(definition of ΩXY )

T
1
2

XY ≥ 3r .

(definition of r)
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Define Ω := ΩXX ∩ ΩY Y ∩ ΩXY . By the union bound, Ω has probability
greater than 1 − 75 (tr (ΣX) + tr (ΣY )) / ‖µX − µY ‖2. Moreover, on this event,
max

(
T

1
2

XX , T
1
2

Y Y

)
+ r < T

1
2

XY , from which we deduce the result.

B. Proofs of the main results

B.1. Proof of Prop. 3.1

The proof consists of three steps.

Step 1: Decomposition of Un. We begin by decomposing Un. To this extent,
define

An =

(
αn

2

)−1 ∑
1≤i<j≤αn

h(Xn,i, Xn,j) , Bn =

(
(1− α)n

2

)−1 ∑
αn<i<j≤n

h(Xn,i, Xn,j) ,

and
Cn =

1

αn(1− α)n

∑
1≤i≤αn
αn<j≤n

h(Xn,i, Xn,j) .

Note that in Cn there is no term such that h(Xn,i, Xn,j) with 1 ≤ j ≤ αn and
αn < i ≤ n, since the sum in Un is prescribed to i < j. Simple algebra shows
that

Un = α2An + (1− α)2Bn + 2α(1− α)Cn + sn. (10)

where sn = α(1−α)
n−1 An − α(1−α)

n−1 Bn − 2α(1−α)
n−1 Cn. According to Lemma C.1 (see

Appendix C), the variance of each of An, Bn and Cn is O (1/n), and hence sn
converges to 0 in probability at speed n−2. Therefore we will focus on the terms
of Eq. (10) other than sn.

Step 2: Decompositions of An, Bn and Cn. The next step is to obtain
the H-decomposition (Lee, 1990, Section 1.6) of An and Bn. Let us detail this
process for An. We set

θA = E [h(X,X ′)] ,

hA(x) = E [h(x,X ′)]− θA,
gA(x, y) = h(x, y)− hA(x)− hA(y)− θA

LA =
2

αn

∑
1≤i≤αn

hA(Xn,i),

RA =

(
αn

2

)−1 ∑
1≤i<j≤αn

gA(Xn,i, Xn,j).
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Then it is possible to write An as (Lee, 1990, Th. 1)

An = θA + LA +RA .

A totally analogous statement holds for Bn: Define

θB = E [h(Y, Y ′)] ,

hB(y) = E [h(y, Y ′)]− θB ,
gB(x, y) = h(x, y)− hB(x)− hB(y)− θB ,

LB =
2

(1− α)n

∑
αn<i≤n

hB(Xn,i),

RB =

(
(1− α)n

2

)−1 ∑
αn<i<j≤n

gB(Xn,i, Xn,j).

Then Bn can be written as

Bn = θB + LB +RB .

We decompose Cn in the same fashion, the only difference being the appear-
ance of a second term in the linear part. Namely, set

θC = E [h(X,Y )] ,

hC,1(x) = E [h(x, Y )] ,

hC,2(y) = E [h(X, y)] ,

gC(x, y) = h(x, y)− hC,1(x)− hC,2(y)− θC ,

LC =
1

αn

αn∑
i=1

hC,1(Xn,i) +
1

(1− α)n

n∑
i=αn+1

hC,2(Xn,i),

RC =
1

αn(1− α)n

∑
1≤i≤αn
αn<j≤n

gC(Xn,i, Xn,j) .

Then we have
Cn = θC + LC +RC .

Since θ defined in Eq. (6) can be written as

θ = α2θA + (1− α)2θB + 2α(1− α)θC ,

we have by Eq. (10) and the above expressions for An, Bn and Cn
√
n(Un − θ)

=
√
n
[
α2(LA +RA) + (1− α)2(LB +RB) + 2α(1− α)(LC +RC) + sn

]
=
√
n
[
α2LA + (1− α)2LB + 2α(1− α)LC

]
+
√
n(rn + sn) , (11)

where rn = α2RA + (1 − α)2RB + 2α(1 − α)RC . According to Lemma C.2
in Appendix C, the variance of each of RA, RB and RC is of order n−2. As
mentioned earlier sn is also of order n−2. Therefore we have

√
n(rn + sn)

P−→ 0
as n→∞. This shows that we only need to focus on the first term of Eq. (11).
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Step 3: Regrouping of the terms in Eq. (11). We now regroup the first
term in Eq. (11) that belong to the same segment (i.e., 1 ≤ i ≤ αn or αn < i ≤
n). That is, a simple calculation yields that

√
n
[
α2LA + (1− α)2LB + 2α(1− α)LC

]
(12)

=
√
n

 2

n

∑
1≤i≤αn

(αhA(Xn,i) + (1− α)hC,1(Xn,i))

+
2

n

∑
αn<i≤n

(αhC,2(Xn,i)(1− α)hB(Xn,i))

 .
For any 1 ≤ i ≤ αn, define

Z
(1)
n,i = αhA(Xn,i) + (1− α)hC,1(Xn,i) .

Since h ∈ L2(P ) ∩ L2(Q)× L2(P ) ∩ L2(Q) and Xn,i ∼ X,

σ2
1 := Var

(
Z

(1)
n,i

)
= Var (αhA(X) + (1− α)hC,1(X))

is finite and does not depend on i. Note also the (Z
(1)
n,i )

αn
i=1 are independent.

Therefore the Lindeberg’s condition is satisfied, and hence we can apply the cen-
tral limit theorem for triangular arrays of independent random variables Billings-
ley (2012, Th. 27.2) to obtain

1√
αn

αn∑
i=1

Z
(1)
n,i

L−→ N
(
0, σ2

1

)
(n→∞).

In a similar fashion, for any αn < i ≤ n, let

Z
(2)
n,i := αhC,2(Xn,i) + (1− α)hB(Xn,i) ,

and
σ2

2 := Var
(
Z

(2)
n,i

)
= Var (αhC,2(Y ) + (1− α)hB(Y )) .

Then we have

1√
(1− α)n

n∑
i=αn+1

Z
(2)
n,i

L−→ N
(
0, σ2

2

)
(n→∞) .

The two previous sums are independent, and thus by Lévy’s theorem and
Eq. (12) we have

√
n
[
α2LA + (1− α)2LB + 2α(1− α)LC

]
=
√
n

 2

n

∑
1≤i≤αn

Z
(1)
n,i +

2

n

∑
αn<i≤n

Z
(2)
n,i


=

2
√
α√
αn

∑
1≤i≤αn

Z
(1)
n,i +

2
√

1− α√
(1− α)n

∑
αn<i≤n

Z
(2)
n,i

L−→ N
(
0, σ2

)
(n→∞),
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where σ2 = σ2
1 +σ2

2 , which can be shown to be equal to Eq. (8) by a straightfor-
ward computation. Since the remainder term in Eq. (11) converges in probability
to 0, we can conclude via Slutsky’s Lemma (van der Vaart, 1998, Th. 2.7).

B.2. Proof of Prop. 3.2

Set t ∈ R. The general idea of the proof is to rewrite statements about the
event

{√
n (Hn −m) ≤ t

}
as statements about a sum of U -statistics. We will

then control these U -statistics with Prop. 3.1 for conveniently chosen h, and
conclude with Slutsky’s Lemma. Throughout this proof, we only suppose that
p ∈ (0, 1) to emphasize that Prop. 3.2 can be extended to any quantile, not only
the median. Therefore in this proof we define m by

m := F̂ (p) .

Note that the median case corresponds to p = 1/2.
We use the property of the generalized inverse to obtain

{√
n (Hn −m) ≤ t

}
=

{
p ≤ F̂n

(
m+

t√
n

)}
,

and rewrite this event as{√
n

(
F̂n

(
m+

t√
n

)
− F

(
m+

t√
n

))
≥
√
n

(
p− F

(
m+

t√
n

))}
. (13)

Since F is differentiable in m, the right-hand side of Eq. (13) converges towards
−tF ′(m) by Taylor expansion. From Prop. 3.1, it is also true that

√
n
(
F̂n(m)− F (m)

)
L−→ N

(
0, σ2

)
.

Therefore, if we manage to prove that

√
n

[(
F̂n

(
m+

t√
n

)
− F̂n(m)

)
−
(
F

(
m+

t√
n

)
− F (m)

)]
P−→ 0 , (14)

Then Eq. (9) will follow by Slutsky’s Lemma.
Define h(x, y) = 1m<‖x−y‖2≤m+ t√

n
. Then, with the notations used in the

proof of Prop. 3.1, Eq. (14) reads

√
n(Un − θ)

P−→ 0 .

We dispose of the remainder terms as in the proof of Prop. 3.1, thus we are left
to show that
√
n
[
α2(An − θA) + (1− α)2(Bn − θB) + 2α(1− α)(Cn − θC)

] P−→ 0 . (15)
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Let us focus on the first term of the previous display, which can be written

α2
√
n (An − θA) = α2

√
n (LA +RA) .

Once again, we use Lemma C.2 to get rid of RA. The linear term is slightly more
tedious to analyze. Recall that E [hA(X)] = 0. Thanks to Jensen’s inequality,

Var (hA(X)) = EX
[(

EX′
[
1m<‖X−X′‖2≤m+ t√

n

]2)]
≤ P

(
m < ‖X −X ′‖2 ≤ m+

t√
n

)
.

We recognize

F

(
m+

t√
n

)
− F (m) ,

which goes to 0 when n → ∞, since we assumed F to have a derivative in m.
Furthermore, by independence of the Xn,i,

Var
(√
nLA

)
= 4 Var (hA(X)) −→

n→∞
0 .

A similar reasoning applies to the other terms in Eq. (15), and the proof is
concluded.

C. Technical lemmas

In this section, we state and prove the technical results that are needed in the
proofs of the main results. Recall that we denote by |A| the cardinality of any
finite set A.

Lemma C.1 (Controlling the variance of An, Bn, and Cn). Let An, Bn,
and Cn be defined as in the proof of Prop. 3.1. Then Var (An), Var (Bn), and
Var (Cn) are O

(
n−1

)
.

The proof is standard in U -statistics (Lee, 1990), we provide a version thereof
for completeness’ sake.

Proof. We set m := αn in this proof. Recall that

An =

(
m

2

)−1 ∑
1≤i<j≤m

h(Xn,i, Xn,j) ,

Define hi,j = h(Xn,i, Xn,j), thus Ehi,j = θA and EAn = θA. Let us turn to the
computation of E

[
A2
n

]
, that is,

E
[
A2
n

]
=

(
m

2

)−2∑
a<b

∑
c<d

E [ha,bhc,d] ,

where a, b, c and d range from 1 to m. In this last display, there are three
possibilities for the indices in the summation that we detail below.
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— The indices a, b, c and d are all distinct. There are
(
m
4

)(
4
2

)
= m4

4 + O
(
m3
)

ways to choose such indices, that is,
(
m
4

)
ways to choose the location of the 4

indices among the m possible locations, then
(

4
2

)
choices for, say, a < b, and

only one possibility left for c < d.
— One of the indices is common, that is, |{a, b} ∩ {c, d}| = 1. There are 6

(
m
3

)
=

O
(
m3
)
ways to do so.

— Both indices are equal, that is, a = c and b = d. There are
(
m
2

)
= O

(
m2
)

ways to do so.

Note that when a, b, c and d are all distinct, E [ha,bhc,d] = E [ha,b]E [hc,d] by
independence of the Xn,is. Thus

E
[
A2
n

]
=

(
m

2

)−2∑
a<b
c<d
6=

E [ha,b]E [hc,d] +O
(
m−1

)
,

where we sum on distinct indices. On the other hand,

E [An]
2

=

(
m

2

)−2∑
a<b
c<d

Eha,bEhc,d .

By the same combinatorial argument, the terms corresponding to intersecting
sets of indices are at most O

(
n3
)
and we have

E [An]
2

=

(
m

2

)−2∑
a<b
c<d
6=

Eha,bEhc,d +O
(
m−1

)
.

Since m = αn, O
(
m−1

)
= O

(
n−1

)
and we can conclude for An:

Var (An) = E
[
A2
n

]
− E [An]

2
= O

(
n−1

)
.

The same proof transfers readily for Bn and Cn.

Lemma C.2 (Controlling the variance of RA, RB, and RC). Let RA, RB,
and RC be as in the proof of Prop. 3.2. Then Var (RA), Var (RB), and Var (RC)
are of order O

(
n−2

)
.

Proof. Recall that

RA =

(
m

2

)−1 ∑
1≤i<j≤m

gi,j ,

with gi,j = gA(Xn,i, Xn,j). By definition of gA, it holds that Egi,j = 0 for any
i 6= j, thus ERA = 0. Hence to control the variance of RA, we just need to
compute E

[
R2
A

]
. As in the proof of Lemma C.1, we have

E
[
R2
A

]
=

(
m

2

)−2∑
a<b

∑
c<d

E [ga,bgc,d] .
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Note that E [ga,bgc,d] = 0 whenever a, b, c and d are all distinct. But a straight-
forward computation also shows that E [ga,bga,c] = 0 for any distinct a, b, c. Thus
the previous display reduces to

E
[
R2
A

]
=

(
m

2

)−2∑
a<b
c<d
?

E [ga,bgc,d] ,

where ? denotes that we sum on indices such that |{a, b} ∩ {c, d}| ≥ 2. As we
have seen in the proof of Lemma C.1, there are only O

(
m2
)
such possibilities,

and we can conclude.

D. Derivation of the cumulative distribution function of T

In this section, we derive the population cumulative distribution of the pairwise
distances in closed-form in both scenarios considered in Section 4. We first in-
troduce some additional notations. We let γ be the lower incomplete gamma
function:

γ(a, x) =

∫ x

0

ta−1 e−t dt ,

and QM the Marcum Q-function (Marcum, 1950), defined by

QM (a, b) =

∫ +∞

b

x
(x
a

)M−1

exp

(
−x

2 + a2

2

)
IM−1(ax) dx ,

where IM−1 is the modified Bessel function of order M − 1 (Abramowitz and
Stegun, 1964).

Change in the mean. In the Mean scenario, TXX and TY Y have the law
of 2χ2

1, whereas TXY has the distribution of a non-central chi-squared random
variable χ2

1(µ/2). It is well-known that the cumulative distribution function of

a chi-squared random variable with one degree of freedom is given by
γ( 1

2 ,
·
2 )

Γ( 1
2 )

,

whereas that of a non-central chi-squared with non-centrality parameter λ is
given by 1−Q1/2

(√
λ,
√
·
)
. Thus, according to the definition of T as a mixture,

we have

FT (t) =
[
α2 + (1− α)2

] γ ( 1
2 ,

t
4

)
Γ
(

1
2

) + 2α(1− α)

(
1−Q 1

2

(
µ√
2
,

√
t

2

))
.

We plot FT for a few values of µ in Figure 4. Finding the value of the population
median of T is equivalent to solving FT (t) = 1/2 for t. Since FT is an increasing
function, this can be achieved by dichotomy, or, even faster, via Newton method.
A straightforward computation yields the derivative of FT ,

fT (t) =

[
α2 + (1− α)2

]
e−t/4 +2α(1− α) e−(µ2+t)/4 cosh

(
µ
√
t

2

)
2
√
πt

.
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Fig 4. In this figure, we plot the cumulative distribution function of T . Left panel: change in
the mean scenario. Right panel: change in the variance. Note that FT is becoming very “flat”
when µ increases in the left panel, leading to numerical problems when solving FT (t) = 1/2.

Change in the variance. In the Var scenario, TXX has the law of 2χ2
1, TY Y

has the law of 2σ2χ2
1, and TXY has the law of (1+σ2)χ2

1. By the same reasoning,
we obtain the cumulative distribution function of T ,

FT (t) =
α2γ

(
1
2 ,

t
4

)
+ (1− α)2γ

(
1
2 ,

t
4σ2

)
+ 2α(1− α)γ

(
1
2 ,

t
2(σ2+1)

)
Γ
(

1
2

) .

We plot FT for a few values of σ in Figure 4. A straightforward computation
yields

fT (t) =
α2 exp

(−t
4

)
2
√
πt

+
(1− α)2 exp

( −t
4σ2

)
2σ
√
πt

+
2α(1− α) exp

(
−t

2(σ2+1)

)
√

2(σ2 + 1)πt
.

E. Power criterion for kernel two-sample test

In this section, we set z = (x, y) with x ∼ X and y ∼ Y , where it should be clear
that X and Y depend on the scenario that we are investigating. As before, x′
and y′ denote independent copies of x and y, thus z′ is an independent copy
of z. Note that the proportion of X and Y is fixed to α = 1/2. Recall that we
focus on kν(x, y) = exp

(
−(x− y)2/(2ν2)

)
, the Gaussian kernel with bandwidth

ν, that we denote by k for concision. We also set

h(z, z′) := k (x, x′) + k (y, y′)− k (x, y′)− k (x′, y) .

According to Gretton et al. (2012b), the asymptotic probability of a type II
error for the linear-time test statistic MMD` at level a is given by

Φ

(
Φ−1 (1− a)− MMD2√n

σ`
√

2

)
,
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where MMD2 is the maximum mean discrepancy between P and Q and σ2
` is

an asymptotic variance term given by (Gretton et al., 2012a, Section 6)

σ2
` := 2

(
Ez,z′

[
h(z, z′)2

]
− (Ez,z′ [h(z, z′)])

2
)
. (16)

Thus a natural way to select the kernel—in our case the bandwidth—is to
maximize the power ratio criterion

R` = R`(P,Q, k) :=
MMD2

σ`
,

keeping in mind that both the maximum mean discrepancy and σ` are depending
on P , Q, and k.

For the quadratic-time test statistic MMDu, the picture is not so clear since
the null distribution is more complicated and the type II error depends on a
quantile of this distribution, namely

ca√
n
− MMD2√n

σu
√

2
,

where σ2
u is an asymptotic variance term given by (Gretton et al., 2012a, Sec-

tion 6)
σ2
u := 4

(
Ez
[
(Ez′ [h(z, z′)])

2
]
− (Ez,z′ [h(z, z′)])

2
)
. (17)

Nevertheless, we choose the bandwidth that maximizes the following power ratio
criterion

Ru = Ru(P,Q, k) :=
MMD2

σu
.

We now proceed to compute the ratio R` and Ru in both the change of mean
and the change of variance scenarios. Note that, though the MMD expressions
are well-known, the closed-form expressions we obtain for the variance terms
are new up to the best of our knowledge.

Change in the mean. In this case, the MMD is given by

Ez,z′ [h(z, z′)] =
2ν√
ν2 + 2

(
1− exp

(
−µ2

2(ν2 + 2)

))
.

See, for instance, Reddi et al. (2015). We now turn to the variance terms. The
second term in Eq. (16) and Eq. (17) is the MMD, given by the previous display.
The remaining computation is, in both the linear-time and the quadratic-time
case, a lengthy derivation that uses intensively the following lemma:

Lemma E.1 (Gaussian integral computation). Let a, b, c, d ∈ R with b, d >
0. Then

1√
2π

∫
exp

(
−(x− a)2

b
+
−(x− c)2

d

)
dx =

√
bd

2(b+ d)
exp

(
−(a− c)2

b+ d

)
.
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Proof. We write

−(x− a)2

b
+
−(x− c)2

d
=

1

bd

{
(b+ d)x2 + (2ad+ 2bc)x− (a2d+ bc2)

}
,

and then use the well-known identity∫ +∞

−∞
e−αx

2+βx+γ dx =

√
π

α
e
β2

4α+γ .

For the linear-time statistic, we obtain

Ez,z′
[
h(z, z′)2

]
=

2ν√
ν2 + 4

(
1 + exp

(
−µ2

ν2 + 4

))
+

2ν2

ν2 + 2

(
1 + exp

(
−µ2

ν2 + 2

))
− 8ν2√

(ν2 + 1)(ν2 + 3)
exp

(
−(ν2 + 2)µ2

2(ν2 + 1)(ν2 + 3)

)
.

For the quadratic-time statistic, we obtain

Ez
[
(Ez′ [h(z, z′)])

2
]

=
2ν2√

(ν2 + 1)(ν2 + 3)

(
1 + exp

(
−µ2

ν2 + 3

))
+

2ν2

ν2 + 2

(
1 + exp

(
−µ2

ν2 + 2

))
− 4ν2√

(ν2 + 1)(ν2 + 3)
exp

(
−(ν2 + 2)µ2

2(ν2 + 1)(ν2 + 3)

)
− 4ν2

ν2 + 2
exp

(
−µ2

2(ν2 + 2)

)
.

In Figure 5, we plot bothR` andRu for various values of the change parameter µ.

Change in the variance. In this case, the MMD is given by

Ez,z′ [h(z, z′)] = ν

(
1√

ν2 + 2
+

1√
ν2 + 2σ2

− 2√
ν2 + σ2 + 1

)
.

As in the previous paragraph, the second term in Eq. (16) and Eq. (17) is the
MMD, which is given by the previous display. As for the first term, we obtain
for the linear-time statistic:

Ez,z′
[
h(z, z′)2

]
=

ν√
ν2 + 4

+
ν√

ν2 + 4σ2
+

2ν√
ν2 + 2σ2 + 2

+
2ν2√

(ν2 + 2)(ν2 + 2σ2)
− 4ν2√

(ν2 + 1)(ν2 + σ2) + 2ν2 + σ2 + 1

− 4ν2√
(ν2 + 1)(ν2 + σ2) + σ2(2ν2 + σ2 + 1)

+
2ν2

ν2 + σ2 + 1
.
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Fig 5. In this figure, we plot R` ( left panel) and Ru ( right panel) as a function of the
bandwidth in the change of mean scenario. Note that both R` and Ru are becoming very
“flat” when µ goes to 0, leading to numerical problems when maximizing with respect to ν.
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Fig 6. In this figure, we plot R` ( left panel) and Ru ( right panel) as a function of the
bandwidth in the change of variance scenario. Note that both R` and Ru are becoming very
“flat” when σ goes to 1, leading to numerical problems when maximizing with respect to ν.
This is similar to the phenomenon observed in the change in the mean scenario when µ→ 0.

And for the the quadratic-time statistic:

Ez
[
(Ez′ [h(z, z′)])

2
]

= ν2 ×
{

1√
(ν2 + 1)(ν2 + 3)

+
1√

(ν2 + σ2)(ν2 + 3σ2)

+
1√

(ν2 + σ2)(ν2 + σ2 + 2)
+

1√
(ν2 + 1)(ν2 + 2σ2 + 1)

+
2√

(ν2 + 2σ2)(ν2 + 2)
− 2√

(ν2 + 1)(ν2 + σ2) + 2ν2 + σ2 + 1

− 2√
(ν2 + 2)(ν2 + σ2 + 1)

− 2√
(ν2 + σ2 + 1)(ν2 + 2σ2)

− 2√
(ν2 + 1)(ν2 + σ2) + σ2(2ν2 + σ2 + 1)

+
2

ν2 + σ2 + 1

}
.
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F. Proof of Prop. 4.1

Set Tun := nMMD2
u. According to Th. 12 in Gretton et al. (2012a), with our

notations,

nMMD2
u
L−→

+∞∑
`=1

λ`

[(√
2a` −

√
2b`

)2

− 4

]
,

where a`, b` are i.i.d. standard Gaussian random variables and the λ` are the
eigenvalues of the centered Gaussian kernel operator. We deduce that nMMD2

u
L−→

4
∑+∞
`=1 λ`(c

2
` − 1), where the c` are i.i.d. standard Gaussian random variables.

Denote by F the cumulative distribution function of this random variables. Ac-
cording to Bahadur (1960), the cumulative distribution function of c2` belongs
to D (1, 1). It follows from Th. 11 in Jitkrittum et al. (2017b) that F belongs
to D

(
1

4λ1
, 1
)
. We now take R(n) = n. According to Th. 10 in Gretton et al.

(2012a), Tn/R(n) = MMD2
u

P−→ MMD2. We conclude via Th. 9 in Jitkrittum
et al. (2017b).

Set T `n :=
√
nMMD2

` . According to Gretton et al. (2012b, Eq. 5) the limiting
distribution of

√
nMMD` under the null is N

(
0, 8σ2

`

)
. The cumulative distri-

bution function of a standard Gaussian random variable belongs to D (1, 2) ac-
cording to Bahadur (1960) and we deduce that the cumulative distribution func-
tion of N

(
0, 8σ2

`

)
belongs to D

(
1/(8σ2

` , 2
)
. Set R(n) :=

√
n. Since T `n/R(n) =

MMD2
` converges in probability towards the squared MMD, we conclude again

with Th. 9 in Jitkrittum et al. (2017b).
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