
Efficient Bayesian Local Model Learning for Control

Franziska Meier1, Philipp Hennig2 and Stefan Schaal1,2

Abstract— Model-based control is essential for compliant con-
trol and force control in many modern complex robots, like hu-
manoid or disaster robots. Due to many unknown and hard to
model nonlinearities, analytical models of such robots are often
only very rough approximations. However, modern optimization
controllers frequently depend on reasonably accurate models,
and degrade greatly in robustness and performance if model
errors are too large. For a long time, machine learning has
been expected to provide automatic empirical model synthesis,
yet so far, research has only generated feasibility studies but
no learning algorithms that run reliably on complex robots.
In this paper, we combine two promising worlds of regression
techniques to generate a more powerful regression learning
system. On the one hand, locally weighted regression techniques
are computationally efficient, but hard to tune due to a
variety of data dependent meta-parameters. On the other hand,
Bayesian regression has rather automatic and robust methods to
set learning parameters, but becomes quickly computationally
infeasible for big and high-dimensional data sets. By reducing
the complexity of Bayesian regression in the spirit of local model
learning through variational approximations, we arrive at a
novel algorithm that is computationally efficient and easy to
initialize for robust learning. Evaluations on several datasets
demonstrate very good learning performance and the potential
for a general regression learning tool for robotics.

I. INTRODUCTION

Besides functionality and precision, computational cost is
a crucial design criterion for machine learning algorithms
in real-time settings, such as control problems. An example
is the problem of building a model for robot kinematics or
dynamics: The sensors in a robot can produce thousands of
data points per second, quickly amassing a locally dense
covering of the input domain of a particular task. In such
situations, robust and fast exploitation of this local knowledge
and compression for fast lookup is more important than
long-range generalization – when entering a new part of the
workspace, the robot will quickly create enough new data to
learn about this new part. A learning method should produce
a good model from the large number N of data points, using
a comparably small number M of model parameters. Since
this has to happen in real time, complexity must be low not
just in N , but also in M .
From this viewpoint, learning with local models fulfills
these requirements. For instance, locally weighted regression

1Computational Learning and Motor Control Lab, University of Southern
California, Los Angeles, CA 90089, USA. 2Max-Planck-Institute for Intelli-
gent Systems, 72076 Tübingen, Germany. Email:fmeier@usc.edu

This research was supported in part by National Science Foundation grants
ECS-0326095, IIS-0535282, IIS-1017134, CNS-0619937, IIS-0917318,
CBET-0922784, EECS-0926052, CNS-0960061, the DARPA program on
Autonomous Robotic Manipulation, the Army Research Office, the Okawa
Foundation, the ATR Computational Neuroscience Laboratories, and the
Max-Planck-Society.

Fig. 1. One of our experimental platforms: The robot Apollo is a dual arm
manipulation platform consisting of two 7 DoF KUKA light weight arms,
two Barrett hands and a SARCOS humanoid head.

(LWR) [1] decomposes the learning problem by training
M independent, local regression models. The number M
is not fixed and can grow with the amount of data; the
local regression models are usually simple, e.g. low order
polynomials [2]. In the spirit of a Taylor series expansion,
the idea of LWR is that simple models with few parameters
may give a good local description, while it may be difficult to
find sufficiently expressive nonlinear features to capture the
entire function. A lot of good local models can be combined
to form a good global one.
The key to LWRs computational efficiency is that each local
model is trained independently. The resulting low cost profile
has made LWR popular in robot learning. But, while advanced
versions of LWR [3] have only linear cost O(NM), they
require several tuning parameters, whose optimal values can
be highly data dependent, such that robustness and learning
accuracy are not always easily obtained. This is at least partly
a result of the strongly localized training strategy, which does
not allow models to “coordinate”, or to benefit from other
local models in their vicinity.
In contrast, Gaussian Process regression (GPR) [4] is a
popular global regression method because it offers principled
inference for hyperparameters. However, due to high compu-
tational cost applying GPR to problems within the domain
of learning control has been difficult in the past. Recently,
the sparsification of Gaussian processes [5], [6], [7] and
online versions of such sparse GPs [8], [9] produced variants
of GPR suitable for real-time model learning problems
[10]. Nevertheless, it has not been demonstrated yet, that
these variants are efficient enough for online learning of
hyperparameters, as well. Instead, in [10] the distance metric
is learned offline. Online performance then depends on how
well the offline training data represents the full state-space of
the robot. Furthermore, typically one global distance metric
is learned, making it difficult to fit the non-stationary data



encountered in robotics. Alternatively, previous work has
addressed these issues with local probabilistic regression
approaches [11], [12], [13]. However, they did so from bottom
up – constructing locally valid models independently of each
other, which are then combined at prediction time.
Here, we propose a probabilistically motivated alternative to
LWR – local Gaussian regression (LGR), a linear regression
model that explicitly encodes localization. The well-known
probabilistic Gaussian regression framework with radial basis
function (RBF) features for nonlinear function approximation
forms the basis and starting point of this work. A key insight
of our work is that RBF feature functions can be reinterpreted
as localizers of constant feature functions. This allows us
to capture the notion of local models within the Gaussian
regression framework. In its exact form, this model has
the cubic cost in M typical of Gaussian models, arising
because observations induce correlation between all local
models in the posterior. From the top down, we start with
the globally optimal Bayesian linear regression framework
and show step by step how to transform it into a localized
inference procedure employing variational approximations to
reduce computational complexity. This procedure leads to a
local learning algorithm that combines the best of two worlds,
i.e., the efficiency of LWR and the accuracy and cleanliness of
Bayesian regression with local model coupling in the posterior.
To our knowledge, this is the first top-down construction,
starting from a globally optimal training procedure, to find
approximations giving a localized regression algorithm similar
in spirit to LWR.

II. BAYESIAN LOCAL GAUSSIAN REGRESSION

We start out with the classic Bayesian linear regression model
with a Gaussian likelihood for regression parameters w

p(y ∣w) =

N

∏

n=1
N (yn ∣wTφn, β−1y ) (1)

and adopt the idea of automatic relevance determination [14],
[15] using a factorizing prior

p(w ∣α) =

M

∏

m=1
N (wm ∣α−1m ) (2)

where M is the dimensionality of feature vector φn = φ(xn).
Here we assume that our features are formed by M spatially
localized basis functions like the Radial basis function (RBF)
kernel. The mth RBF feature

ηm(x) = exp [−

1

2
(x − cm)Λ−1

m (x − cm)
⊺
] . (3)

is parametrized by its center cm ∈ RD and the positive definite
metric Λm ∈ RD,D, both of which need to be estimated
from observed data D = {xn, yn}

N
n=1. Here we assume

a diagonal distance metric Λm = diag (λ−2m1, . . . , λ
−2
mD).

Learning within this framework can be done by Expectation-
Maximization with hidden variables w and parameters θ =
{β−1y ,{αm,λm}

M
m=1}, assuming that the number of basis

functions M and the centers cm are known. Here, we depart
from the classic Bayesian inference framework to move

towards a computationally efficient, local inference procedure.
To arrive at a localized learning algorithm it is helpful to
reinterpret the RBF features as localizing functions applied
to a constant function ξm. Thus, the mth feature φnm = ξmη

n
m

can be thought of as a local constant model, such that
each local model consists of its own set of parameters
{wm, αm, λm, cm}. Using this interpretation, we see that in
the standard EM learning framework inference over regression
parameters wm of all M local models is coupled resulting in a
E-Step which has cubic cost in M . Furthermore, optimization
of the hyperparameters is coupled over all local models,
resulting in an expensive maximization step. In the following,
we show how to modify the above regression model, such that
the learning of each local model’s parameters is decoupled
from the rest and thus results in local computations. Next we
explore the re-interpretation of the RBF kernel as a localizer
of general functions ξm, to arrive at more expressive local
models. Finally, we will show how to incrementally place
the locals models.

A. From Global to Local Computations

N

M

tra
in

in
g

se
t

lo
ca

lm
od

el
s

yn

fnm

φnm

βfm aβ0 , b
β
0

βy

wm

αm aα0 , b
α
0

λm

Fig. 2. Graphical model for Local Gaussian Regression (LGR)

Intuitively, using localizing feature functions renders local
models almost independent because correlation between far
away models is approximately zero. However, traditional
inference schemes treat all local models as one big system,
which is solved for as if all local models are fully correlated
with each other. Here, we want to exploit that intuition of
“almost independence” to arrive at a learning scheme in which
algorithmically local models are actually being treated almost
independently.
In order to do so, we first adopt the idea of Bayesian
backfitting [16], and introduce a hidden variable fnm for each
local model m and data point n. This hidden variable can be
interpreted as a virtual target for each local model, such that
all local models targets fnm sum up to the actual target yn.
The complete data likelihood of the modified model is

p(y,f ∣ θ) (4)

=∏

n

N (yn ∣1⊺fn, β−1y )∏

m

N (fnm ∣wmφ
n
m, β

−1
fm)

and we place Gaussian priors on the regression parameters wm



and gamma priors on the precision parameters {βfm, αm}
M
m=1

p(w,βf ,α) =

M

∏

m=1
p(wm ∣αm)p(βfm)

K

∏

k=1
p(αmk) (5)

=∏

m

N (wm ∣0, α−1m )G(βfm ∣aβ0 , b
β
0 ) (6)

K

∏

k=1
G(αmk ∣a

α
0 , b

α
0 ) (7)

To summarize, our model, visualized in Figure 2, has
hidden variables z = {wm,{f

n
m}

N
n=1}

M
m=1 and parameters

θ = {βy,{βfm}
M
m=1,{αmk}

M
m ,{λm}

M
m=1}.

Performing exact inference in this model is intractable, but
even if it were tractable, we are looking for an approximation
that renders all updates on the local models independent.
Imposing the following factorized approximation on the
posterior q

q(f ,w,βf ,α) = q(f)q(w)q(βf)q(α) (8)

achieves exactly that. Note, that simply assuming the factor-
ization between f and w automatically results in factorized
posterior distributions over all wm. It can be shown [17] that
the approximate posterior distributions are of the form

log q(fn) = Ew,βf [log p(yn ∣fn, βy) (9)

+ log p(fn ∣wTφn,βf)]

= logN (fn ∣µfn ,Σf)

log q(wm) = Ef ,βfm,αm[∑

n

logN (fnm ∣wTmφ
n
m, β

−1
fm) (10)

+ logN (wm ∣0,α−1m )]

= logN (wm ∣µwm ,Σwm)

log q(βfm) = Efm,wm[∑

n

logN (fnm ∣wTmφm, β
−1
fm) (11)

+ G(βfm ∣aβn, b
β
N)]

= logG(βfm ∣aβn, b
β
N)

log q(αm) = Ew[logN (wm ∣0,diagαm
−1

) (12)
+ G(αm ∣aα0 , b

α
0 )]

= logG(αm ∣aαN , b
α
Nm)

This results in the following variational Bayes update equa-
tions for the posterior mean and covariance of each local
models target fn = (fn1 , . . . , f

n
M)

Σf = B
−1
−B−11(β−1y + 1TB−11)−11TB−1

= B−1
−

B−111TB−1

β−1y + 1TB−11
(13)

µfnm = Ew[wTm]φm(xn)+ (14)

1

β−1y + 1⊺B−11
B−11(yn −

M

∑

m=1
E[wm]

Tφnm)

where B = Eβf diag (β̂f1, . . . , β̂fM), with β̂fm =
aβ
N

bβ
Nm

.
Notice, how this step combines all local models predictions
for data point xn and then distribute the error to the each
local models fake target. Thus, this is the step where all
local models “communicate” with each other to reduce the

prediction error. Given these fake targets, all local models
updates can be updated independently – in parallel. The
posterior mean and covariance of each models regression
parameters are given by

Σwm = (β̂fm∑
n

φnmφ
n
m
T
+ Âm)

−1 (15)

µwm = β̂fmΣwm∑
n

φnmµfnm (16)

where Âm =
aαN
bα
Nm

. Furthermore, the coefficients of the
posterior gamma distributions are updated as

aαN = aαo + 0.5 (17)

bαNm = bα0 + 0.5(µ2
wm +Σwm) (18)

aβN = aβ0 + 0.5N (19)

bβN,m = bβ0 + 0.5∑
n

(E[wm]
Tφnm −Ef [fnm])

2
) (20)

= bβ0 + 0.5(∑
n

(µTwmφ
n
m − µfnm)

2
+Nσ2

fm

+Tr{φmΣwmφ
T
m})

Finally, to optimize the length scales λm we maximize the
expected complete log likelihood under the variational bound

λopt = arg max
λ

Ef ,w,α,βf [log p(y,f ,w,α,βf ∣Φ,λ)]

which nicely factorizes into independent maximization prob-
lems for each local model

λoptm = arg max
λm

= Ef ,w[

N

∑

n=1
N (fnm ∣wmφ

n
m, β

−1
fm)] (21)

which are optimized via gradient ascent. Note, that while
we can derive update equations for precision variable βy,
we have found that keeping it fixed at a large value, avoids
potential ambiguities between βf and βy .
As a result, all update equation are local, with the exception
of µfn the posterior mean of the hidden variable. Note also,
that all updates have low computational cost including the
updates of the posterior mean and covariance of the fake
targets. Furthermore, prediction at a test point x∗ also has a
low computational complexity of O(MK). To compute the
predictive distribution at test point x∗ we first marginalize
over hidden variable f

∫ N (y∗;1Tf∗, β
−1
y )N (f∗;WTφ(x∗),B−1

)df∗

= N (y∗;∑
m

wmφ
∗
m, β

−1
y + 1TB−11) (22)

and then w

∫ N (y∗;wTφ∗, β−1y + 1TB−11)N (w;µw,Σw)dw

= N (y∗;
M

∑

m

µwmφ
∗
m, σ

2
(x∗)) (23)

resulting in the posterior predictive mean∑Mm=1w
T
mφ

∗
m, which

is the sum of all local models predictions. The predictive
variance x∗ is given by

σ2
(x∗) = β−1y +

M

∑

m=1
β̂−1fm +

M

∑

m=1
φ∗m

T
Σwmφ

∗
m. (24)



Thus far we have considered each local model to be a
constant (one dimensional) localized model, each with its own
precision and length scale parameters. This already mimics
two important advantages of LWR: The possibility to fit
functions with spatially varying noise levels and to locally
adapt to varying output distributions. We now show how to
increase the degrees of freedom per local model.

B. Localized Feature Functions

In LWR, the form of each local model is free to be
chosen as any parametric model. Typically, linear models
are considered to be the best trade-off between variance
and bias of the resulting regression estimates. Thus, we

−2 0 2
−0.5

0

0.5

1

1.5

(a)

−2 0 2
−0.5

0

0.5

1

1.5

(b)

−2 0 2
−0.5

0

0.5

1

1.5

(c)

−2 0 2

−0.4

−0.2

0

0.2

0.4

(d)

Fig. 3. Feature functions. (top) local constant (a) and linear (b) models
together with their respective localizing RBF kernels. (bottom) the resulting
features when both localizer and local constant model in c) and local linear
model in d) are combined.

extend our notion of local constant models to allow for local
parametric models. For this, we go back to the insight that
RBF features can be viewed as a constant function ξ times
the RBF function, φm(x) = ξmηm(x). In this interpretation
the constant functions ξm are weighted by the RBF kernel,
and thus we can view RBF features as locally weighted
constant models. This representation allows us to create
more complicated, localized, models by introducing general
local models ξ(x) and denoting the feature function to be
φm(x) = ξm(x)ηm(x). For instance we can now define the
local linear models ξ(x) = x and arrive at a form of locally
weighted regression with linear local models. See Figure 3,
for a comparison of RBF features with constant functions and
RBF features with linear functions. This representation allows
to create a variety of different local models, however from now
on we will work with local linear functions ξ(x) = x. This
generalization does not alter the form of the update equations
but the dimensionality of the posterior mean and covariance
of wm changes from one dimensional to wm ∈ RK,1 and
Σwm ∈ RK,K respectively, where K is the dimensionality of
the linear function – typically the input dimension plus a bias
term. Furthermore, one can decide to put an independent prior
precision variable αmk on each dimension of wm, enabling

the pruning of dimensions of local models. With this we
have increased the flexibility of each local model. While that
slightly increases the computational update cost per local
model we empirically show that this pays off in terms of
increased predictive performance.

C. LGR vs LWR

So far we have focused on showing similarities between
local Gaussian regression and locally weighted regression,
especially in terms of computational cost. However, it is
instructional to look at the differences between both methods.
The first key difference is the way of how locality is used to
decompose the function approximation problem into a series
of independent and local model updates. In LWR regression
parameters are fit on a data set weighted by the RBF kernel,
essentially creating a different data set for each local model.
In our model, the locality is achieved by weighting each
local function ξ(x) by the RBF kernel to determine the local
models contribution to the target y. Thus, optimization of
the length scales λm results in different behaviors. In LWR,
because both input and output are weighted, reducing the
length scale generally improves the fit. In our model, length
scales are only reduced if it actually improves the overall
fit of the fake targets. However, if it improves the fit length
scales also can grow such that the local models actually cover
larger areas of the input space. On average, we thus produce
larger local models than LWR.
The second key difference is that variations of LWR exist that
work on streaming data and incrementally allocate new local
models when necessary [3]. Incoming data is immediately
processed to update the affected local models, and is then
immediately discarded. Our algorithm as presented here does
not work yet under the assumption of streaming data, but
rather assumes that a batch of data is available. However,
we take a first step into the direction of a fully incremental
model in the next section where we present an algorithm to
incrementally place local models.

III. INCREMENTAL ALLOCATION OF LOCAL MODELS

Thus far, we have assumed that the number M and locations
c of local models were known. To incrementally add local
models at new locations cM+1 we extend LGR analogous
to the incremental learning of the relevance vector machine
[18]. As a result, the incremental algorithm starts with one
local model, and per iteration adds one local model before
the variational E-Step. Conversely, existing local models
for which all components αmk_∞ are pruned out. This
works well in practice, with the caveat that the number local
models M can grow fast initially before the pruning becomes
effective. Thus we check for each selected location cM+1
whether any of the existing local models centered at c1∶M
produces a localizing weight ηm(cM+1) ≥ wgen, where wgen
is a parameter between 0 and 1 and regulates how many
models are added. An overview of the final algorithm is
given in Algorithm 1.



Algorithm 1 LGR with incremental allocation of local models

Require: {xn, yn}
N
n=1, a

α
0 , b

α
0 , a

β
0 , b

β
0 , λ

init,wgen

1: aαN = aα0 + 0.5, aβN = aβ0 + 0.5N

// initialize first local model with center c1 and initial length scale λ1

2: M = 1
3: LM1 = {c1 = x1, λ1 = λ

init, β̂1 = a
β
0/b

β
0 , Â1 =

aα0/bα0 }

// iterate over all data points

4: for n = 2 . . .N do
5: if ηm(xn) < wgen,∀m = 1, . . . ,M then
6: M =M + 1

7: cM = xn, λM = λinit, ˆβfm =
aβ0
bβ0
, ÂM =

aα0
bα0

8: LMM = {cM , λM , β̂M , ÂM}

9: end if
10: B = diag (βf1, . . . , βfM)

11: s = β−1y +∑m βfm
// variational E-Step

12: Σf = B
−1
− B

−111TB−1/s

13: µfnm = µwmφ
n
m + 1/sB−11 (yn −∑

M
m=1 µ

T
wmφ

n
m)

14: for all m do
15: Σwm = (β̂fm∑n φ

n
mφ

n
m
T
+ Âm)

−1

16: µwm = β̂fmΣwm ∑n φ
n
mµfnm

// variational M-Step

17: bαNm = bα0 + 0.5(µ2
wm +Σwm)

18: bβN,m = bβ0 + 0.5(∑n(µ
T
wmφ

n
m − µfnm)

2
+Nσ2

fm

19: +Tr{φmΣwmφ
T
m})

20: Âm = a
α
N/bβ

Nm
, β̂fm = a

β
N/b

β
Nm

// pruning

21: if Am > 1e3 then M =M − 1;LMm = [] end if
22: end for
23: end for

IV. EXPERIMENTS

We evaluate and compare LGR to locally weighted projection
regression (LWPR) – an extension of LWR suitable for
regression in high dimensional space [3] – on three data
sets. For the first set of experiments data is drawn from
the “cross function” in Figure 4, often used to demonstrate
locally weighted learning on a problem with strongly varying
spatial nonlinearities. For the second set of evaluations we
compare both methods on the task of inverse dynamics
learning on data collected from two robotic platforms: The
SARCOS anthropomorphic robot arm with seven degrees
of freedom and the right arm on a dual-arm manipulation
platform with two KUKA lightweight arms, two Barrett hands
and a SARCOS head, as shown in Figure 1.
In both experiments, LWPR performed multiple iterations
through the data sets. The local Gaussian regression imple-
mentation is executed based on Algorithm 1 and are allowed
an additional 1000 iterations to reach convergence.

A. Synthetic Data

We used 2,000 uniformly distributed training inputs, with
zero mean Gaussian noise of variance (0.2)2. The test set

−1
0

1

−1

0
1

0

1

Fig. 4. (a) 2D cross function.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

wgen

M

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

wgen

nM
SE

train LWPR test LWPR train LGR test LGR

Fig. 5. normalized mean squared error (bottom) and # of learned
local models (top) on 2D cross data with length scale learning.

is a regular grid of 1641 edges without noise and is used
to evaluate how well the underlying function is captured.
The initial length scale was set to λm = 0.3,∀m, and
we ran each method with length scale learning (LSL) for
wgen = 0.1,0.2, . . . ,0.9. All results presented here are results
averaged over 5 randomly seeded runs. To understand the
role of parameter wgen better, we summarize the normalized
mean squared error as a function of parameter wgen for both
methods in Figure 5. The key message of this graph is that
the parameter wgen does not affect the performance of LGR or
LWPR greatly. However, a significant difference between the
performances of both algorithms is the amount of local models
allocated as wgen increases. LWPR increasingly allocates more
and more local models with larger values for wgen but we
only see a slight increase in the number of local models
for LGR, indicating that LGRs pruning mechanism works

TABLE I
PREDICTIVE PERFORMANCE ON 2D CROSS DATA

nMSE # LM

LWPR 0.016 60
GPR 0.013 ∞
LGR constant 0.048 14.0
LGR linear 0.014 13.6



TABLE II
PREDICTIVE PERFORMANCE ON SARCOS INVERSE DYNAMICS

LWPR LGR

Joint nMSE (MSE) # LM nMSE (MSE) # LM

1 0.045 (19.16) 419 0.021 (8.76) 467
2 0.039 (8.94) 493 0.021 (4.62) 567
3 0.034 (3.42) 483 0.016 (1.58) 328
4 0.024 (4.55) 384 0.017 (3.29) 378
5 0.064 (0.06) 514 0.02 (0.02) 368
6 0.075 (0.22) 519 0.017 (0.05) 353
7 0.03 (0.20) 405 0.019 (0.13) 344

TABLE III
PREDICTIVE PERFORMANCE ON KUKA INVERSE DYNAMICS

LWPR LGR

Joint nMSE (MSE) # LM nMSE (MSE) # LM

1 0.14 (4.39) 1258 0.071 (2.11) 804
2 0.075 (4.603) 1378 0.049 (2.98) 704
3 0.151 (0.9366) 1257 0.079 (0.49) 761
4 0.076 (0.922) 1324 0.056 (0.67) 769
5 0.071 (0.034) 1331 0.051 (0.0245) 767
6 0.084 (0.086) 1407 0.047 (0.048) 615
7 0.093 (0.068) 1406 0.029 (0.022) 650

very well. This suggests, that LGR uses its local models
more effectively to solve the function approximation task.
Finally, we also evaluate the performance of LGR with local
constant models vs local linear models in Table I. Again,
the results were averaged over 5 randomly seed trials with
parameters wgen = 0.3 and initial length scale of λ = 0.3.
With approximately the same number of local models, the
LGR with linear local models outperforms LGR with constant
models. As a baseline comparison, we provide results obtained
from Gaussian process regression, where we have used the
publicly available GPML toolbox [19].

B. Inverse Dynamics Learning

We use the publicly available SARCOS data [20], which
consists of rhythmic motions and contains 44,484 training
data points and 4,449 test data points. For the inverse
dynamics learning of the KUKA light weight arm we collected
100,000 training data points and 21,000 test data points of
rhythmic motions at various speeds. Both arms have seven
degrees of freedom, thus for both learning tasks we have
21 input variables representing joint positions, velocities and
accelerations for the 7 joints. The task is to predict the 7
joint torques. In Table II we show the predictive performance
of LWPR and LGR on the SARCOS data when trained with
initial length scale λ = 0.3 and with wgen = 0.3. On the KUKA
lightweight arm an initial length scale of 0.3 would generate
thousands of local models, thus we start out with a slightly
larger length scale of 0.4 and wgen = 0.1. Both evaluations
show that on average LGR uses less local models than LWPR
to achieve high accuracy. This supports our findings on the
synthetic data indicating that LGR uses local models more
effectively than LWPR.

V. CONCLUSION

We have taken a top-down approach to developing a
probabilistic localized regression algorithm: We start with
the generative model of Gaussian linear regression, which
amounts to a fully connected graph and thus has cubic
inference cost. To break down the computational cost of
inference, we first reinterpret RBF functions as localized
feature functions – local models – and argue that because
of the localization these local models are approximately
independent. We exploit that fact through a variational
approximation that reduced computational complexity to local
computations. Empirical evaluation suggests that LGR can
achieve on par or better performance than LWPR. More
importantly our results indicate that LGR uses its local models
more effectively than LWPR. A final step left for future work
is to re-formulate our algorithm into an incremental version
that can deal with a continuous stream of incoming data.

REFERENCES

[1] Stefan Schaal and Christopher G Atkeson. Constructive incremental
learning from only local information. Neural Computation, 10(8):2047–
2084, 1998.

[2] T. Hastie and C. Loader. Local regression: Automatic kernel carpentry.
Statistical Science, 8:120–143, 1993.

[3] Sethu Vijayakumar and Stefan Schaal. Locally weighted projection
regression: Incremental real time learning in high dimensional space.
In ICML, pages 1079–1086, 2000.

[4] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine
Learning. MIT Press, 2006.

[5] Michalis K Titsias. Variational learning of inducing variables in
sparse Gaussian processes. In International Conference on Artificial
Intelligence and Statistics, pages 567–574, 2009.

[6] Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes
using pseudo-inputs. Advances in neural information processing
systems, 18:1257, 2006.

[7] Miguel Lázaro-Gredilla, Joaquin Quiñonero-Candela, Carl Edward
Rasmussen, and Anı́bal R Figueiras-Vidal. Sparse spectrum Gaussian
process regression. JMLR, 11:1865–1881, 2010.

[8] Marco F Huber. Recursive Gaussian process: On-line regression and
learning. Pattern Recognition Letters, 45:85–91, 2014.

[9] Lehel Csató and Manfred Opper. Sparse on-line Gaussian processes.
Neural computation, 14(3):641–668, 2002.

[10] Arjan Gijsberts and Giorgio Metta. Real-time model learning using
incremental sparse spectrum Gaussian process regression. Neural
Networks, 41:59–69, 2013.

[11] Jo-Anne Ting, Mrinal Kalakrishnan, Sethu Vijayakumar, and Stefan
Schaal. Bayesian kernel shaping for learning control. Advances in
neural information processing systems, 6:7, 2008.

[12] Duy Nguyen-Tuong, Jan R Peters, and Matthias Seeger. Local Gaussian
process regression for real time online model learning. In Advances in
Neural Information Processing Systems, pages 1193–1200, 2008.

[13] Narayanan U Edakunni, Stefan Schaal, and Sethu Vijayakumar. Kernel
carpentry for online regression using randomly varying coefficient
model. In IJCAI, 2007.

[14] R.M. Neal. Bayesian learning for neural networks. Springer Verlag,
1996.

[15] Michael E Tipping. Sparse Bayesian learning and the relevance vector
machine. The Journal of Machine Learning Research, 1:211–244,
2001.

[16] Aaron D’Souza, Sethu Vijayakumar, and Stefan Schaal. The Bayesian
backfitting relevance vector machine. In ICML, 2004.

[17] Zoubin Ghahramani. Graphical models and variational methods.
Advanced Mean Field Method—Theory and Practice, 2000.

[18] Joaquin Quiñonero-Candela and Ole Winther. Incremental Gaussian
processes. In NIPS, 2002.

[19] Carl Edward Rasmussen and Hannes Nickisch. Gpml Gaussian
Processes for Machine Learning toolbox, 2013.

[20] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine
Learning. MIT Press, 2006.


