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Purpose: We show that it is possible to explicitly incorporate fractionation effects into closed-form
probabilistic treatment plan analysis and optimization for intensity-modulated proton therapy with analyt-
ical probabilistic modeling (APM). We study the impact of different fractionation schemes on the dosi-
metric uncertainty induced by random and systematic sources of range and setup uncertainty for
treatment plans that were optimized with and without consideration of the number of treatment fractions.
Methods: The APM framework is capable of handling arbitrarily correlated uncertainty models
including systematic and random errors in the context of fractionation. On this basis, we construct an
analytical dose variance computation pipeline that explicitly considers the number of treatment frac-
tions for uncertainty quantitation and minimization during treatment planning. We evaluate the vari-
ance computation model in comparison to random sampling of 100 treatments for conventional and
probabilistic treatment plans under different fractionation schemes (1, 5, 30 fractions) for an intracra-
nial, a paraspinal and a prostate case. The impact of neglecting the fractionation scheme during treat-
ment planning is investigated by applying treatment plans that were generated with probabilistic
optimization for 1 fraction in a higher number of fractions and comparing them to the probabilistic
plans optimized under explicit consideration of the number of fractions.
Results: APM enables the construction of an analytical variance computation model for dose uncer-
tainty considering fractionation at negligible computational overhead. It is computationally feasible (a) to
simultaneously perform a robustness analysis for all possible fraction numbers and (b) to perform a prob-
abilistic treatment plan optimization for a specific fraction number. The incorporation of fractionation
assumptions for robustness analysis exposes a dose to uncertainty trade-off, i.e., the dose in the organs at
risk is increased for a reduced fraction number and/or for more robust treatment plans. By explicit con-
sideration of fractionation effects during planning, we demonstrate that it is possible to exploit this trade-
off during optimization. APM optimization considering the fraction number reduced the dose in organs
at risk compared to conventional probabilistic optimization neglecting the fraction number.
Conclusion: APM enables computationally efficient incorporation of fractionation effects in proba-
bilistic uncertainty analysis and probabilistic treatment plan optimization. The consideration of the
fractionation scheme in probabilistic treatment planning reveals the trade-off between number of frac-
tions, nominal dose, and treatment plan robustness. © 2018 American Association of Physicists in

Medicine [https://doi.org/10.1002/mp.12775]
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1. INTRODUCTION

In radiation therapy, the planned dose distributions are usu-
ally delivered through several treatment fractions. The

fractionation scheme is chosen mainly under consideration of
biological aspects of the disease.1 Yet from a physical point
of view, application of the planned dose in multiple fractions
corresponds to a repeated experiment with uncertain outcome
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due to unknowns in the process such as range and setup
uncertainties. The confidence intervals on the delivered dose
distribution depend on the interplay of systematic errors
(which are the same for every fraction) and random errors
(which vary for different fractions). Automatically, this
induces a dependence also on the number of chosen
fractions.2–5

The common approach to compensate for uncertainties in
photon therapy is to define a planning target volume (PTV)
that extends the treatment fields beyond the clinical target
volume. For particle therapy, this approach does not suffice,
as the static dose cloud approximation6 may fail due to the
physical characteristics of particle beams, where variations in
calculations of the water-equivalent path-length (WEPL) as
well as daily patient-setup strongly influence the geometrical
position of the Bragg-Peak inside the patient.5,7,8 As a conse-
quence intrinsically more robust dose delivery schemes, like
single field uniform dose optimization (SFUD), may be
applied.9–11 Recent academic approaches, however, com-
monly employ explicit estimation of dose uncertainty in the
form of worst cases or expectation value and standard
deviation of dose. They are mostly based on dose scenario
sampling,12 followed by either margin adaptation13 or appli-
cation of robust or probabilistic treatment plan optimization
methods.14–17

Computing a dose uncertainty metric for a treatment in F

fractions, however, imposes additional complexity on the
sampling methods. A single treatment sample comprises not
only one systematic inter-fraction error scenario but F combi-
nations of one systematic error with F random errors.12,18

This increases the sampling run-time at least linearly with the
number of fractions. To avoid the increased computational
complexity emerging from this interplay, different sources of
uncertainty have been, for example, considered separately
either to be only systematic or random in nature.19,20 Alterna-
tively, polynomial chaos expansion has been suggested as a
meta model to account for random and systematic uncertain-
ties at the same time.21

However, when it comes to treatment plan optimization,
sampling techniques or surrogate dose models often become
intractable since the dose distribution changes due to adapta-
tions of the radiation fluences which means that the uncer-
tainty metric needs to be recomputed. Consequently, existing
methods use sparse sampling, e.g., considering only 10 scenar-
ios to estimate mean and standard deviation of dose, during
each iteration17 and may exploit the assumption of infinite
fractions to omit a complex, fractionation-dependent variance
computation while maintaining the induced “blurring” effect
in the expectation value of dose.4,15,22 Assuming an infinite
number of fractions, however, is debatable in the context of
radiation therapy. This holds especially for hypo- fractionated
treatments using 5 fractions or less, which is regularly exer-
cised in mixed-modality treatments with a particle boost.23,24

Furthermore, working with the assumption of an infinite num-
ber of fractions during optimization may lead to highly inho-
mogeneous dose distributions4,15 since the optimizer considers
an infinite canceling out of random error contributions.

In previous work, we showed that uncertainty propaga-
tion with analytical probabilistic modeling (APM)25,26 can
overcome the aforementioned limitations through the defi-
nition of an completely analytic and integrable—in this
case Gaussian—parameterization of the pencil-beam dose
calculation algorithm. This enables the closed-form compu-
tation of the expectation value as well as the variance of a
proton dose distribution considering range and setup
errors. In particular it is possible to distinguish between
random and systematic errors in the context of APM
enabling probabilistic analysis and optimization of fraction-
ated treatments at high accuracy of the uncertainty propa-
gation itself.

In this paper, we further exploit the APM formalism to
efficiently compute a linear model of the fractionation-
dependent variance of dose subject to random and system-
atic components. This allows computing the variance of the
dose distribution for all possible fraction numbers, i.e., the
complete fractionation spectrum, for probabilistic analysis
and optimization at the same time. We apply this method on
three patient cases, and evaluate the conventional and proba-
bilistic plans for different fractionation schemes based on
the linear variance model. Results are compared against
independent random Monte Carlo samples. Finally, this
paper investigates the effects of the incorporation of explicit
fractionation assumptions in probabilistic optimization.
While this paper focuses on the application of APM, it also
provides general information regarding treatment planning
under explicit consideration of fractionation for sampling-
based methods.

2. MATERIALS & METHODS

2.A. Analytical probabilistic modeling

The APM framework analytically maps range and setup
errors to moments of the dose distribution.25 To do so, APM
assumes lateral, spatially factorized pencil-beam misplace-
ments, i.e., setup errors, and uncertainty in the WEPL, i.e.,
range errors, and facilitates an accurate Gaussian parameteri-
zation of a conventional pencil-beam algorithm.27 Previously,
we demonstrated accuracy and computational efficiency of
APM for fractionated treatments with respect to the underly-
ing dose model.26 An in-depth introduction to the principal
APM framework can be found in Bangert, Hennig, Oelfke;25

we provide a brief recapitulation below.

2.B. General formulation

APM is based on the dose influence matrix concept
describing an element di of the dose vector d 2 R

V for all V
voxels by

di ¼
X

j

Dijwj: (1)

wj is an element of the vector w 2 R
B containing all B pencil-

beam weights and D 2 R
V"B is the dose influence matrix
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with its elements Dij containing the dose influence of pencil-
beam j in voxel i at unit intensity.

In analogy to the nominal dose d, we can perform a simi-
lar mapping for the expectation value of dose E [d]

E½di$ ¼
X

j

E½Dij$wj ¼
X

j

Dijwj (2)

with the expected dose influence matrix D ¼ E½D$:
Computing the covariance of dose R

d

il ¼ Cov½di; dl$
requires a fourth order covariance influence tensor
V 2 R

V"B"V"B mapping the pencil-beam weights w to the
covariance via the quadratic form

Cov½di; dl$ ¼
X

jm

Cov½Dij;Dlm$wjwm ¼
X

jm

V ijlmwjwm:

(3)

Hence, a tensor element V ijlm can be understood as the
influence of a pair of covarying pencil beams j and m to the
covariance of dose in voxels i and l.

Evaluating Eq. (2) and especially Eq. (3) is non-trivial;
storing of V is infeasible. Here, we use APM as laid out in
previous works25,26 to compute D and V. APM describes sin-
gle elements Dij and V ijlm as a product over univariate and
bivariate normal distributions, respectively, which enables
their computation in closed-form (compare eqs. (13–18) in
Bangert, Hennig, Oelfke25 and/or Appendix A in Wahl
et al.26). With access to single elements of D and V the dose
(co)variance can be computed on-the-fly without storage of
V.

2.C. Optimization

State-of-the-art treatment planning utilizes objectives or
constraints, which can be defined as general function of
dose.28 However, probabilistic treatment planning, i.e., opti-
mization of the expectation value E½F $ of an objective func-
tion F ,17 is usually based on the penalized squared objective
function29

F ðwÞ ¼ dðwÞ ' d
(ð Þ>P dðwÞ ' d

(ð Þ (4)

where P ¼ diag p1; . . .; pi; . . .; pVð Þ is a diagonal matrix con-
taining the optimization penalties for individual voxels i and
d
( corresponds to the prescribed dose.
The expectation value is then given by

E½F ðwÞ$ ¼ trðPRdÞ
|fflfflfflffl{zfflfflfflffl}

P

i
pi
P

jm
V ijimwjwm

þðE½d$ ' d
(Þ>PðE½d$ ' d

(Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

P

i
pi

"P

j
Dijwj'd(

i

#2

:

(5)

Note that the trace operation only requires the variance,
and therefore only the elements of V with i = l for its
evaluation.

Minimization of Eq. (5) would require an evaluation of
the summarized variance influence in each iteration. To
enable efficient optimization, we can use APM’s capability
of evaluating single elements of V to construct helper

objects. Particularly, an integral variance influence matrix
X

v

X
v ¼

X

i2v

piV ijim (6)

can be constructed for every volume of interest (VOI) v. Since
O
v is independent of the optimization variable w, re-computa-

tion of elements of V during optimization is not required:

trðPRdÞ ¼
X

v

w
>
X

v
w: (7)

The separation for volumes is performed because the pen-
alty factor pi is usually the same for all voxels i in a VOI, i.e.,
pv = pi ∀i 2 v. Consequently pv can be pulled out of the sum-
mation in Eq. (6) and no re-computation of Ov is required
across multiple optimization runs with different pv.

Within this work, we compare the outcome of optimiza-
tions of the objective functions in Eqs. (4) and (5). Optimiza-
tion with Eq. (4) will be referenced to as conventional

optimization, whereas optimization with Eq. (5) will be
denoted as probabilistic optimization.

2.D. Separation of the covariance influence

For fractionation, an element of the covariance influence
tensor V ijlm needs to be decomposed to account for the differ-
ent impact of random and systematic uncertainties on the
dose covariance of a full treatment with F fractions. Over the
course of a treatment, random errors are only correlated
within a single fraction, i.e., they are realized independently
in each fraction, while systematic errors realize once and are
therefore correlated over the whole treatment. Therefore, V ijlm

separates into three parts:25,26

V ijlm ¼
~V
corr

ijlm þ ðF ' 1Þ~Vuncorr
ijlm

F
'DijDlm: (8)

~Vcorr
ijlm describes a single fraction, including the full correlation

model for both systematic and random errors. ~Vuncorr
ijlm

describes the remaining fractions, keeping the full correlation
model only for systematic errors but treating random errors
as completely uncorrelated. The last term subtracts the mixed
expectation value of dose influence DijDlm, since both previ-
ously described terms only describe the non-central moment
contribution.

Equation (8) can be expanded to

V ijlm ¼
1

F
* ~Vcorr

ijlm ' ~Vuncorr
ijlm

h i

þ ~Vuncorr
ijlm 'DijDlm

h i

: (9)

Equation (9) shows that V ijlm can be modeled as a linear
combination of Vrand

ijlm ¼ ~Vcorr
ijlm ' ~Vuncorr

ijlm and Vsys
ijlm ¼ ~Vuncorr

ijlm '
DijDlm as

V ijlm ¼
1

F
* Vrand

ijlm þ Vsys
ijlm: (10)

Furthermore, the linear model in Eq. (10) also generalizes
to derived quantities like the (co)variance in dose computed
via Eq. (3)
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r
2
d
ðFÞ ¼

1

F
* rrand

2

d
þ r

sys2

d
(11)

or the helper matrix O described in Eq. (6)

X
vðFÞ ¼

X

i2v

pi Vsys
ijlm þ

Vrand
ijlm

F

" #

¼ X
v
sys þ

X
v
rand

F
: (12)

Since all elements ~Vcorr
ijlm ,

~Vuncorr
ijlm and DijDlm are available

from APM, both the random and systematic components
Vrand
ijlm and Vsys

ijlm, as well as the random and systematic compo-
nents of r2

d
and X

v can be computed on-the-fly at minimum
overhead. Note that the expectation value of dose is indepen-
dent from the number of fractions, since it is in general
invariant under different correlation assumptions by only
depending on the sum of random and systematic variance in
the input model.

Using X
vðFÞ in probabilistic optimization of the expected

objective function in Eq. (5) induces dependence on the
number of fractions F in the variance term [see Eq. (7)]. This
means that for a change in F Eq. (5) needs to be re-opti-
mized, but since O

v (F) can be separated with Eq. (12), no
re-computation of the uncertainty mapping is needed
between optimization runs.

Equations (10) to (12) apply equally to other methods cap-
able of evaluating elements of V for the same correlation
model of fractionation (random errors are uncorrelated for
different fractions while systematic errors are perfectly corre-
lated for different fractions). Equation (11) could be, for
example, modeled by linear regression on the sample vari-
ance computed from samples of treatments with different
fractionation schemes, yielding estimates for rrand

2

d
and r

sys2

d
.

Contrary to APM, however, sampling methods suffer from
increased complexity under fractionation while at the same
time inducing a statistical error that is anti-proportional to the
square root of the number of samples.

2.E. Plan analysis

To investigate the capabilities of APM for uncertainty
analysis of fractionated treatments, we analyze the variability
in treatment plans generated by conventional and probabilis-
tic optimization under fractionation. Therefore, we evaluate
the output of APM, i.e., the standard deviation distributions
and its separations, as well as reference computations based
on sampling for both conventional and probabilistic plans.
We use a spatially separated, multivariate uncertainty model;
range as well as setup errors of pencil beams belonging to the
same beam direction are perfectly correlated, while beams
from different directions are assumed to be statistically inde-
pendent. All computations are performed for a prostate, a
paraspinal and an intracranial case. The three cases have been
chosen to represent different geometries and uncertainty
assumptions: In the prostate case, the main treatment plan-
ning trade-off lies in lateral direction between the rectum and
the target volume, which is irradiated with laterally opposed
fields. In the paraspinal case, the spinal cord lies in the center
of the target volume. The intracranial case has a critical beam

arrangement with the brainstem next to the distal edge of both
beam directions. More information on the patients, assumed
uncertainties and optimization parameters are listed in
Table S1.

The APM-based uncertainty analysis uses exemplary
slices from the expected dose and standard deviation distribu-
tions, and standard deviation volume histograms (SDVHs),4

which are constructed from the standard deviation distribu-
tion in analogy to dose-volume histograms (DVHs). To
emphasize on the fractionation dependence, we will refer to
plots displaying SDVHs for multiple fractions as fractionated
SDVH (FSDVH).

For the sampling-based part of our uncertainty analysis,
we apply random Monte Carlo sampling in the input space
and compute the respective dose distribution. For all plans,
100 systematic scenarios are sampled with 30 random frac-
tions each, totaling in 3000 computed dose scenarios per
optimized plan. When different fractionation schemes are
investigated for the same plan, dose accumulation for hypo-
fractionation (i.e., F = {1, 2, 5, 10}) is performed on inde-
pendent fraction subsets to omit autocorrelation between frac-
tion samples. The resulting treatment dose scenarios are then
used to compute percentile DVHs (PDVHs) as described in
Gordon et al.,30 which, given a percentile q, plot the dose-
volumes received with probability qversus dose.

3. RESULTS

3.A. Computation of the linear (co)variance model

Figure 1 displays results of APM variance calculation
with fractionation separation for a prostate case.

The obtained random and systematic components follow
intuitive expectations; the systematic component r

sys
d

is domi-
nated by high uncertainty at the distal and proximal tumor
edges, which is induced by the dominating systematic range
error and low influence of systematic setup errors (compare
Table S1). Similarly, the random component rrand

d
is domi-

nated by high uncertainty in lateral dose gradients induced by
the larger random setup error.

For the maximum variance voxel, we also visualize the lin-
ear model [Fig. 1(c)] for the complete fractionation spectrum
of [1, ∞) fractions, comparing it to the sample variance from
100 randomly chosen systematic scenarios with 30 random
fractions each, from which we reconstructed fractionated
treatments for 1, 2, 5 and 10 fractions without replacement of
fraction samples to omit auto-correlations.

For the paraspinal and intracranial case the Supplementary
Material contains a similar analysis in Figs. S1 and S2.

3.B. Evaluation of the full fractionation spectrum

With the components r
sys
d

and r
rand
d

available, the com-
plete fractionation spectrum becomes accessible and the
influence of the random component for different fraction
numbers can be investigated. In Fig. 2 we show FSDVHs for
the conventional plans of every case to visualize the impact of
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fractionation on dose uncertainty for entire volumes of
interest.

Figure 2 shows that the relative influence of random and
systematic components may vary among structures and cases.
For example, in case of the intracranial case, the uncertainty
in the brainstem is dominated by systematic range uncertain-
ties since it is located directly next to the distal tumor edge
with respect to both beams. Therefore, uncertainty does not
decrease as much by increasing the fraction number as in
case of the rectum for the prostate case where random lateral
setup uncertainty play a more important role. Observations
for targets are more consistent for all three cases. This can be
attributed to a more similar dose distribution, namely a
homogeneous dose covering the entire structure with a sur-
rounding gradient.

For all evaluated VOIs, we observe a rapid decrease
toward the systematic limit with the fraction number, which
is in line with the theoretical model of a F'1 dependence.
While choosing 5 fractions over 1 fraction significantly
decreases plan variability, a less significant decrease can be
seen when choosing 30 over 5 fractions, with 30 fractions
showing almost no difference in standard deviation compared
to an infinite number of fractions. This behavior was also
already observed in Perk!o et al.21 (more precisely in the sup-
plementary materials), and suggests that for (non-hypofracio-
nated) treatment optimized without uncertainty
considerations, increasing the fractionation number for the
sake of mitigating random uncertainties can be expected to
have minimal to negligible benefit.

3.C. Probabilistic optimization considering different
fractionation schemes

Using the separated O
v-matrices from Eq. (12), proba-

bilistic treatment plans could be optimized for different
fractionation schemes without re-computing variance infor-
mation. The resulting treatment plans are compared against
treatment plans facilitating conventional optimization not
making any fractionation assumption. A sampling-based
evaluation of the prostate case considering fractionation is
shown in Fig. 3. The remaining paraspinal and intracranial
cases can be found in the Supplementary Material as
Figs. S3 and S4. For both the conventional and probabilis-
tically optimized plans, significant reduction in plan vari-
ability can be observed when going from 1 to 5 and 30
fractions. However, the difference between 5 and 30 frac-
tions is less significant, confirming the rapidly decreasing
influence of the random error component with the number
of fractions already shown in the FSDVHs in Fig. 2. Prob-
abilistic optimization yields more robust target coverage
than conventional optimization. This can be seen by the
PDVHs being closer to the nominal DVH for all fractiona-
tion schemes.

Figure 4 directly compares conventional to probabilistic
optimization under fractionation for all cases. We show the
median DVHs (50% PDVHs) for targets and organs-at-risk
(OARs).

The impact of probabilistic optimization depending on the
fractionation scheme is patient specific. In general,
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FIG. 1. Probabilistic analysis based on an exemplary axial slice of a prostate plan under fractionation. (a) shows the nominal dose, (b) its expectation value. (d)

and (e) show the systematic and random components of the standard deviation computed by APM with (f) displaying the full standard deviation for 5 fractions.

(c) illustrates the linear variance model (in the voxel with maximum variance at F = 1, indicated by a square marker in the distributions) by comparing the APM

variance for F fractions (circle markers) to the sample variance (square markers, error bars correspond to + 1r) and the respective linear models computed on-

the-fly by APM (solid line) and based on the sample statistics (dashed line). [Color figure can be viewed at wileyonlinelibrary.com]
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probabilistic optimization shifts the targets’ median DVHs to
higher doses, increasing the probability of target coverage.
This can be seen especially in Figs. 4(a) and 4(c) for the
prostate and intracranial case while it is not so pronounced in
the paraspinal case [Fig. 4(b)]. Across different fractionation
schemes, the median DVHs after probabilistic optimization
show only marginal differences (with the curves lying on top
of each other). For the paraspinal case, however, we see a
strong effect in the OAR, i.e., the spinal cord [Fig. 4(e)],
where the median dose-volume is increased by probabilistic
optimization. While the median DVHs for F = 5 and F = 30
fractions are almost identical, a prominent shift to higher
dose-volumes can be seen for F = 1. For the other two cases,
the fraction dependence is evident yet less present. For the
rectum [Fig. 4(d)] differences are in general much smaller,
also when comparing conventional to probabilistic optimiza-
tion. Consequently, probabilistic optimization adapts to the
increasing number of fractions and improves the trade-off
between target coverage and OAR sparing.

3.C.1. Generalization of probabilistic plans among
fractionation schemes

Figure 4 additionally shows the median DVHs of a treat-
ment plans optimized probabilistically for only a single frac-
tion, yet applied in 30 fractions. This enables a comparison
between (1) using and (2) neglecting explicit fractionation
information during optimization. For the target volumes,
there is only a minor difference. Both treatment plans that
were optimized probabilistically for one fraction to be subse-
quently applied in 30 fractions and treatment plans that were
optimized probabilistically for 30 fractions to be

subsequently applied in 30 fractions result in approximately
the same median DVH. For the OARs, however, we see that
optimization explicitly considering 30 fractions results in a
better sparing than optimization considering a single fraction.
This behavior is especially pronounced in the spinal cord
[Fig. 4(e)].

To substantiate these results, box plots for dose quality
metrics were generated from the sampled plans in Fig. 5. For
the targets, D95%, i.e., the dose received by at least 95% of
the volume, is shown. For the OARs, the metrics are chosen
based on Marks et al.;31 D5% is used as a maximum dose
indicator for spinal cord and brainstem, while the rectum is
evaluated based on V50 Gy, i.e., the volume covered by at least
a dose of 50 Gy.

As already shown in Fig. 4, expected target coverage
increases with probabilistic optimization, as well as OAR
dose, i.e., OAR sparing is traded against robustness. When
neglecting the fractionation number in the probabilistic opti-
mization, Fig. 5 illustrates that for the OARs, the median, the
expected value as well as the entire probability mass of the
dose quality indicators is unnecessarily high compared to
plans directly optimized for the respective number of frac-
tions. This holds for 5 fractions as well as 30 fractions. For
the targets, this effect is also visible, but less pronounced than
in the OARs.

Figure 6 further illustrates above observations with the
FSDVHs for cross-application of probabilistically optimized
treatment plans in a different number of fractions.

For the target volumes of all cases [Figs. 6(a)–6(c)], the
probabilistic treatment plans optimized for F = 1 yield con-
sistently lower dose uncertainty for application in 5 or 30
fractions than the treatment plans explicitly optimized for the

(a) (b) (c)

(d) (e) (f)

FIG. 2. FSDVHs for 1, 5, 30 and theoretically ∞ fractions of all cases for a target (a–c) and OAR (d–f), respectively. To illustrate the direct availabilty of the full

fractionation spectrum by APM, each transition in the gray-shaded area corresponds to the SDVH of a treatment with one more fraction. [Color figure can be

viewed at wileyonlinelibrary.com]
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respective number of fractions. For OARs [Figs. 6(d)–6(f)],
this behavior persists in the high dose standard deviation
regions yet at more variation among cases. It can be
explained through the higher contribution of the variance
term tr(PΣd) within E[F ] with decreasing fraction number,
leading to an increased focus on reducing plan variability
instead of carefully shaping the expected dose to prescription
during optimization. For 30 fractions, for example, a more
heterogeneous nominal dose distribution might be tolerated,
since it is expected to smooth out due to random fraction sce-
nario realizations. This effect will be further discussed in the
section below.

3.C.2. Beam modulation depending on number of
fractions

Probabilistic optimization under the assumption of infinite
fractions may lead to heterogeneous nominal dose distribu-
tions, since a homogeneous distribution of the expectation
value of dose may be achieved by optimizing for perfectly
destructive interference of infinite random scenarios.4,15 As
APM explicitly incorporates finite number of fractions, the
optimized fluences change with fractionation scheme, as can
be seen in Fig. 7 for the prostate case. While for conventional
optimization the beam shows the most distinct modulation,

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Sampling based evaluation of a conventionally optimized prostate plan for several fractionation schemes (left/a, c, e) compared to probabilistic plans opti-

mized with fractionation information (right/b, d, f). Solid lines are nominal DVHs, dashed lines are the median DVH (or 50% PDVH), while the shaded areas (en-

closed by the thin dotted and the dash-dotted lines) refer to the 5% to 95% PDVH and 25% to 75% PDVH quantiles, respectively. [Color figure can be viewed at

wileyonlinelibrary.com]
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probabilistic optimization creates much smoother dose distri-
butions for individual beams. Low fraction numbers lead to
the smoothest dose distribution while an increasing fraction
count F allows for additional modulation as canceling out of

random error contributions during the treatment becomes
more probable.

This effect is substantiated in the DVHs in Figs. 3(b), 3(d)
and 3(f), where probabilistic optimization for F = 1 enforces

(a) (b) (c)

(d) (e) (f)

FIG. 4. Median DVHs (50% PDVHs) for all cases after conventional optimization (dashed) and probabilistic optimization (solid) for the fractionation schemes

F = {1, 5, 30}. For each case, a target (a–c) and an OAR (d–f) is presented. The dotted lines represent plans optimized for a single fraction, but applied in 30

fractions. The vertical dashed black line indicates the prescribed dose for the respective target. [Color figure can be viewed at wileyonlinelibrary.com]
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FIG. 5. Box plots for dose quality metrics comparing samples from conventional plans CF, where F is the number of fractions they are applied in, and probabilis-

tically optimized plans PA
F , where A is the number of fractions used for optimization. Analogous to Fig. 3, the box and the whiskers enclose the 25% to 75% and

5% to 95% quantiles, respectively. The vertical markers indicate the median, crosses the mean value, and the circle the respective value computed from the nomi-

nal dose distribution. Analyses are presented for targets (a–c) and OARs (d–f) of all cases. [Color figure can be viewed at wileyonlinelibrary.com]
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a steep decrease in the nominal DVH equivalent to a more
homogeneous dose distribution in the target, whereas opti-
mization for F > 1 shows less steep DVHs and therefore
more heterogeneous dose distributions. Yet for the F = 1
case, with no possibility of inter-fractional error cancellation,
the median DVH is more flat than the nominal DVH while it
is more steep than the nominal DVH in the case of 30 frac-
tions, where the canceling out of random errors can be
expected.

4. DISCUSSION

With the APM framework, we constructed an efficient dose
variance computation pipeline that explicitly models the
dependence of dosimetric uncertainties on the number of
treatment fractions. We showed that dose variance calcula-
tions can generally be modeled with a linear relationship
whose parameters can be determined from first principles

with APM. The linear model was used to perform dose uncer-
tainty analysis for all possible fraction numbers F 2 [1, ∞)
for three different patient cases. Furthermore, the linear vari-
ance calculation model was incorporated into probabilistic
optimization which enabled a study of the interdependence of
the number of fractions and dosimetric treatment plan qual-
ity/robustness within numerical treatment plan optimization.

The linear relationship for variance computation follows
directly from the underlying standard definition of systematic
and random errors in the input parameters, namely that sys-
tematic errors are perfectly correlated (i.e., they are exactly
the same) for all treatment fractions and random errors are
completely uncorrelated.12,18–21 In principle, the linear vari-
ance computation model can be constructed with any uncer-
tainty propagation method that is able to compute the dose
uncertainty for at least two fractionation schemes. However, a
sampling-based construction is inevitably sensitive to sam-
pling uncertainties [Fig. 1(c)]. A construction based on
APM, in contrast, allows for the separate computation of the

(a) (b) (c)

(d) (e) (f)

FIG. 6. FSDVH comparison for probabilistically optimized plans when applied to other fractionation schemes for a target (a–c) and OAR (d–f) of all cases. Color

represents the applied fractionation schemes, i.e., all lines of the same color are applied in the same number of fractions, whereas line style represents the initially

chosen fraction number for optimization: solid lines correspond to probabilistic plans optimized for F = 1, dashed lines F = 5 and dotted lines F = 30. [Color

figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c) (d)

FIG. 7. Dose (in Gy) of the 270° prostate beam after conventional (a) and probabilistic optimization for several fractionation schemes (b–d). [Color figure can be

viewed at wileyonlinelibrary.com]
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full covariance influence. Thus, the whole model can be con-
structed on-the-fly while additionally generalizing to opti-
mization. This incidental incorporation of the fraction
number as parameter into the objective function, weighting
random against systematic variance influence, could enable
the incorporation of intuitive fractionation objectives in the
future. Furthermore, no statistical uncertainties are induced
by APM; the model is intrinsically guaranteed to be physi-
cally meaningful while simple linear regression on uncertain,
fractionation-dependent sample variances might lead to nega-
tive systematic or random variance components. Hence, we
only presented comparisons of APM to regression in single
voxels in Figs. 1(c), S1(c) and S2(c). While these analyses on
the respective maximum variance voxel may illustrate possi-
ble variations, they should only be judged qualitatively due to
low sample numbers and since they only represent local voxel
information; where a single voxel might apparantly exhibit
biased behavior, the neighboring voxel may show nearly per-
fect agreement. A detailed analysis of the accuracy (and pos-
sible bias) of the APM method based on full distributions can
be found in Wahl et al.26 Even though the used uncertainty
model in the input space is based on common assumptions
found in literature, i.e., perfectly correlated shifts and inter-
fractional separation in random and systematic error compo-
nents, it still excludes a variety of effects such as complex
motion patterns and deformation. Despite these shortcom-
ings, including fractionation was found to have a non-trivial
effect on probabilistic optimization. The definition of more
sophisticated uncertainty models, e.g., based on daily image
guidance, is to be addressed for many methods using robust
or probabilistic optimization techniques. Furthermore, in a
clinical environment additional efforts and protocols might
interfere with the strict application of a physical model.
While, for example, fractionation-dependent prescribed dose
could be easily incorporated in the presented methodology, it
would be non-trivial to seamlessly consider fractionation-
dependent clinical uncertainty mitigation efforts without re-
computations. Yet, tools like presented in this work, may help
to assess the necessity or success of these clinical mitigation
efforts in such environments.

The three patient cases were evaluated for different frac-
tion numbers in comparison to random sampling12,18 of treat-
ment plans that were established using both conventional and
probabilistic optimization. Since the comparably low number
of 100 treatment samples prohibit a statistically meaningful
analysis of dose coverage criteria or extreme dose values, we
laid focus on the median outcome of all sampled treatments.
Modeling fractionation effects in APM includes the trade- off
between nominal dose and robustness in optimization. This
functionality is challenging or impossible to produce in other
frameworks. While for photon therapy, studies already evalu-
ated the impact of fractionation in probabilistic or robust
optimization,4,22 for proton therapy the exact incorporation of
the number of fractions is avoided or enabled by further sim-
plifications of the uncertainty model. For example, Lowe
et al.19,20 strictly separate setup errors to be random and range
errors to be systematic. Unkelbach et al.17 do not consider

random errors at all. Fredriksson15 assumes uncertainty on
the probability distribution of the random errors itself to
avoid heterogeneous dose distributions when assuming infi-
nite fractions.

The excessive random scenario sampling used in this
study, with run-times of several days, is not feasible in a clini-
cal environment, especially for treatment plan optimization.
For the latter, APM may be more applicable despite existing
limitations of the underlying pencil-beam algorithm. Further-
more, expected value optimization as applied in this work is a
non-conservative method.15 While it yields a more robust
treatment on average, it does not guarantee robustness against
worst cases. In addition, the performance of optimizing the
expected value is limited by the objective function it is based
on. To enable generalization to worst case optimization meth-
ods and state-of-the-art objective functions, further develop-
ment with regard to constrained probabilistic planning
similar to conditional value at risk optimization15,32,33 is
desirable. The necessary non-trivial generalizations to expec-
tation and variance of clinical objectives are part of ongoing
research to reveal the full potential—and limitations—of the
APM method to enable more intuitive probabilistic treatment
planning.

5. CONCLUSION

On the basis of analytical probabilistic modeling, we
devised a linear fractionation model considering the non-
trivial interplay of random and systematic components of
range and setup errors for fractionated proton treatments. In
the analytical probabilistic modeling framework, the model
enables efficient dose variance computation as well as
probabilistic treatment plan optimization under
fractionation.

We used the fractionation-dependent variance model to
expose the trade-off between number of fractions, nominal
dose, and treatment plan robustness for three different
patient cases. Considering the number of fractions during
treatment plan optimization we could provide evidence that
the explicit incorporation of fractionation may allow for the
exploitation of an improved trade-off between target cover-
age and organ-at-risk sparing in intensity-modulated proton
therapy.
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SUPPORTING INFORMATION

Additional Supporting Information may be found online in
the supporting information tab for this article.

Fig. S1. Probabilistic analysis based on an exemplary slice of
a paraspinal plan under fractionation. (a) shows the nominal
dose, (b) its expectation value. (d) and (e) show the system-
atic and random components of the standard deviation com-
puted by APM with (f) being the full standard deviation for 5
fractions. (c) illustrates the linear variance model (in the voxel
with maximum variance at F = 1, indicated by a square mar-
ker in the distributions) by comparing the APM variance for
F fractions (blue points) to the sample variance (orange
squares, error bars correspond to + 1r) and the respective lin-
ear models computed on-the-y by APM (blue line) and based
on the sample statistics (orange dashed line).
Fig. S2. Probabilistic analysis based on an exemplary slice of
an intracranial plan under fractionation. (a) shows the nomi-
nal dose, (b) its expectation value. (d) and (e) show the sys-
tematic and random components of the standard deviation
computed by APM with (f) being the full standard deviation
for 5 fractions. (c) illustrates the linear variance model (in the
voxel with maximum variance at F = 1, indicated by a square
marker in the distributions) by comparing the APM variance
for F fractions (blue points) to the sample variance (orange
squares, error bars correspond to + 1r) and the respective lin-
ear models computed on-the-y by APM (blue line) and based
on the sample statistics (orange dashed line).
Fig. S3. Sampling based evaluation of a conventionally
optimized paraspinal plan for several fractionation schemes
(a-c) compared to probabilistic plans optimized with fraction-
ation information (d-f). Blue lines refer to the target, orange
lines to the spinal cord. Solid lines are nominal DVHs,
dashed lines are the median DVH (or 50% PDVH), while the

Medical Physics, 45 (4), April 2018

1327 Wahl et al.: Fractionation in probabilistic planning 1327



shaded areas (enclosed by the thin dotted and the dash-dotted
lines) refer to the 5% to 95% PDVH and 25% to 75% PDVH
quantiles, respectively.
Fig. S4. Sampling based evaluation of a conventionally
optimized intracranial plan for several fractionation schemes
(a-c) compared to probabilistic plans optimized with fraction-
ation information (d-f). Blue lines refer to the target, orange

lines to the brainstem. Solid lines are nominal DVHs, dashed
lines are the median DVH (or 50% PDVH), while the shaded
areas (enclosed by the thin dotted and the dash-dotted lines)
refer to the 5% to 95% PDVH and 25% to 75% PDVH quan-
tiles, respectively.
Table S1. Information on the three patient datasets used for
evaluation.
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