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Abstract
Particle therapy is especially prone to uncertainties. This issue is usually 
addressed with uncertainty quantification and minimization techniques based 
on scenario sampling. For proton therapy, however, it was recently shown 
that it is also possible to use closed-form computations based on analytical 
probabilistic modeling (APM) for this purpose. APM yields unique features 
compared to sampling-based approaches, motivating further research in this 
context.

This paper demonstrates the application of APM for intensity-modulated 
carbon ion therapy to quantify the influence of setup and range uncertainties 
on the RBE-weighted dose. In particular, we derive analytical forms for 
the nonlinear computations of the expectation value and variance of the 
RBE-weighted dose by propagating linearly correlated Gaussian input 
uncertainties through a pencil beam dose calculation algorithm. Both exact 
and approximation formulas are presented for the expectation value and 
variance of the RBE-weighted dose and are subsequently studied in-depth for 
a one-dimensional carbon ion spread-out Bragg peak. With V and B being the 
number of voxels and pencil beams, respectively, the proposed approximations 
induce only a marginal loss of accuracy while lowering the computational 
complexity from order O(V × B2) to O(V × B) for the expectation value and 
from O(V × B4) to O(V × B2) for the variance of the RBE-weighted dose. 
Moreover, we evaluated the approximated calculation of the expectation 
value and standard deviation of the RBE-weighted dose in combination with 
a probabilistic effect-based optimization on three patient cases considering 
carbon ions as radiation modality against sampled references. The resulting 

H P Wieser et al

Analytical probabilistic modeling of RBE-weighted dose for ion therapy

Printed in the UK

8959

PHMBA7

© 2017 Institute of Physics and Engineering in Medicine

62

Phys. Med. Biol.

PMB

10.1088/1361-6560/aa915d

Paper

23

8959

8982

Physics in Medicine & Biology

Institute of Physics and Engineering in Medicine

IOP

2017

1361-6560

1361-6560/17/238959+24$33.00 © 2017 Institute of Physics and Engineering in Medicine Printed in the UK

Phys. Med. Biol. 62 (2017) 8959–8982 https://doi.org/10.1088/1361-6560/aa915d

https://orcid.org/0000-0002-2309-7963
https://orcid.org/0000-0002-1451-223X
mailto:h.wieser@dkfz.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/aa915d&domain=pdf&date_stamp=2017-11-10
publisher-id
doi
https://doi.org/10.1088/1361-6560/aa915d


8960

global γ-pass rates (2 mm,2%) are >99.15% for the expectation value and >
94.95% for the standard deviation of the RBE-weighted dose, respectively. 
We applied the derived analytical model to carbon ion treatment planning, 
although the concept is in general applicable to other ion species considering 
a variable RBE.

Keywords: probabilistic treatment planning, biological effect, particle 
therapy, carbon ion, treatment planning

(Some figures may appear in colour only in the online journal)

1. Introduction

Treatment planning for charged particle therapy requires an accurate simulation of the dose 
distribution within the patient’s body before delivery. In reality, various sources of uncertainty 
along the treatment planning work-flow, e.g. imaging, dose calculation, or irradiation itself, 
may impair the validity of the simulated dose distributions. Range and setup uncertainties are 
considered to be among the most influential sources of physical uncertainty (Lomax 2008a, 
2008b, Paganetti 2012). Their dosimetric impact can be quantified using worst case estimates 
(Albertini et al 2011, Liu et al 2013, Lowe et al 2016), dose blurring methods (Baum et al 
2004), dose warping techniques (Park et al 2012), sampling meta models based on Gaussian 
processes (Sobotta et al 2012), and polynomial chaos expansion (Perkó et al 2016).

The afore-mentioned uncertainties are compensated during treatment planning in current 
clinical practice by the design of an adequate margin, which extends the clinical target volume 
(CTV) to a planning target volume (van Herk 2004). This approach is either restricted to non-
problematic cases where anatomical variations do not imply strong modifications of radio-
logical depths or are combined with single field uniform dose (SFUD) optim ization (Lomax 
2008c). Robust optimization techniques such as worst case (Pflugfelder et al 2008, Fredriksson 
et al 2011, Chen et al 2012, Liu et al 2012) or probabilistic optimization (Unkelbach et al 
2007, 2009) are designed to supersede safety margins. While initial commercial implementa-
tions are available for proton therapy, no commercial implementations are available for carbon 
ion therapy.

In contrast to protons, studies in robust treatment planning for heavier charged particles, 
such as carbon ions, are very limited. As carbon ion dose distributions exhibit steeper lateral 
and longitudinal dose gradients—in particular in the high dose domain directly around the 
target—robustness analysis and robust optimization may arguably be especially important 
for this modality (Suit et al 2010). Meaningful consideration requires nonlinear modeling of 
the relative biological effectiveness (RBE) of carbon ions yielding a more complex treatment 
planning process than for protons (Jäkel et al 2001). Steitz et al (2016) studied the dosimetric 
impact of interfactional motion on pancreatic cancer, applying worst case, SFUD and margin-
based optimization, and concluding that robust optimization is a valuable tool to improve the 
trade-off between robust target coverage and organ at risk sparing. Sakama et al (2016) esti-
mated the variance of the biological effective dose considering fractionation effects by using 
a fast dose wrapping technique based on the water equivalent path length.

At their core, all previously referenced methods rely on sampling, i.e. the simulation of a 
discrete set of treatment scenarios. Inevitably, this results in a trade-off between the accuracy 
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of uncertainty propagation and computational cost which is negatively affected by an increas-
ing number of uncertain input parameters and complex correlations of the uncertainties, espe-
cially with regard to fractionation.

For intensity-modulated proton therapy, it is possible to bypass the need for sampling 
through the use of analytical probabilistic modeling (APM) that enables closed-form calcul-
ation of the expectation value and standard deviation of the RBE-weighted dose considering 
a constant RBE of 1.1 (Bangert et al 2013). APM facilitates the incorporation of arbitrary 
correlation models, including fractionation effects of range and setup errors, at an improved 
accuracy to efficiency trade-off compared to conventional sampling approaches (Wahl et al 
2017). As a further consequence, highly efficient probabilistic optimization is possible.

In this paper, we generalize APM computations of the expectation value and the variance 
from the linear dose calculation required for proton therapy to nonlinear RBE-weighted dose 
calculation for carbon ions. An accurate mathematical model depicting the complex depend-
ence of RBE on dose requires the joint incorporation of range and setup uncertainties into the 
physical dose and RBE at the same time. Because the underlying mathematical moment com-
putations are computationally challenging, algebraic approximations that effectively reduce 
complexity are introduced. The quality of the approximations are investigated in detail for 
a one-dimensional (1D) spread-out Bragg peak (SOBP). In addition, we investigate APM’s 
accuracy compared to sampling-based approaches on three patient cases and perform a treat-
ment planning study using probabilistic biological effect optimization under different frac-
tionation assumptions.

This paper is organized as follows. Section  2 repeats the basic principle of APM and 
derives calculations for the nominal value, expectation value, and variance of the biological 
effect ε and RBE-weighted dose. Next, section 3 shows the application on a 1D SOBP and 
three patient cases considering different fractionation schemes. Sections 4 and 5 discuss and 
conclude the paper.

2. Material and methods

At the same physical dose, carbon ions induce a lower cell survival rate than protons, mainly 
due to differences in the microscopic energy deposition pattern. Hence, clinical carbon ion 
treatment planning is based on the RBE-weighted dose with the RBE being a patient-specific 
nonlinear three-dimensional (3D) quantity depending, among other things, on linear energy 
transfer, dose level, biological endpoint, and tissue type. The RBE is defined as the ratio 
between iso-effective physical doses of a reference radiation dx and of particles dp. In the 
framework of the linear quadratic (LQ) model (Kellerer and Rossi 1978), the RBE-weighted 
dose is given by

RBE × dp =

√
αpdp + βpd2

p

βx
+

(
αx

2βx

)2

− αx

2βx
 (1)

with the parameters αx, βx (αp, βp) describing the radio-sensitivity of photons (particles). The 
computation of the RBE-weighted dose involves an intermediate quantity, i.e. the biological 
effect

εp = αpdp + βpd2
p (2)

which can be used as an alternative for treatment planning (Wilkens and Oelfke 2006). Via the 
LQ model, εp is linked to cell survival S
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S = e−εp = e−αpdp−βpd2
p . (3)

For algebraic convenience, we focus on the biological effect ε of building an analytical proba-
bilistic model for uncertainty propagation and not on the RBE-weighted dose. An explanation 
for this approach will be given at a later point where it is shown that the square root depend-
ence in equation  (1) can be accounted for with a post processing step (see section 2.6) to 
ultimately obtain the desired mean and variance of the RBE-weighted-dose.

The biological effect ε(X) is considered to be a function of uncertain input parameters X 
that follow a probability density p(X). Consequently, the n-th raw moment of the induced 
probability distribution over the biological effect ε can be calculated/approximated by

E[ε(X)n] =

∫
dX p(X)ε(X)n ≈

∫
dX N (X, X̄,ΣX) ε̂(X)n. (4)

Equation (4) shows the basic concept of APM. Using a multivariate normal distribution 
N (X, X̄,ΣX) to describe the probability distribution over uncertain input parameters p(X) and 
using a functional approximation ε̂ instead of the full form ε, we aim at solving the integral 
equation  in closed form. The main challenge is therefore to identify a functional approx-
imation ε̂ that allows for high approximation quality and minimal computational cost at the 
same time.

In the following, we are going to introduce, step-by-step, the functional approximation ε̂ 
(section 2.1), the uncertainty model (section 2.2), and the solution of equation (4) to compute 
the expectation value and variance of ε (sections 2.3 and 2.4). Finally, section 2.7 outlines the 
validation. In the following, i, l refer to voxel indices, j, m, o refer to pencil beam indices, V 
denotes the number of dose voxels and B depicts the number of pencil beams.

2.1. Nominal biological effect calculation

Throughout this work, we focus on carbon ions and obtain their tissue response (α(T , E), 
β(T , E)) from the tissue response to x-rays using the local effect model IV (LEM IV) (Scholz 
and Kraft 1996, Elsässer et al 2010). Given the particle fluence Φ(z, T , E), the stopping power 
SP(T , E), the particle type T, the energy E and the radiological depth z, we follow Zaider and 
Rossi (1980) to obtain a depth-dependent dose-averaged LQ model parameter for each initial 
beam energy:

αc(z) =

∑
T

∫∞
0 α(T , E) Φ(z, T , E) SP(T , E) dE∑

T

∫∞
0 Φ(z, T , E) SP(T , E) dE

. (5)

A similar expression can be derived for 
√
βc(z), but is not shown here. We decided to use 

LEM as it is also used for clinical treatment planning in European carbon ion therapy centers. 
Photon reference radio-sensitivity parameters of αx = 0.1 Gy−1 and βx = 0.05 Gy−2 were 
used as an LEM input, but our considerations are neither restricted to these tissue-specific 
values nor to LEM IV. To assess the biological effects for an ensemble of particles, we follow 
Krämer and Scholz (2006) which limits our considerations to doses  ⩽10 Gy(RBE).

For treatment planning, we use 121 tabulated carbon ion depth dose profiles, spaced from 
115.23 MeV u−1–398.84 MeV u−1. Each integrated physical dose profile is scored as a func-
tion of depth in water and complemented by dose-averaged αc—and βc profiles considering 
the particle spectra.

H P Wieser et alPhys. Med. Biol. 62 (2017) 8959
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Lateral dose profiles of the carbon pencil beam are parameterized as a function of depth by 
a single radially symmetric Gaussian. The total width of the carbon ion beam at radiological 
depth z is determined by the initial beam width and the beam broadening caused by multiple 
Coloumb scattering λ2 = σ2

Ini + σ2
MC(z). By this means, depth-dependent characteristics of 

each of the 121 pencil beams are described by four vectors (d(z), αc(z), 
√
βc(z) and σ2

MC(z)) 
and are part of the base data used for treatment planning.

The implemented dose calculation in water is based on the pencil beam algorithm pre-
sented in Schaffner et al (1999) and includes a full volumetric ray tracing (Siggel et al 2012). 
A detailed description of the underlying carbon dose calculation engine and comparison to a 
validated treatment planning system can be found elsewhere (Wieser et al 2017).

To account for the synergistic effects in a mixed radiation field created by ions of differ-
ent energies, the calculation of the total biological effect εi at voxel i requires the calculation 
of dose-averaged radio-sensitivity parameters αc

i  and 
√
βc

i  taking into account contributions 
from different spots (Zaider and Rossi 1980). Let wj be the fluence weight of pencil beam j 
and Dij  (αc

ij/
√
βc

ij) the dose (LQ model parameter) contribution of pencil beam j to voxel i. The 
nominal biological effect εi is then given by Wilkens and Oelfke (2006):

εi(w) = αc
i (w)di(w) + βc

i (w)d
2
i (w) =

B∑
j=1

wjα
c
ijDij +




B∑
j=1

wj

√
β

c
ijDij




2

.

 (6)
To reduce the number of computations for the calculation of the biological effect in the con-
text of APM, physical d(z) and biological beam properties αc(z), 

√
βc(z) were combined for 

each initial energy by multiplying the integrated depth dose profile with each of the two dose-
averaged radio-sensitivity parameters of the LQ model upfront. The ◦ operator represents in 
the following the element-wise multiplication (Hadamard product) of two vectors u and v, 
i.e. for element x of the resulting vector we have (u ◦ v)x = ux · vx. The resulting αc ◦ d  and √
βc ◦ d  profiles enable a direct derivation of the biological effect for each individual pencil 

beam. The elementwise multiplication can be understood as modeling a perfect correlation 
between the physical dose and its biological beam properties. A change in range, e.g. due to 
range uncertainties, consistently changes the corresponding depth-dependent dose-averaged 
αc(z) and 

√
βc(z) profiles and further the RBE-weighted dose. This assumption is inspired by 

equation (6) and requires then only three (αc ◦ d , 
√
βc ◦ d  and σ2

MC) instead of four depth-
dependent components to describe the characteristics of a carbon ion pencil beam.

In agreement with the conventional pencil beam model, we assume a factorization into two 
lateral dose components Lx

ij, Ly
ij and one depth dose component, Zα

ij  and Z
√
β

ij , respectively. 

Thus, the biological effect can be reformulated as

εi =
B∑

j=1

wjLx
ijL

y
ijZ

α
ij +




B∑
j=1

wjLx
ijL

y
ijZ

√
β

ij




2

. (7)

Similar to Wilkens and Oelfke (2006) we are assuming laterally constant αc and βc, which 
implies they only influence the depth-dependent components in equations (6) and (7). In anal-
ogy to the physical depth dose for protons (Bangert et al 2013), we represent depth-depend-
ent αc ◦ d  and 

√
βc ◦ d  profiles by a weighted superposition of 13 Gaussian comp onents. 

Compared to Bangert et  al (2013) we increased the number of Gaussian components by 
three due to the sharper peak and the additional fragmentation tail that needs to be modeled. 
Herewith, we switch to a representation of the tabulated base data that now allows analytical 
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integration. Least-squares fits for 121 initial beam energies were carried out as an off-line 
pre-computation (i.e. they yield tabulated coefficients that do not have to be reproduced at 
runtime). Thus, each pair of curves is described according to equation (8) with a set of weights 

ωα
jk ωβ

jk, means µα
jk , µβ

jk  and widths δαjk, δβjk. It is noteworthy that each set of photon reference 
radio-sensitivity parameters requires a new fit.

Given the radiological depth zij of voxel i irradiated by pencil beam j, Zα
ij  and Z

√
β

ij  can be 

obtained via:

Zα
ij =

13∑
k=1

ωα
jk√

2πδαjk
2

e
(zij−µα

jk )
2

2δαjk
2

and Z
√
β

ij =

13∑
k=1

ωβ
jk√

2πδβjk
2

e

(zij−µ
β
jk)

2

2δβjk
2

.

 

(8)

Figure 1(a) depicts the physical and biological beam properties of a single energy carbon 
ion beam of 277 MeV u−1 and figure 1(b) illustrates the achieved fit for the corre sponding 
αc ◦ d  profile. The mean relative difference in the reference data amounts to 0.25% for αc ◦ d  
profiles and 0.06% for 

√
βc ◦ d  profiles.

Next, let xij/yij  be the lateral distances of voxel i to the central ray of pencil beam j, λ2
ij be 

the beam width of voxel i and pencil beam j at radiological depth zij, N (x;µ,λ) be a Gaussian 
distribution with mean μ and standard deviation λ evaluated at x, then equation (7) can be 
rewritten to only rely on Gaussian components:

εi =
B∑

j=1

wj N (xij;µx
j ,λij)N (yij;µ

y
j ,λij)

13∑
k=1

ωα
jk N (zij;µα

jk, δαjk)

+




B∑
j=1

wj N (xij;µx
j ,λij)N (yij;µ

y
j ,λij)

13∑
k=1

ωβ
jk N (zij;µ

β
jk, δβjk)




2

.

 

(9)

Consequently, equation (9) renders the calculation of the expectation value and variance of 
the biological effect according to equation (4) analytically tractable.

Figure 1. (a) Normalized integrated carbon ion depth dose profile of a 227 MeV u−1 
beam (dashed black line) and corresponding dose-averaged αc (solid red) and βc (solid 
blue) curves of the LQ model predicted by LEM IV using αx = 0.1 Gy−1 and βx = 0.05 
Gy−2. (b) αc ◦ d—profile (red solid line) of a 277 MeV carbon ion beam represented 
by a weighted superposition of 13 Gaussian components (solid grey). Crosses indicate 
reference values. (a) z (mm). (b) z (mm).

H P Wieser et alPhys. Med. Biol. 62 (2017) 8959
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2.2. Uncertainty model

Setup and range errors are considered individually for each pencil beam by modeling off-
sets ∆x ∈ RB, ∆y ∈ RB, and ∆z ∈ RB in the Gaussian components underlying the biological 
effect calculation

εi =

B∑
j=1

wj N (xij +∆x
j ;µx

j ,λij)N (yij +∆y
j ;µy

j ,λij)

13∑
k=1

ωα
jk N (zij +∆z

j ;µ
α
jk, δαjk)

+




B∑
j=1

wj N (xij +∆x
j ;µx

j ,λij)N (yij +∆y
j ;µy

j ,λij)

13∑
k=1

ωβ
jk N (zij +∆z

j ;µ
β
jk, δβjk)




2

.

 (10)
∆x, ∆y, and ∆z stem from a joint probability distribution p(∆x,∆y,∆z) which factorizes 

into a product of three multivariate normal distributions with zero mean

p(∆x,∆y,∆z) = N (∆x; 0,Σx)N (∆y; 0,Σy)N (∆z; 0,Σz). (11)

The covariance matrices Σx, Σy, Σz allow us to explicitly model the magnitude of uncertainty 
of arbitrary pairwise pencil beam correlations and have to be defined upfront according to the 
uncertainty assumptions. Here, we assume setup errors to be perfectly correlated for pencil 
beams belonging to the same beam direction, whereas pencil beam pairs stemming from dif-
ferent beam directions are uncorrelated. Range uncertainties are perfectly correlated for pencil 
beams impinging on the same lateral position as carbon ions and fragments penetrate the same 
tissue (Unkelbach et al 2009).

The APM formalism allows us to consider fractionation effects by exploiting a correla-
tion model on the interplay of systematic and random errors over multiple treatment frac-
tions. Thereby, the computation complexity is constant for an increasing number of fractions 
(Bangert et al 2013). Throughout this article, setup errors are assumed to be comprised of a 
1 mm systematic- and a 2 mm random-error. In addition, range errors are described by a rela-
tive systematic error component of 3.5% and a random error of 1 mm.

The probability density p(∆x,∆y,∆z) induces uncertainty over εi that can be described 
with a probability distribution p(εi) which is of non-Gaussian form. The functional approx-
imation of the biological effect calculation along with the uncertainty assumptions made in 
this section enable the calculation of statistical moments of the biological effect ε in closed-
form. Hence, analytical expressions for the expectation value E[ε] and the covariance matrix 
E[εεT ]− E[ε]E[ε]T  can be derived. Here E[·] denotes the expectation operator. In general, it 
is also possible to obtain an analytical expression for higher order moments (e.g. skewness, 
kurtosis) to better describe the unknown shape of the probability density of p(εi), but this is 
beyond the scope of this paper.

2.3. Expected biological effect

To increase the readability for the following deviations, appendix A depicts a lookup table A1 
explaining the notation employed in this section. To calculate the expectation value, i.e. the 
first raw moment of the biological effect in closed-form considering setup and range uncer-
tainties, equation (12) needs to be solved:

E[εi] =

∫
d∆xd∆yd∆z p(∆x) p(∆y) p(∆z)εi(∆

x,∆y,∆z). (12)

H P Wieser et alPhys. Med. Biol. 62 (2017) 8959
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The computations require standard Gaussian algebra as exercised in appendix B or in equa-
tions (13)–(18) in Bangert et al (2013) yielding the form

E[εi] =

B∑
j

wjLx
ijL

y
ijZ

α
ij +

B∑
jm

wjwmΥ
x
ijimΥ

y
ijimΞ

√
β

ijim . (13)

Due to the quadratic term in the biological effect, the calculation of its expectation value 

requires the 4th order terms Υx/y
ijim and Ξ

√
β

ijim, representing the second raw moment of Lx/y
ij , Z

√
β

ij . 

These 4th order terms model the influence of pencil beam combinations jm of the quadratic 
term on the expected biological effect E[εi] and emerge by integrating the biological effect εi 
against Gaussian densities, as illustrated in equation (12). However, for fraction doses of indi-
vidual pencil beams, we have αc ◦ d � (

√
βc ◦ d)2 and consequently the biological effect 

is mainly determined by the linear part (first additive term in equation (13)) of the biological 

effect (Kamp et al 2014). Therefore, we suggest that covariance elements (i.e. j �= m) in Υx/y
ijim 

and Ξ
√
β

ijim can be neglected for a first approximation in the calculation of E[εi]. This reduces 

the number of computations and can be interpreted as neglecting the influence of the inter-

dependence of Lx/y
ij/im, Z

√
β

ij/im on the quadratic term of the expectation value of the biological 

effect E[εi]. As a result, the second raw moments Υx/y
ijim, and Ξ

√
β

ijim are approximated by squaring 

the first raw moments Lx/y
ij , Z

√
β

ij , which corresponds to only considering the trace ( j = m) 

of Υx/y
ijim and Ξ

√
β

ijim. Through this formulation, the full analytical calculation of E[εi] in equa-
tion (13) can be approximated with Ê[εi] in equation (14) and has then the same computational 
complexity as the calculation of the nominal biological effect according to equation (7):

Ê[εi] =
B∑
j

wjLx
ijL

y
ijZ

α
ij +




B∑
j

wjLx
ijL

y
ijZ

√
β

ij




2

=

B∑
j

wjAij +




B∑
j

wjBij




2

.

 

(14)

Assessing the expectation value of the biological effect Ê[ε] reduces to computations of 

Lx/y
ij  and Zα/

√
β

ij  according to equations (B.2) and (B.3), respectively. For optimization, these 
quantities are stored in influence matrices A = E[A] and B = E[B] facilitating a linear-quad-
ratic mapping for pencil beam weights to the expected biological effect.

2.4. Covariance of biological effect

The calculation of the covariance of the biological effect Σε requires the evaluation of mixed 
terms E[εiεl]

Σε[εi, εl] = E[εiεl] − E[εi]E[εl]. (15)

Given the voxel indices i, l, the pencil beam indices j, m, o, q and let V be the number of 
voxels, B be the number of pencil beams, mixed terms then take the form

H P Wieser et alPhys. Med. Biol. 62 (2017) 8959
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E[εiεl] =

∫
d∆xd∆yd∆zp(∆x) p(∆y) p(∆z) p(∆z)εi(∆

x,∆y,∆z)εl(∆
x,∆y,∆z)

=

B∑
jm

wjwmΥ
x
ijlmΥ

y
ijlmΞ

α
ijlm + 2

B∑
jmo

wjwmwoΥ
x
ijlmioΥ

y
ijlmioΞ

α2
√
β

ijlmio

+

B∑
jmoq

wjwmwowqΥ
x
ijiolmlqΥ

y
ijiolmlqΞ

√
β

ijiolmlq.

 

(16)

The derivation of equation (16) and a description of the calculations of the 6th order Ξα2
√
β

ijlmio  

and 8th order Ξ8th
√
β

ijiolmlq terms can be found in appendix C. As we are interested in the variance 

of the biological effect, which is stored in the diagonal of the covariance matrix Σε[εi, εl], we 
can explicitly drop additional voxel indices l and equation (16) can be reformulated to obtain:

E[εiεi] =
B∑
jm

wjwmΥ
x
ijmΥ

y
ijmΞ

α
ijm + 2

B∑
jmo

wjwmwoΥ
x
ijmoΥ

y
ijmoΞ

α2
√
β

ijmo

+

B∑
jmoq

wjwmwowqΥ
x
ijmoqΥ

y
ijmoqΞ

√
β

ijmoq.

 

(17)

Elements of these tensors correspond then to 2D (e.g. Υx
ijm), 3D (e.g. Υx

ijmo) and 4D (e.g. 
Υx

ijmoq) Gaussian distributions which are the results of integration over a bivariate, trivariate 
and quadvariate Gaussian distribution. Components in the first additive term (e.g. Υx

ijm) are 
in RV×B2

, which would result for a typical clinical scenario with 106 voxels and 2 · 104 pencil 
beams in 106 × 2 · 104 × 2 · 104 = 4 · 1014 tensor elements. Components in the second addi-
tive term (e.g. Υx

ijmo) are in RV×B3
 and quantities in the third additive term (e.g. Υx

ijmoq) are in 
order RV×B4

. These terms represent the second, third and fourth raw moment of the lateral/
depth components Lx/y, Zα, Z

√
β in voxel i. Calculation of these high-dimensional tensors is 

associated with prohibitive computational complexity in a clinical setting.
Consequently, we propose exactly the same approximation as exercised previously for the 

calculation of the expectation value of the biological effect and neglect all covariance terms 
of different pencil beams emerging from 

√
βc ◦ d  terms. As the linear term αc ◦ d  of the 

biological effect dominates compared to the squared term (
√
βc ◦ d) 2 the contribution to the 

biological effect in the case of fraction doses, terms that are quadratic, cubic or even quadric 
in 

√
βc ◦ d  only correspond to a minor correction of the overall computation. Hence, tensors 

like Ξα2
√
βc

ijmo  and Ξ8th
√
βc

ijmoq  containing the 
√
βc ◦ d  dose term have decaying contributions from 

terms of higher order. Neglecting the covariance in terms containing 
√
βc ◦ d  then yields an 

approximation of the mixed term:

Ê[εiεi] =

B∑
jm

wjwmΥ
x
ijmΥ

y
ijmΞ

α
ijm + 2

B∑
jmo

wjwmwoΥ
x
ijmLx

io Υ
y
ijmL

y
io Z

α
ij Z

√
β

im Z
√
β

io

+

B∑
jm

wjwm(Υ
x
ijm)

2(Υz
ijm)

2(Z
√
β

ij Z
√
β

im )2

=

B∑
jm

wjwmD̂
ε
ijm

 

(18)
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where D̂ε
ijm  denotes the trace of the full variance influence tensor D̂ε

ijlm . The last step of equa-
tion (18) collapses the sum for wo in the second term to reduce the dimensionality for further 
consideration. Herewith, the integration over trivariate Gaussian distributions factorizes into 
the integration over univariate and bivariate Gaussian distributions. Analogous, the integration 
over quadvariate Gaussian distributions is represented by the product of two integrated bivari-
ate Gaussian distributions. This reduces the computational complexity and storage require-
ments for the second raw moment of the probability distribution of the biological effect from 
O(V × B4) to O(V × B2). Substituting (18) in (15) yields the second central moment of the 
biological effect:

σ̂2[εi] = Σ̂ε[εi, εi] = Ê[εiεi] − Ê[εi] Ê[εi] =

B∑
jm

wjwmV
ε
ijm

=

B∑
jm

(
wjwmD̂

ε
ijm −

[
Aijwj + (Bijwj)

2
] [

Aimwm + (Bimwm)
2
])

.

 

(19)

Besides higher storage requirements and the two to threefold increased numerical computa-
tions required for biological treatment planning in relation to treatment planning based on the 
physical dose, the complexity of the approximated variance calculation of the biological effect 
equals the complexity of the variance of the physical dose. If not stated otherwise, calculations 
of the expectation value and variance of the biological effect are, for the remainder of this 
paper, based on the approximations shown in equations (14) and (18).

2.5. Probabilistic optimization of the biological effect

The expectation value E[ε] and the covariance Σε of the biological effect together constitute a 
Gaussian approximation of the probability density of the biological effect:

p(ε) = N (ε,E[ε],Σε) . (20)

This representation enables a probabilistic optimization using a piece-wise quadratic objec-
tive function according to Unkelbach and Oelfke (2004) and Bangert et al (2013). With the 
diagonal penalty matrix P = diag( p1, p2, ..., pN) and the prescribed biological effect ε∗, the 
expected value of the piece-wise quadratic objective function is given by

E[F ] = tr(PΣε) + (E[ε]− ε∗)
T P (E[ε]− ε∗) (21)

which can be evaluated very efficiently during optimization (Bangert et al 2013, Wahl et al 
2017).

2.6. Nonlinear conversion of moments of the biological effect to moments  
of the RBE-weighted dose

Clinical decision making and treatment plan evaluation in carbon ion therapy are usually based 
on the RBE-weighted dose. For this reason, the expectation value and variance of the biologi-
cal effect are converted to the expectation value and variance of the RBE-weighted dose using 
a Taylor expansion, a commonly known error- or uncertainty propagation method. In par-
ticular, a fourth order Taylor expansion at E[εi] evaluating partial derivatives at εi is employed 
to approximate the nonlinear conversion of moments of the biological effect (Anderson and 
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Mattson 2012). The nonlinearity is brought in by the square root of a scaled version of the 
biological effect in equation (1). Given γ = αx

2βx
, the propagation of moments then takes the 

following form:

E[RBE × di] ≈
√
β−1

x E[εi] + γ2 − γ − β−2
x

8(β−1
x E[εi] + γ2)

3
2
σ[εi]

2

− 5β−4
x

128(β−1
x E[εi] + γ2)

7
2
σ[εi]

2
 

(22)

σ[RBE × di]
2 ≈ β−1

x

2(β−1
x E[εi] + γ2)

1
2
σ[εi]

2 +
1
2

(
β−2

x

8(β−1
x E[εi] + γ2)

3
2

)2

σ[εi]
4.

 (23)
The Taylor expansion around εi is only locally valid, meaning the approximation quality 

generally shrinks when the variance of the biological effect increases. Furthermore, potential 
deviation from the Gaussian form (e.g. skewness or bimodal distributions) that is not captured 
by a simple two variable model may compromise error propagation.

2.7. Validation

The accuracy of the proposed analytical approximations for the expectation value and variance 
of the biological effect was investigated on a simplified artificial example in section 3.1. A 1D 
carbon ion SOBP with 150 mm range and 50 mm modulation was investigated considering 
3.5% range uncertainty. The SOBP was optimized performing an effect-based optimization 
according to Wilkens and Oelfke (2006). The resulting probabilistic quantities are compared 
against sampled references in terms of maximal deviation.

As the approximations closely match the sampled values, we demonstrate the use of APM 
for carbon ions in three concrete clinical settings in section 3.2. Specifically, we evaluated the 
APM formalism in a treatment planning study using conventional and probabilistic optim-
ization considering setup-, range-errors and fractionation effects. Information regarding 
uncertainty assumptions is given in section 2.2 and details of the patient cases and treatment 
plan parameters can be found in table 1.

Table 1. Information regarding the three different patient cases and their corresponding 
plan parameters. The third row ‘lat. spot distance’ denotes the lateral spot spacing in 
the isocenter plane and # voxels σ depicts the number of voxels for which standard 
deviation was calculated. The number of pencil beams and the number of voxels for σ 
calculation are the dominant factors for the overall runtime.

Unit Intra-cranial Para-spinal Prostate

Gantry angles (°) 50°, 135° 135°, 180°, 225° 90°, 180°
Couch angles (°) 0°, 0° 0°, 0°, 0° 0°, 0°
Lat. spot distance (mm) 3 4 5
Resolution (mm3) (1.2 × 1.2 × 3) (3 × 3 × 3) (2 × 2 × 3)
# pencil beam — 2022 17 756 15 669

# voxels σ — 0.95 × 105 1.2 × 105 0.83 × 105

# fractions f — 1 5 20
Pres. fraction dose (Gy(RBE)) 3 3 3
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For each case, we investigated the accuracy of APM moment computations for carbon ions 
in comparison to random sampling for unfractionated treatment (fraction f = 1). The objective 
function applied for treatment planning features squared deviation objectives with a prescribed 
fraction dose of 3 Gy(RBE) for the CTV and squared overdosing objectives for the outer contour 
and critical structures. We perform both conventional optimization and probabilistic optim ization 
according to equation (21). 3D γ-pass rates according to Low et al (1998), utilizing a distance to 
agreement of 2 mm and a dose difference criterion of 2%, were used for the evaluation.

Both the 1D SOBP as well as the patient cases are compared against sampled references. 
Using 5000 samples ensures that the standard error of the sampled mean σ[E[ε]] falls below 
1.4% and the expected relative error of the standard deviation σ[σ[ε]] drops below 1% (Squires 
2001).

For a proof of principle, the moment computations for carbon ions were implemented in 
matRad, an open-source treatment planning toolkit (Wieser et al 2017), which is entirely writ-
ten in the numerical computation environment Matlab (2016b, The MathWorks Inc).

All results presented in this paper are based on photon reference radio-sensitivity param-
eters αx = 0.1 Gy−1 and βx = 0.05 Gy−2. We assumed a single biological system and assigned 
these tissue specific parameters to all patient voxles.

3. Results

3.1. Uncertainty quantification of a 1D SOBP

The 1D carbon ion SOBP is shown in figure 2(a) and was computed according to equation (9). 
Figure 2(b) considers the same SOBP, however, with 3.5% range uncertainty.

Figure 2(b) compares the full analytical computation E[ε], its approximation Ê[ε] and sam-
pled references of the expected biological effect. The individual terms Zαw and (Z

√
βw)2 

contributing to the approximated expectation value of the biological effect Ê[ε] according 
to equation (14) are also shown. Figure 2(c) explicitly visualizes the quality of the approx-
imation for (Z

√
βw)2 against the full analytical calculation wTΞ

√
βw. As the maximum dif-

ference between the full analytical expected biological effect E[ε] based on equation (12) and 
the approximated expected biological effect Ê[ε] introduced in equation (14) amounts only to 
0.18%, we use the latter for further consideration. The maximum difference of the expected 
biological effect E[ε] based on sampling (shown by green crosses in figure 2(b)) to the full 
analytical calculation of the biological effects using 5000 samples is 0.39 %.

Figure 3 shows the variance calculation of the biological effect as laid out in section 2.4. 
Discrepancies between σ̂[ε] and the sampled standard deviation were caused by neglecting 
correlations in 

√
βc ◦ d  but did not exceed 5.2%; the root mean squared error was 0.002 (ε is 

a dimensionless quantity). One way to increase the accuracy of the standard deviation of the 
biological effect was to additionally consider covariance elements in the second additive term 
in equation (17). Doing so reduced the maximum relative deviation to 2.3% and the RMSE to 
0.0016%. Finally, a full analytical calculation of σ[ε] based on equation (17) further lowered 
the maximum relative deviation to 0.9%.

The histogram on the vertical axis in figure 3 shows the actual distribution of the biological 
effect of a single voxel at depth z = 150 mm obtained by means of sampling. As this voxel 
is located at the distal fall off of the SOBP, small range shifts result either in a biological 
effect of  ∼0.75 (high-effect) or  ∼0.1 (low-effect region). This behaviour is reflected by the 
bimodal-shaped probability distribution with peaks at  ∼0.75 and  ∼0.1. For subsequent error 
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propagation into RBE-weighted dose, however, we use a Gaussian probability density (solid 
black line on the vertical axis) as we only calculate analytically the expectation value and 
standard deviation of the unknown probability distribution of the biological effect.

3.2. Application of APM on patient cases

Resulting Ê[RBE × dp]—and σ̂[RBE × dp] distributions based on conventional- and probabi-
listic-optimization for the transversal iso-center slices for all three patient cases are shown in 
figure 4, whereas Ê[RBE × dp]- and σ̂[RBE × dp] were established according to the approxi-
mated analytical probabilistic modeling pipeline in section 2.

Figure 2. (a) Nominal physical dose dp, RBE-weighted dose RBE × dp, and biological 
effect ε of a 1D carbon ion SOBP with range 150 mm and 50 mm modulation. Calculations 
are based on photon radio-sensitivity parameters αx = 0.1 Gy−1 and βx = 0.05 Gy−2. 
The prescribed target dose is 3 Gy(RBE). (b) Approximated expected biological effect 
Ê[ε] (solid green) and its components (solid blue and dotted red) considering a range 
uncertainty of 3.5%. The difference between approximate and full expected biological 
effect calculation is shown in dashed orange (note the different scale on the right). 
Additionally, the expected biological effect from 5000 sampling experiments is shown 
by green crosses. (c) The differences of the proposed approximation (solid blue line) to 
the full analytical calculation (black circles) of the term (Z

√
βw)2. Note that the blue 

solid lines in figures 2(b) and (c) are the same.
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4 macOS Sierra, 2.7 GHz Intel Core i7, 16GB 2133 MHz RAM.

Similar to previous reports on probabilistic optimization with protons (Unkelbach et  al 
2009) and worst case optimization with carbon ions (Steitz et al 2016), APM creates a high 
dose margin around the CTV resulting in a reduced standard deviation inside the CTV while 
at the same time lowering the standard deviation within the organs at risk. This phenomenon is 
also reflected in the corresponding standard deviation volume histogram in figure 5(a). Similar 
results are observed for the other patient cases considering different fractionation schemes 
(figures 5(b) and (c)).

Calculation times for a complete clinical work-flow, including the calculation of the expec-
tation value and standard deviation of the RBE-weighted dose as well as a probabilistic optim-
ization, ranged between 4 and 7 h for individual patient cases using a regular desktop machine4.

3D γ-pass rates according to Low et al (1998), utilizing a distance to agreement of 2 mm 
and a dose difference criterion of 2%, were calculated and are shown in table 2. Results have to 
be interpreted with caution because random sampling is subject to uncertainty. Nevertheless, 
there is a good match between the approximated analytical and sampling based quantities, 
therefore justifying the approximations made in sections 2.3 and 2.4 to assess Ê[ε] and σ̂[ε]. 
The decrease of the γ-pass rates from Ê[ε] and σ̂[ε] to Ê[RBE × dp] and σ̂[RBE × dp] can be 
attributed to inaccuracies in the error propagation (see section 2.6). All γ-pass rates comparing 
approximated analytical and sampled quantities are above 94.95%.

Figure 5 depicts the standard deviation volume histograms of all patient cases, thereby 
explicitly comparing the results obtained via conventional optimization (no robustness con-
sidered) and probabilistic optimization (robustness consideration). The standard deviation 
histograms, which provide comprehensive information regarding the dose uncertainty within 
a specific volume of interest, are in agreement with the single slice displays of the standard 
deviation in figure 4.

Figure 3. Biological effect of a 1D C12 SOBP. The dark green solid line represents 
the nominal biological effect ε. The bright green solid line visualizes the expected 
biological effect Ê[ε] considering 3.5% range uncertainty. The orange solid line depicts 
the approximated standard deviation of the biological effect σ̂[ε]. Crosses indicate 
sampling results (N = 5000). The histogram on the y axis visualizes the probability 
distribution of the biological effect for z = 150 mm. Gaussian approximation based on 
the computed expectation value and variance (solid black) does not capture the bimodal 
distribution of the biological effect in high variance regions.
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Figure 4. Transversal slices of intensity-modulated carbon ion therapy treatment 
plans defined in table  1 assuming a different number of fractions. The CT data is 
superimposed with transparent dose colorwash, solid iso-dose lines, and contours of 
volumes of interest. Figures  (a)–(d) refer to an intra-cranial case, (e)–(h) to a para-
spinal case and (i)–(l) to a prostate case. The expectation value and standard deviation 
of the RBE-weighted dose based on a conventional optimization (labeled ‘conv.opt.’) 
are shown in the first and third row. Figures in the second and fourth row marked with 
‘prop.opt.’ depict the results obtained from probabilistic optimization. (a) Ê[RBE × dp] 
conv.opt. (b) Ê[RBE × dp] prop.opt. (c) σ̂[RBE × dp] conv.opt. (d) σ̂[RBE × dp] prop.
opt. (e) Ê[RBE × dp] conv.opt. (f) Ê[RBE × dp] prob.opt. (g) σ̂[RBE × dp] conv.opt. 
(h) σ̂[RBE × dp] prob.opt. (i) Ê[RBE × dp] conv.opt. (j) Ê[RBE × dp] prob.opt. (k) 
σ̂[RBE × dp] conv.opt. (l) σ̂[RBE × dp] prob.opt.
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4. Discussion

We demonstrated the feasibility of analytical computations of the expected value and variance 
of the biological effect and RBE-weighted dose in intensity-modulated carbon ion therapy 
considering setup and range uncertainties. The entire analytical pipeline for carbon ion ther-
apy maintains compatibility with APM’s core advantages allowing for (i) multi-dimensional 
linearly correlated random input variables, (ii) the definition of arbitrary correlation models, 
(iii) subsequent probabilistic optimization.

We decided to build APM upon the biological effect to avoid integrating equation (1) with 
the square root dependence against Gaussian densities. Besides analytical solutions, we intro-
duced analytical approximations which effectively reduce the number of operations (i) for 
the expected biological effect from O(V × B2) to O(V × B) and (ii) for the variance of the 
biological effect from O(V × B4) to O(V × B2) both at marginal loss in accuracy. We want to 
point out that the observed discrepancies between APM computations and 5000 samples for 
Ê[ε] and σ̂[ε] are not only related to the approximations within the APM formalism but are 
also due to residual statistical uncertainty in the sampling based reference. Furthermore, we 
demonstrated on three patient cases that APM can effectively be used for uncertainty minimi-
zation through probabilistic optimization of the biological effect.

The calculation of the expected biological effect exhibits the same computational com-
plexity as the nominal biological effect O(V × B); assessing its variance using the proposed 
method requires O(V × B2) operations. Consequently, the most time critical treatment plan 
parameters are the pencil beam grid spacing and the number of pencil beam contributions to 
voxel i. Despite the fact that carbon ions exhibit  ∼3 times less lateral scattering compared to 
protons, the number of dose deposition points is usually higher for carbon ions due to the frag-
mentation tail. For this reason, APM calculation times for carbon ions are in general longer 
compared to protons. Our current prototype implementation in the interpreted programming 
language Matlab still requires comparably long computations (4–7 h per patient case). To 
increase runtime, an implementation in our C++ based in-house treatment planning system 
built upon the MITK framework (Wolf et al 2005) is part of ongoing work. In general, we 

Figure 5. Standard deviation volume histograms of the RBE-weighted dose for 
the (a) intra-cranial case assuming 1 fraction, (b) the para-spinal case assuming 5 
fractions, and (c) the prostate case optimized for 30 fractions. Solid lines represent 
the results obtained from conventional optimization (conv.opt.) and dashed lines are 
based on probabilistic APM optimization (prob.opt.). (a) σ̂[RBE × D] [Gy(RBE)].  
(b) σ̂[RBE × D] [Gy(RBE)]. (c) σ̂[RBE × D] [Gy(RBE)].
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expect a similar relative performance for carbon ions as for protons where we have already 
shown that APM enables effective uncertainty quantification and probabilistic treatment plan 
optimization for protons using a constant RBE with total runtimes of a few minutes using our 
C++ in-house treatment planning system on regular desktop machines (Wahl et al 2017). In 
particular, it could be established that APM generally exhibits a better trade-off between speed 
and accuracy compared to sampling-based uncertainty quantification and minimization—
especially in the context of fractionated radiation therapy (Wahl et al 2017).

In contrast to the work based on the same APM concept presented in Bangert et al (2013) 
and Wahl et al (2017), who modeled the impact of physical uncertainties on the physical dose, 
this work is about the impact of physical uncertainties on the biological effect considering a 
variable RBE and the correlation between physical and biological beam properties. A direct 
application of the physical dose-based formalism presented by Bangert et al (2013) and Wahl 
et al (2017) to carbon ion treatment planning is not suitable as it does not model the depend-
ence of RBE on the particle spectra, tissue type and dose level.

Although we observe a maximal discrepancy of 5.2% comparing the approximated vari-
ance against sampled references for the 1D SOBP, we argue that this discrepancy is mitigated 
in a clinical 3D treatment plan for two reasons: (i) we usually do not see such steep dose 
gradients, and (ii) a lateral neighboring pencil beam will also have an influence and will con-
sequently lower the variance.

The nonlinear propagation of moments of the biological effect to moments of the RBE-
weighted dose is achieved via a Taylor expansion around E[ε]. Although the distribution over 
the biological effect is non-Gaussian and the RBE-weighted dose computation itself is nonlin-
ear, the error propagation only slightly diminishes the accuracy of APM calculations against 
random sampling results (see table 2). Calculating higher order moments n > 2 (skewness 
and kurtosis) of the biological effect would, in principle, permit a more precise shape descrip-
tion of the unknown probability distribution of the biological effect εi in voxel i.

Throughout this work, the lateral dose was only modeled by a single Gaussian component 
which might not model the low-dose halo accurately enough. In general, our considerations 
also apply to double or triple Gaussian lateral beam models. Similar to the depth components, 
the lateral dose could then also be modelled with a superposition of Gaussians.

Table 2. Global γ-pass rates for the expectation value and standard deviation of the 
biological effect and RBE-weighted dose on the basis of analytical calculations and 
random sampling (5000 samples). Three patient cases are under investigation considering 
one fraction. The abbreviation ‘conv.opt.’ indicates conventional optimization whereas 
‘prob.opt.’ denotes probabilistic optimization. A distance to agreement of 2 mm and a 
dose difference criteria of 2% were used for the γ-analysis.

Case
Resolution 
(mm)

conv.opt. prob.opt.

E[ε] (%) σ[ε] (%) E[ε] (%) σ[ε] (%)

Intra-cranial 1.1 × 1.1 × 3 100 99.88 100 99.82

Paraspinal 3 × 3 × 3 99.71 97.56 99.98 98.30
Prostate 3 × 3 × 3 100 99.41 99.49 98.70

E[RBE × dp] 
(%)

σ[RBE × dp] 
(%)

E[RBE × dp] 
(%)

σ[RBE × D] 
(%)

Intra-cranial 1.1 × 1.1 × 3 100 98.82 100 99.44

Paraspinal 3 × 3 × 3 99.99 94.95 99.15 96.28
Prostate 3 × 3 × 3 100 98.76 97.63 97.56
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Setup and range uncertainties are modelled in this article by multivariate normal distribu-
tions. Whilst it is common practice to describe uncertainties in the context of radiotherapy with 
Gaussian probability densities, the APM framework also facilitates modeling uniform distribu-
tion or any arbitrary probability density by a superposition of Gaussians. The latter illustrates 
again the core concept of APM, which is the approximation of non-integrable functions by a set 
of easily integrable functions—in this case Gaussians—to solve equation (4) in closed-form.

We want to emphasize that we assumed a single biological system for treatment planning 
and did not assign different photon LQ model radio-sensitives to individual structures. But 
we want to point out that it is in principle possible to use different αx

βx
 ratios for different tis-

sues in our approach if desired by the planner. As all results presented in this manuscript refer 
to photon LQ model parameter αx = 0.1 Gy−1 and βx = 0.05 Gy−2, we also evaluated and 
concluded that the mathematical deviations and approximations also hold for αx = 0.5 Gy−1 
and βx = 0.05 Gy−2.

The approach presented in this paper is generally applicable to biological treatment plan-
ning using other ion species such as protons or helium ions, provided that dose-averaged 
particle radio-sensitivity curves are available for various initial beam energies. APM does not 
depend on the underlying biophysical model; it allows for the incorporation of biological base 
data from other biophysical or phenomenological models.

The radio-sensitivity parameters of heavier ions are subjected to pronounced uncertainties; 
however, their variability has never been taken into account during optimization. This work may 
be the basis to account for uncertainties in the particle αp and βp parameters of the LQ model. In 
particular, APM’s capability to incorporate arbitrary correlation assumptions might be beneficial 
when modeling radio-sensitivity uncertainties (i) between αp and βp parameters, and (ii) along 
penetrated tissues for individual pencil beams. This would allow us to not only incorporate phys-
ical but also biological uncertainties into the treatment planning process of charged particles.

5. Conclusion

Using analytical probabilistic modeling, it is possible to calculate the expectation value and 
variance of RBE-weighted dose distributions in intensity-modulated scanned carbon ion ther-
apy in closed-form considering setup and range errors including fractionation effects. Using 
low-rank approximations for the required tensor computations, it is possible to perform non-
linear computations of the RBE-weighted dose at the same computational complexity as the 
linear computations of the physical dose with minimal loss of accuracy. We compare APM 
moment calculations for three patient cases against sampling-based references and observe 
global γ-pass rates (2 mm, 2%) of >99.15% for the expectation value and >94.95% for the 
standard deviation of the RBE-weighted dose. All mathematical derivations for calculating the 
statistical moments of the biological effects maintain compatibility with APM’s special fea-
tures of (i) enabling multi-dimensional linearly correlated random input variables, (ii) model-
ing arbitrary correlations, and (iii) generalizing to probabilistic optimization.
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Appendix A. Analytical probabilistic modeling notation

Appendix B. Calculation of expected biological effect

Let i, l be voxel indices, j, m be pencil beam indices and B be the number of pencil beams, 
then the full analytical calculation of the expectation value of the biological effect in voxel i 

Table A1. Notation used to describe APM for biological treatment planning.

Notation Meaning Description Complexity

L L Lateral dose in x, y O(V × B)
L E[L] 1st central moment of lateral dose O(V × B)
ϒ E[L2] 2nd central moment of lateral dose O(V2 × B2)

Z Z Depth dose in z O(V × B)
Z E[Z] 1st central moment of depth dose O(V × B)
Ξ E[Z2] 2nd central moment of depth dose O(V2 × B2)

D LxLyZ Dose influence matrix O(V × B)
D E[D] = LxLyZ Expected dose influence matrix O(V × B)
D E[D2] = ΥxΥyΞ 2nd central moment of dose 

influence matrix
O(V2 × B2)

V ΥxΥyΞ−D2 Covariance influence tensor O(V2 × B2)

Zα Zα Depth component α ◦ d  in z O(V × B)
Zα E[Zα] 1st central moment of depth α ◦ d O(V × B)
Ξα E[Zα 2] 2nd central moment of depth α ◦ d O(V2 × B2)

Z
√
β Z

√
β Depth component 

√
β ◦ d O(V × B)

Z
√
β E[Z

√
β ] 1st central moment of depth √

β ◦ d
O(V × B)

Ξ
√
β E[Z

√
β 2] 2nd central moment of depth √

β ◦ d
O(V2 × B2)

A LxLyZα Influence matrix of the linear term O(V × B)
A E[A] = LxLyZα Expected linear term of bio. effect O(V × B)
Ψ E[A2] = ΥxΥyΞα 2nd central moment of linear term 

of bio. effect
O(V2 × B2)

B LxLyZ
√
β Influence matrix of the squared 

term
O(V × B)

B E[B] = LxLyZ
√
β Expected squared term of bio. 

effect
O(V × B)

Φ E[B2] = ΥxΥyΞ
√
β 2nd central moment of squared 

term of bio. effect
O(V2 × B2)

ε Aw + (Bw)2 Biological effect O(V × B)
E[ε] Aw + wTΦw Expected bio. effect O(V × B2)

Ê[ε] Aw + (Bw)2 Approx. expected bio. effect O(V × B)

Dε — 2nd central moment of bio. effect O(V2 × B4)

D̂ε — Approx. 2nd central moment of 
bio. effect

O(V2 × B2)

V̂ε D̃ε − Ê[ε]2 Approx. covariance influence 
tensor of bio. effect

O(V2 × B2)
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considering setup and range errors is given by:

E[εi] =

∫
d∆xd∆yd∆z p(∆x) p(∆y) p(∆z)εi(∆

x,∆y,∆z)

=

∫
d∆xd∆yd∆z p(∆x) p(∆y) p(∆z)




B∑
j

wjLx
ijL

y
ijZ

α
ij +




B∑
j

wjLx
ijL

y
ijZ

√
β

ij




2



=
B∑
j

wj

{∫
d∆xp(∆x)Lx

ij

}{∫
d∆yp(∆y)Ly

ij

}{∫
d∆zp(∆z)Zα

ij

}

+
B∑
jm

wjwm

{∫
d∆xp(∆x)Lx

ijL
x
im

}{∫
d∆yp(∆y)Ly

ijL
y
im

}

{∫
d∆zp(∆z)Z

√
β

ij Z
√
β

im

}

=

B∑
j

wjLx
ijL

y
ijZ

α
ij +

B∑
jm

wjwmΥ
x
ijimΥ

y
ijimΞ

√
β

ijim .

 

(B.1)

According to Bangert et al (2013) equation (13), the lateral components Lx/y
ij  are given by

Lx/y
ij =

1√
2π(λ2

ij +Σ
x/y
jj )

e

(xij/yij−µ
x/y
j )

2

2(λ2
ij+Σ

x/y
jj ) (B.2)

where λ2
ij denotes the variance of the lateral Gaussian beam profile at the respective radio-

logical depth zij, Σ
x/y
jj  denotes the variance of pencil beam j determining the setup error in 

x/y-dimension, xij/yij  depicts the lateral distance to the central ray. In analogy, the expected 
value Zα

ij  of the alpha-dose αc ◦ d  depth component considering k = 1...13 fitted Gaussian 

components with mean µα
jk , variance δαjk

2 and weight ωα
jk is given by

Zα
ij =

13∑
k=1

ωα
jk√

2π(δαjk
2 +Σz

jj)
e
(zij−µα

jk )
2

2(δαjk 2+Σz
jj) (B.3)

while Σz
jj  denotes the variance of the range error of pencil beam j. Equation (B.3) is in close 

analogy to equation (16) in Bangert et al (2013).
The remaining three components Υx

ijlm, Υy
ijlm and Ξ

√
β

ijlm represent 2D normal distributions 
and additionally require the calculation of the co-variance between pencil beams to assess 
the expectation value of the biological effect. With the 2D vectors xijlm and µx

jm and the 2D 
matrices Λijlm, Σx

jm

xijlm =

(
xij

xlm

)
, µx

jm =

(
µj

µm

)

Λijlm =

(
λ2

ij 0
0 λ2

lm

)
, Σx

jm =

(
Σx

jj Σx
jm

Σx
mj Σx

mm

) 

(B.4)

the second raw moment of the lateral dose component in the x-dimension Υx
ijlm is given by

Υx
ijlm =

1

2π
√

|Λijlm +Σx
jm|

e−
1
2 (xijlm−µx

jm)
T(Λijlm+Σx

jm)
−1(xijlm−µx

jm). (B.5)
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Similar deviations can be found in Bangert et al (2013) in equation (14). Finally, the second 

raw moment Ξ
√
β

ijlm of the 
√
β ◦ d component can be calculated by defining:

zijlm =

(
zij

zlm

)
, µz

jumv =

(
µβ

ju

µβ
mv

)

Θβ
jumv =

(
δβju

2
0

0 δβmv
2

)
, Σz

jm =

(
Σz

jj Σz
jm

Σz
mj Σz

mm

)
.

 

(B.6)

Following the deviation made in equation (18) (Bangert et al 2013) and defining u and v be 

indices of individual Gaussian components, then Ξ
√
β

ijlm results in:

Ξ
√
β

ijlm =

13∑
uv=1

ωβ
juω

β
mv

2π
√
|Θβ

jumv +Σz
jm|

e−
1
2 (zijlm−µz

jumv)
T(Θβ

jumv+Σz
jm)

−1(zijlm−µz
jumv). (B.7)

Appendix C. Calculation of variance of the biological effect

Let i, l be voxel indices, j, m, o, q be pencil beam indices, and B be the total number of pencil 
beams, then the full analytical calculation of the covariance of the biological effect requires 
mixed terms E[εiεl], which can be calculated as follows:

E[εiεl] =

∫
d∆xd∆yd∆zp(∆x) p(∆y) p(∆z) p(∆z)εi(∆

x,∆y,∆z)εl(∆
x,∆y,∆z)

=

∫
d∆xd∆yd∆zp(∆x) p(∆y) p(∆z) p(∆z)




B∑
j

wjLx
ijL

y
ijZ

α
ij +




B∑
j

wjLx
ijL

y
ijZ

√
β

ij




2







B∑
m

wmLx
lmLy

lmZα
lm +

(
B∑
m

wmLx
lmLy

lmZ
√
β

lm

)2



 

(C.1)

=
B∑
jm

wjwm

{∫
d∆xp(∆x)Lx

ijL
x
lm

}{∫
d∆yp(∆y)Lx

ijL
x
lm

}{∫
d∆xp(∆x)Zα

ij Zα
lm

}

+

B∑
jmq

wjwmwq

{∫
d∆xp(∆x)Lx

ijL
x
lmLx

lq

}{∫
d∆yp(∆y)Ly

ijL
y
lmLy

lq

}{∫
d∆zp(∆z)Zα

ij Z
√
β

lm Z
√
β

lq

}

+
B∑

jmo

wjwmwo

{∫
d∆xp(∆x)Lx

ijL
x
lmLx

io

}{∫
d∆yp(∆y)Ly

ijL
y
lmLy

io

}{∫
d∆zp(∆z)Zα

ij Z
√
β

lm Z
√
β

io

}

+
B∑

jmoq

wjwmwowq

{∫
d∆xp(∆x)Lx

ijL
x
ioLx

lmLx
lq

}{∫
d∆yp(∆y)Ly

ijL
y
ioLy

lmLy
lq

}

{∫
d∆zp(∆z)Z

√
β

ij Z
√
β

io Z
√
β

lm Z
√
β

lq

}

 

(C.2)
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E[εiεl] =
B∑
jm

wjwmΥ
x
ijlmΥ

y
ijlmΞ

α
ijlm + 2

B∑
jmo

wjwmwoΥ
x
ijlmioΥ

y
ijlmioΞ

α2
√
β

ijlmio

+

B∑
jmoq

wjwmwowqΥ
x
ijiolmlqΥ

y
ijiolmlqΞ

√
β

ijiolmlq.

 

(C.3)

Considering only the variance, which is stored in the diagonal of the covariance matrix, we 
can set i = l and can then obtain:

E[εiεi] =
B∑
jm

wjwmΥ
x
ijmΥ

y
ijmΞ

α
ijm + 2

B∑
jmo

wjwmwoΥ
x
ijmoΥ

y
ijmoΞ

α2
√
β

ijmo

+

B∑
jmoq

wjwmwowqΥ
x
ijmoqΥ

y
ijmoqΞ

√
β

ijmoq.

 

(C.4)

As an example, the calculation of Ξα2
√
β

ijlmpq  is shown below (calculations for Υx/y
ijlmpq can be 

done in a similar fashion). Given that i, l, p depict voxel indices, j, m, q spot indices and u,v,w 
individual Gaussian components, we can define

zijlmpq =




zij

zlm

zpq


 , µz

jumvqw =




µα
ju

µβ
mv

µβ
qw


 ∆z

jmq =




∆z
j

∆z
m

∆z
q




Θjumvqw =



δαju

2 0 0

0 δβmv
2 0

0 0 δβqw
2


 , Σz

jmq =




Σz
jj Σz

mj Σz
qj

Σz
jm Σz

mm Σz
qm

Σz
jq Σz

mq Σz
qq




 

(C.5)

to solve

Ξ
α2

√
β

ijlmpq =

∫
d∆zp(∆z)Zα

ij Z
√
β

lm Z
√
β

pq

=

∫
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13∑
uvw=1

ωα
ju√

2πδαju
2

e
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ju )2

2δαju
2 ωβ

mv√
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e
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β
mv)

2
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2 ωβ

qw√
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2
e
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2δβqw
2
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∫
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juω
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3
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1
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juω
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3
2

√
|Σz

jmq|

1

(2π)
3
2
√
|Θjumvqw|

e−
1
2 (zijlmpq−µz

jumvqw)
T(Θjumvqw)

−1(zijlmpq−µz
jumvqw)

=

13∑
uvw=1

ωα
juω

β
mvω

β
qw
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√
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 (C.6)
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Calculations for Υx/y
ijlmpqno and Ξ

√
β

ijlmpqno are not explicitly stated here as their deviations are in 

close analogy to Ξα2
√
β

ijlmpq . Instead of integrating over a 3D Gaussian, the integration is thereby 

conducted over 4D Gaussian distributions.
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