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Abstract

Solving symmetric positive definite linear problems is a fundamental computational
task in machine learning. The exact solution, famously, is cubicly expensive in the
size of the matrix. To alleviate this problem, several linear-time approximations,
such as spectral and inducing-point methods, have been suggested and are now
in wide use. These are low-rank approximations that choose the low-rank space
a priori and do not refine it over time. While this allows linear cost in the data-
set size, it also causes a finite, uncorrected approximation error. Authors from
numerical linear algebra have explored ways to iteratively refine such low-rank
approximations, at a cost of a small number of matrix-vector multiplications. This
idea is particularly interesting in the many situations in machine learning where
one has to solve a sequence of related symmetric positive definite linear problems.
From the machine learning perspective, such deflation methods can be interpreted
as transfer learning of a low-rank approximation across a time-series of numerical
tasks. We study the use of such methods for our field. Our empirical results show
that, on regression and classification problems of intermediate size, this approach
can interpolate between low computational cost and numerical precision.

1 Introduction

Many of the most prominent machine learning problems can be seen as a sequence of linear systems,
finding x(i) such that

A(i)x(i) = b(i) for A(i) ∈ Rn×n, x(i), b(i) ∈ Rn, and i ∈ N. (1)

A prominent example is nonparametric logistic regression, further explained below. But there are
many more: Model adaptation in Gaussian process models [23, §5.2] requires the solution of the
problem k−1

θ,XXy for a sequence of parameter estimates θ, where kXX is a kernel Gram matrix over
the data set X = [x1, . . . ,xn]ᵀ, and y is the vector of target data. Further afield, although this
view is not currently the popular standard, deep learning tasks have in the past been addressed by
methods like Hessian-free optimization [9], which consist of such sequences. Importantly, in these
machine learning examples, the matrix A is usually symmetric positive definite (or, in the generally
non-convex case of deep learning, is at least approximated by an spd matrix in the optimizer to ensure
a descent step). This means that Eq. (1) is indeed an optimization problem, because x(i) then equals
the minimum of the quadratic function

x(i) = arg min
x̃

1

2
x̃ᵀA(i)x̃− x̃ᵀb(i) with gradient r(i)(x̃) := ∇f(x̃) = A(i)x̃− b(i). (2)

When facing linear problems of small to moderate size (i.e. n . 104) in machine learning , the typical
approach is to rely on standard algorithms (in particular, Cholesky decompositions) provided by
toolboxes like BLAS libraries, or iterative linear solvers like the method of conjugate gradients [8]
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(CG). Exact methods like the Cholesky decomposition have cubic cost, O(n3), iterative solvers like
CG have quadratic cost, O(n2m) for a small number of m iterative steps. These algorithms are self-
contained, generic “black boxes”—they are designed to work on any spd matrix and approach every
new problem in the same way. A more critical way to phrase this property is that these algorithms are
non-adaptive. If the sequence of tasks (A(i), b(i)) are related to each other, for example because they
are created by an outer optimization loop, it seems natural to want to propagate information from one
linear solver to another. One can think of this notion as a form of computational transfer learning,
in the “probabilistic numerics” sense of treating a computation as an inference procedure [7]. As
it turns out, the computational linear algebra community has already addressed this issue to some
extent. In that community, the idea of re-using information from previous problems in subsequent
ones is known as subspace-recycling [14]. But these numerical algorithms have not yet found their
way into the machine learning community. Below, we explore the utility of such a resulting method
for application in machine learning, by empirically evaluating it on the test problem of Bayesian
logistic regression (aka. Gaussian process classification, GPC).

1.1 Relation to Linear-Cost Methods

For linear problems of large dimensionality (data-sets of size n & 104), the current standard
approach is to introduce an “a-priori” low-rank approximation: Sampling a small set of approximate
eigenvectors of the kernel gram matrix [17, 18], and introducing various conditional independence
assumptions over sets of inducing points [24, 16, 21]. These methods achieve linear cost O(nm2)
because they project the problem onto a projective space of dimensionality m, and this space is not
adapted over time (when it is adapted [22], additional computational overhead is created outside the
solver). The downside of this approach is that it yields an approximation of finite quality—these
methods fundamentally can not converge, in general, to the exact solution. The algorithms we
consider below can be seen in some sense as the “missing link” between these linear-cost-but-finite-
error methods and the cubic-cost, exact solvers for smaller problems: They adapt the projective
sub-space over time at the cost of a small number of quadratic cost steps, while also attempting to
re-use as much information from previous runs as possible. In fact, the “guessed” projective space of
the aforementioned methods could be used as the first initialization of the methods discussed below.

2 Method

2.1 Krylov Subspace Recycling

The Krylov sequence of subspaces is a core concept of iterative methods for linear systems Ax =
b [19]. The Krylov subspace Kj(A, r0) is the span of the truncated power iteration of A operating on
r0, where r0 is the gradient (residual) from Eq. (2) at the starting point x0 of the optimization:

Kj(A, r0) = span{r0, Ar0, ..., A
j−1r0}. (3)

Methods that transfer information from one such iteration to the next in order to faster converge
to a solution in subsequent systems are referred to as Krylov subspace recycling methods [14].
The “recycling” of information is traditionally done by deflation [20, 4], augmentation [5, 12], or
combinations thereof [3, 1]. These two approaches differ in their implementation, but have the same
goal: restricting the solution to a simpler search space, to speed up convergence. Both store a set
of k linearly independent vectors W (i) ∈ Rn×k. For problem i in the above sequence of tasks, a
subspace-recycling Krylov method computes solutions that satisfy

x
(i)
j ∈ x0 +Kj(A, r0) ∪ span{W (i)}, (4)

r
(i)
j = b−Axj ⊥ Kj(A, r0) ∪ span{W (i)}. (5)

An augmented iterative solver keeps the vectors in W and orthogonalizes the updated residuals r(i)
j

against W . This method is easily included in methods that contain an explicit orthogonalization step,
an example of which is the General Minimum Residual method (GMRES) [12].
For A spd, one usually chooses CG as the iterative solver and deflation is easier incorporated [20]. A
deflated method “deflates” a part of the spectrum of A by projecting the solution onto the orthogonal
complement of W . This can be viewed as a form of preconditioning1 with a singular projector

1Not all authors agree: Gaul et al. [5] argue that the projector PW should not be considered a preconditioner
since its application removes a part of the spectrum of A while leaving the remainder untouched.

2



P
(1)
W

A−1b

i = 3

W (1) W (2) W

P
(2)
W

A−1b

i = 1 i = 2

W (3)

A−1b A−1b

def-CGCG def-CG

Figure 1: The def-CG algorithm applied to a sequence of linear systems with the implicit precondi-
tioning visualized. The first solution is obtained through normal CG and approximate eigenvectors
W , corresponding to the largest eigenvalues are calculated from a low-rank approximation. If prior
knowledge about the eigenvectors of the first system is available, def-CG can be used for the first
system as well.

PW , i.e. solving P (i)
W A(i)x(i) = P

(i)
W b(i). This property is in contrast to normal preconditioning

where the whole spectrum of A is modified by a non-singular matrix. In order to keep the additional
computational overhead incurred by subspace recycling low, the dimension of W should be low,
and contain vectors that optimally speed up the convergence. For iterative linear solvers, the rate of
convergence is directly proportional to the condition number

κ(A) =
λn(A)

λ1(A)
, (6)

where λj refers to the eigenvalues of A sorted in ascending order [13]. Typically, the smallest eigen-
values are the limiting factors for convergence; hence W (i) should ideally contain the eigenvectors
related to the k smallest eigenvalues—this yields an effective condition number of κeff = λn/λk+1,
which can drastically improve the convergence rate [19, 3]. Of course the same improvement in the
condition number can also be achieved by changing the largest eigenvalue.

2.2 Deflated Conjugate Gradient

In the special case when A is symmetric and positive definite (SPD), the conjugate gradient method
(CG) [8] is a popular choice to iteratively solve the system. As noted above, in machine learning,
where linear tasks almost invariably arise in the form of least-squares problems, this is actually the
typical setting. Saad et al. [20] derived a deflated version of CG based on the Lanczos iteration
(partly represented in Algorithm 1): it implicitly forms a tri-diagonal low-rank approximation to a
Hermitian matrix A, which translates to symmetric when A is real-valued. By storing quantities that
are readily available from the CG iterations, the low-rank approximation can be obtained without
costly matrix-vector computations. The eigenvalues of the approximation are known as Ritz values,
which tend to approximate the extreme ends of the spectrum of A [19]. The corresponding Ritz
vectors are used to find good approximations of the eigenvectors that can be used for a deflated
subspace W to improve the condition number [see 20, for more details]. The algorithm will be
referred to as def-CG(k, `) where ` is the number of CG iterations from which information is stored
in order to generate k approximate eigenvectors.
For deflated CG, the orthogonality constraint of Eq. (5) is replaced by a constraint of conjugacy,
i.e. rᵀiArj = 0 for i 6= j. The associated preconditioner PW = I −AW (WTAW )−1WT projects
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the residual onto the A-conjugate complement of W . Figure 1 illustrates the effect of applying
PW to A. For this figure, W was chosen by the def-CG algorithm according to the harmonic
projection method [12], so the approximate eigenvectors correspond to the largest eigenvalues. The
algorithm (Algorithm 1) differs from the standard method of conjugate gradients only in line 11 and
the initialization in line 3. How the eigenvectors are approximated is outlined in Section 2.3. The
additional inputs to the solver are a set of k linearly independent vectors in W and, optionally, W
multiplied with A if it can be obtained cheaply.
To estimate the computational cost of def-CG we assume k � n so terms not containing n in
the computational complexity can be ignored. Each iteration in Algorithm 1 has a computational
overhead of O(kn2) of solving the linear system in line 11. Computing the matrix WTAW has
complexity O(n2k2) but it only has to be computed once and if the procedure used by Saad et al.
[20] and further outlined in section 2.3, W and AW are obtained in O(n2(` + 1)k). By choosing
` and k to be small the computational overhead can be kept modest. This shows the importance of
choosing vectors in W that significantly reduce the number of required iterations to make up for the
computational overhead. Another factor to take into account is the additional storage requirements of
the deflated CG. The main contributing factors are the matrices W and AW , which each are of size
n× k and ` search directions of size n.

Algorithm 1 Deflated Conjugate Gradient method.
1 procedure DEFLATED-CG(k, `)(A, b, x−1, W , (AW ), tol)

Ensure: W ∈ Rn×k � k included in Alg. definition for interpretability, can obviously be inferred internally.
2 Choose x0 such that WT r0 = 0 where r0 = b−Ax0

3 x0 = x−1 +W (WTAW )−1WT r−1

4 Solve WTAWµ0 = WTAr0 for µ and set p0 = r0 −Wµ0 � deflation for initial iteration
5 while |rj | > tol (For j=1...) do
6 dj−1 = pTj−1Apj−1

7 αj−1 = rTj−1rj−1/dj−1

8 xj = xj−1 + αj−1pj−1

9 rj = rj−1 − αj−1Apj−1

10 βj−1 = rTj rj/r
T
j−1rj−1 � from line 6 to here: standard conjugate gradient

11 µj = Solve WTAWµj = WTArj � deflation for following iteration
12 pj = βj−1pj−1 + rj −Wµj
13 if j < ` then
14 Store dj , αj , βj , µj , pj
15 end if
16 end while
17 end procedure

2.3 Approximate Eigenvectors

One way of obtaining approximate eigenvectors is with the Lanczos algorithm and extract Ritz
value/vector pairs. The Lanczos algorithm from which Saad et al. [20] derived def-CG, generates a
sequence of vectors {pj} such that

pj+1 ⊥A span{W,p0, ...,pj}.

The matrix A can then be transformed into a symmetric and partly tridiagonal matrix Tl+k = ZTAZ,
with Z = [W,Pl] ∈ Rn×(`+k) and P` = [p0, ...,p`−1]. The eigendecomposition of Tl+k produces
pairs (θj ,uj)j=1,...,`+k, of which θj are Ritz values that approximate the eigenvalues of A. The
corresponding approximate eigenvector is obtained as the Ritz vector vj = Zuj . For an orthogonal
projection technique, such as deflation, the residual of (A − θI)v should be orthogonal to Z [1],
leading to the generalized eigenvalue problem

Zᵀ(A− θI)Zu = 0 ⇒ ZᵀAZu = θZᵀZu.

This can be transformed to a normal eigenvalue problem by multiplying both sides with (ZᵀZ)−1,
which exist because the columns in Z are linearly independent, but the symmetric properties would be
lost. Computing these matrices generates an additional, non-negligible computational cost, because
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CG does not generate orthogonal, but A-conjugate directions.2 By instead considering the base AZ
for orthogonality, Morgan [12] rephrased the problem as a Galerkin method for approximating the
eigenvalues of the inverse of A

(AZ)T (AZu− θZu) = 0.

This method is referred to as harmonic projection. By introducing

F = (AZ)TZ, G = (AZ)T (AZ),

the problem is conveniently formulated as

Gu = θFu. (7)

By using properties of the search directions and residuals generated from Algorithm 1, Saad et al.
[20] explicitly formed F and G from sparse matrices containing the stored quantitities from the first `
iterations of Algorithm 1. This effectively reduces the computational overhead of finding approximate
eigenvectors and makes the method competitive. Once Eq. (7) is solved, one chooses k of the `+ k
Ritz values θ with corresponding vectors u and stores them in U . The k approximate eigenvectors
for the next system are obtained as W = ZU . Preferably the largest or smallest θ are chosen but this
is not required.

Remark: Connection to First-Order Methods In very high-dimensional machine learning mod-
els, second-order optimization methods based on the quadratic model of Eq. (2) are not as popular
as first-order methods, like (stochastic) gradient descent and its many flavors. Although we do not
further consider this area below, it may be helpful to note that the schemes described here have a weak
connection to it, at least in the case of noise-free gradients. That is because the first step of CG is
simply gradient descent. The recycling schemes described above can thus be compared conceptually
to methods like momentum-based gradient descent [15] and other acceleration techniques.

3 Experiments

We test the utility of def-CG in a classical machine learning benchmark: The infinite MNIST [11]
suite is a tool to automatically create arbitrary size datasets containing images of “hand-written”
digits, by applying transformations to the classic MNIST set3 of actual hand-written digits. We used
it to generate a training set X of 36 551 images for the digits three and five, each of size 28 × 28
gray-scale pixels (This means the training set is three times larger than the set of threes and fives in
the original MNIST set). By the standards of kernel methods, this is thus a comparably big data set.
We consider binary probabilistic classification on this dataset, and follow a setup made popular by
Kuss and Rasmussen [10]. This setting is a good example of the role of linear solvers in machine
learning. It involves two nested loops of repeated linear optimization problems.

This involves computing a (Gaussian) Laplace approximation to the posterior arising from a Gaussian
process prior on a latent function f (in our case, p(f) = GP(0, k), with the Gaussian/RBF kernel
k(xi,xj) = θ2 exp

(
−(xi−xj)2/2λ2

)
), and the logistic link function p(yi | fi) = σ(yifi) = 1/(1 +

e−yifi) as the likelihood (see also [23, §3.7.3, which also outlines the explicit algorithm]).

The outer loop will find the optimal hyperparameters for the kernel and the inner (which is the focus
of this study) will find the f that maximize

Ψ(f) = log p(y|f) + log p(f |X) = log p(y|f)− 1

2
fTK−1f − 1

2
log |K| − n

2
log 2π, (8)

for a given kernel matrix K with Newton’s method.

Newton’s method converges to an extremum by evaluating the Jacobian and Hessian of a function at
the current location xn and finds a new location by computing xn+1 = xn −Hess−1

(Ψ) Jac(Ψ). These
iterations involve the solution of a linear system that changes in each iteration. For Laplace approxi-
mation the system to be solved can be made numerically stable by restructuring the computations

2Despite its name, the gradients produced by CG are actually orthogonal, not conjugate. The name arose out
of the historical context, because it is a conjugate directions method that uses gradients.

3http://yann.lecun.com/exdb/mnist/
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Table 1: Iterative solvers operating on the MNIST classification task. The table shows the progress
over Newton iterations. Within each Newton iteration the system in Eq. (10) needs to solved. Both
iterative solvers were set to run until they achieve a relative error of ε = 10−5. The column labeled t
shows cumulative runtimes for each method with the time to extract W included for def-CG.

Cholesky CG def-CG(k = 8, ` = 12)

It. log p(y|f) t [s] log p(y|f) rel. error δ t [s] log p(y|f) rel. error δ t [s]

1 -4926.523 426 -4968.760 8.573 · 10−3 231 -4968.760 8.573 · 10−3 245
2 -1915.537 896 -1931.348 8.254 · 10−3 492 -1938.585 1.203 · 10−3 436
3 -919.124 1366 -924.891 6.274 · 10−3 715 -926.668 8.208 · 10−3 617
4 -549.182 1875 -551.432 4.097 · 10−3 920 -551.796 4.760 · 10−3 790
5 -407.058 2362 -408.010 2.339 · 10−3 1088 -408.133 2.641 · 10−3 947
6 -353.632 2856 -354.040 1.154 · 10−3 1246 -354.085 1.281 · 10−3 1101
7 -335.575 3342 -335.711 4.053 · 10−4 1444 -335.744 5.036 · 10−4 1258
8 -331.326 3815 -331.346 6.036 · 10−5 1647 -331.355 8.753 · 10−5 1418
9 -330.997 4317 -330.998 2.309 · 10−6 1821 -330.996 4.018 · 10−6 1571

[10]. In each iteration the target and matrix get a new value

b(i) = H [i] 12K(H(i)f
(i)
X +∇ log p(y|f (i)

X )), (9)

A(i) = I +H(i) 1
2KH(i) 1

2 , (10)

with H = −∇∇ log p(y|f (i)
X ). This restructuring assures that the eigenvalues λi of A are contained

in [1, nmaxij(Kij)/4] and is therefore well-conditioned for most kernels [23].

Note how this task fits the setting sub-space recycling methods are designed for: It is difficult to
analytically track how an update to f

(i)
X affects the elements of (A(i))−1 and b(i), due the non-

linear dependence in fX . But as the Newton optimizer converges, the iterates change less and less:
|f (i)
X − f

(i−1)
X | < |f (i−1)

X − f
(i−2)
X |. Thus, A(i) and b(i) will change less and less between iterations,

and subspace recycling should become increasingly advantageous—up to a point, because of course
we have to limit the dimensionality of the deflated space for computational reasons.

Solving the linear system in Eq. (10) with a Cholesky decomposition is O(n3) expensive, where
n is the dimension of A i.e. the size of the training set X . Iterative methods, such as CG due to
the kernel matrix K being SPD, have been used to speed up the mode-finding of f̂ [23, 2]. Table
1 compares the cumulative computational cost and accuracy of the exact Cholesky decomposition,
standard CG and deflated CG for each iteration in Newtons method. A reduction of the relative error
ε = |b−Axi|/|b| was used as stopping criterion and was chosen to be 10−5.

Table 1 shows that iterative methods on their own already save computations. Figure 2 also shows a
plot of these results. The increasingly steep downward slope of the CG error in later optimization
problems suggests that the systems are getting easier to solve, possibly because the matrix A(i)

becomes better conditioned. But the figure also shows the additional advantage of sub-space recycling
in def-CG. Eight approximate eigenvectors were used, yielding a saving of at least 12 CG iterations
per system (∼ 25%). Enough to outweigh the the computational overhead of finding W and AW .
Initially, the reduction of iterations for def-CG stagnate (become parallel to CG) over the course
of a few Newton iterations, which suggests the recycled subspace fails to reduce the effective
condition number further. Either the recycled vectors do not find good approximations to the extreme
eigenvalues and the algorithm can be improved, or the difference between successive A(i) is too
significant so the propagated information is less useful. Additional experiments (not shown) suggest
that both effects play a role, but the former, i.e. numerical stability, dominates. Methods that try to
alleviate this problem by estimating the convergence of the approximate eigenvectors exist [6], but
cause additional computational overhead.

To better understand the effect of the deflation on individual solutions of Eq. (10), Figure 3 compares
the convergence of def-CG and standard CG. Each solver was set to run until a relative error of 10−8

was achieved and the results are shown in Fig. 3. The figure indicates that the computational savings
do not stem from the initial projection onto the A-orthogonal complement of W as one could suspect,
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Figure 2: Left: Computational cost (CPU time) per iteration of Newton’s method. Right: number of
iterations required for CG and def-CG(8,12) to solve a single system (Eq. (10)) to a relative error of
ε = 10−5. The stopping criterion for the Newton iteration was ∆Ψ(f) < 1, thus only requiring the
first two terms in Eq. (8) to be computed.

but rather from a steeper convergence. This fits with the idea that deflation lowers the effective
condition number of deflated system relative to the original problem.

3.1 Comparison to Linear-Cost Approximations

We now investigate the utility of sub-space recycling relative to the linear cost approximation methods
of finite error discussed above in Section 1.1, in particular to inducing point methods. These
methods assume that the training set elements fn at X ∈ Rn×d are approximately independent
of each other when conditioned on a smaller set of values fm at representer points Xm ∈ Rm×d.
In GPC, this effectively reduces the task to optimizing only the latent variables fm ∈ Rm with
m < n, to maximize the objective in Eq. (8). The latent variables for the remaining points in the
data set are then induced by the conditional distribution p(fn−m |fm), with mean E[fn−m |fm] =
K(n−m)mK

−1
mmfm. A measure of the performance over the training set is then obtained by evaluating

the objective with the inferred latent variables.

We compared the accuracy of iterative methods to inducing point methods with a randomly selected
subset of the training data. Figure 4 shows the convergence of the Newton optimizer for subsets
Xm of log p(y |f) of varying sizes. (each time, error was evaluated on the entire training set X).
The results confirm the expected picture: The approximate methods can be significantly faster than
the iterative solves, but they also incur a significant approximation error. If an accurate solution is
required, the iterative solvers can be competitive. For this experiment, the iterative methods have a
computational cost comparable to that of the approximate methods running on a (comparably large)
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Figure 3: Relative residual over multiple solutions of Newton’s method i.e. the systems described in
Eq. (10) were solved. Each solver had a relative error of ε = 10−8 as stopping criterion. Similarly to
the results in Fig. 2, the time required to find a solution that satisfies the error bound becomes faster
for each Newton iteration. The deflated method achieves a faster convergence rate as seen by the
slope of the relative residual. This confirms that re-using information from a previous system indeed
lowers the effective condition number.
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Figure 4: Comparison of accuracy between the iterative methods CG, def-CG and differently sized
subsets of data measured as the relative error of log p(y |f) to the “exact” (up to machine precision)
value achieved by a direct (Cholesky) solver on the full data set. Each dot represents the approximated
log p(y |f) for the full training set after each iteration of Newton’s method. The CPU time refers to
the cumulative time spent solving the linear systems in Eq. (10), which is the computationally most
expensive part of each Newton iteration.

subset of between 25% and 50% of the data set. But they also achieve an improvement of about 6
orders of magnitude in precision.

4 Conclusion

We have investigated the use of Krylov sub-space recycling methods for a realistic example application
in machine learning. ML problems often involve outer loops of (hyper-) parameter optimization,
which produce a sequence of interrelated linear, symmetric positive definite (aka. least-squares)
optimization problems. Subspace-recycling methods allow for iterative linear solvers to share
information across this sequence, so that later instances become progressively cheaper to solve. Our
experiments suggests that doing so can lead to a useful reduction in computational cost. While non-
trivial, sub-space recycling methods can be implemented and used with moderate coding overhead.

We also compared empirically to the popular option of fixing a low-rank sub-space a priori, in the
form of spectral or inducing point methods. The overarching intuition here is that these methods can
achieve much lower computational cost when they use a low-dimensional basis. But in exchange
they also incur a significant computational error. In applications where computational precision is
at least as important as computational cost, sub-space recycling iterative solvers provide a reliable
answer of high quality. While their run-time scales quadratically with data-set size, they are certainly
scalable, at acceptable run-times, to data-sets containing ∼ 105 to ∼ 106 data points.
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