
A lower limit on the magnetic field
strength at the shock front of the

supernova remnant HESS J1731-347

Masterarbeit

eingereicht von

Sebastian Rottenanger

Eberhard Karls Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Kepler Center for Astro and Particle Physics

Institut für Astronomie und Astrophysik
Abteilung Hochenergieastrophysik

März 2015





Erklärung

Hiermit versichere ich, dass die vorliegende Arbeit von mir selbständig verfasst wurde und keine anderen
als die angegebenen Hilfsmittel und Quellen benutzt wurden. Alle wörtlich oder sinngemäß aus anderen
Werken übernommenen Aussagen sind als solche gekennzeichnet. Die vorliegende Arbeit war bisher
weder vollständig noch in wesentlichen Teilen Gegenstand eines anderen Prüfungsverfahrens und die
Arbeit wurde weder vollständig noch in wesentlichen Teilen bereits veröffentlicht.

Ort, Datum Sebastian Rottenanger





Abstract

In this master thesis a lower limit for the magnetic field strength at the shock front of the supernova
remnant HESS J1731-347 was determined by studying two synchrotron shock filaments observed in the
X-ray image of the source. A limit higher than 12 µG would give evidence for hadronic cosmic ray
acceleration at the shock front. The image used for the analysis was taken in April 2008 with the Chandra
X-ray telescope. After a careful reduction of the data, which included background reduction, the core
of the analysis was to fit the emission following a model expected when energy losses of the electrons,
due to synchrotron emission, are taken into account. To study the influence of the point spread function
(PSF) on the emission profiles, PSF simulations were done with a ray trace simulation software specific
of Chandra. The obtained PSF were fitted two-dimensional. Best fit results show that the PSF is several
times smaller than the studied filaments. To determine the morphology of the X-ray structures also a
two-dimensional fit was performed. The results indicate that one of the filaments, the north-west (NW)
filament, is placed at the outer shock front as part of a circle with its origin at the central compact object
(CCO). The results of the two-dimensional fit were used as input coordinates for a one-dimensional fit of
the emission profiles projected along the filament, based on an exponential function. The best fit results
for the filament near the CCO include the possibility of a very wide emission profile with a magnetic
field strength lower than 12 µG. Results for this filament are therefore not conclusive. To improve the
estimate on the the filament width, the NW filament at the outer shock front was modeled with a fit
function which considers that the observed surface brightness of the remnant has to be a projection of the
radial emissivity. With that, the width of the intrinsic profile at the source is only ∼1/7 of the observed
width. The best fit results give a width of 10.35+1.69

−1.39 arc seconds. Using this result, a lower limit on
the magnetic field at the shock front was calculated with different models including both the diffusion
and convection motion of electrons at the shock front. The results show that magnetic field amplification
is most likely at work in HESS J1731-347 and depending on the shock velocity, on the distance of the
source and the model used, the magnetic field could be in the range of at least more than 50 µG.



Zusammenfassung

In dieser Masterarbeit wurde eine Untergrenze für die Magnetfeldstärke an der Schockfront des Supernova-
Überrestes HESS J1731-347 bestimmt, indem zwei Synchrotron Schockfilamente im Röntgenbild der Quel-
le untersucht wurden. Eine Grenze höher als 12 µG würde Hinweise darauf geben, dass an der Schockfront
hadronische kosmische Strahlung beschleunigt wird. Das Bild, welches für die Analyse benutzt wurde,
entstand im April 2008 mit dem Röntgenteleskop Chandra. Nach einer sorgfältigen Datenreduktion, in
der auch die Hintergrundstrahlung reduziert wurde, war der Hauptteil der Analyse die Emission mit
einem Modell zu fitten, welches erwartet wird, wenn die Elektronen Energie durch Synchrotronstrah-
lung verlieren. Um den Einfluss der Punktspreizfunktion (PSF) auf die Emissionsprofile zu untersuchen,
wurden PSF-Simulationen mit einer für Chandra spezifischen Raytracing Software durchgeführt. Die er-
haltenen PSF wurden zweidimensional gefittet. Die besten Fit-Ergebnisse zeigen, dass die PSF um ein
vielfaches kleiner ist als die untersuchten Filamente. Zur Bestimmung der Morphologie der Röntgenstruk-
turen wurde ebenfalls ein zweidimensionaler Fit durchgeführt. Die Ergebnisse deuten darauf hin, dass
sich eines der Filamente, das Nordwest (NW) Filament, an der äußeren Schockfront befindet, als Teil
eines Kreises, dessen Zentrum bei dem Central Compact Object (CCO) liegt. Die Ergebnisse des zwei-
dimensionalen Fits wurden als Koordinaten für einen eindimensionalen Fit der entlang der Filamente
projizierten Emissionsprofile benutzt, welcher auf einer exponentiellen Funktion basiert. Die besten Fit-
Ergebnisse für das Filament nahe des CCO beinhalten die Möglichkeit eines sehr breiten Emissionsprofils
mit einer Magnetfeldstärke geringer als 12 µG. Die Ergebnisse für dieses Filament sind daher nicht sehr
aussagekräftig. Um die Abschätzung der Filamentbreite zu verbessern, wurde das NW Filament an der
äußeren Schockfront mit einer Funktion modelliert, welche berücksichtigt, dass die beobachtete Oberflä-
chenhelligkeit des Überrests eine Projektion der radialen Emissivität sein muss. Damit ist die eigentliche
Breite des Profils in der Quelle nur ∼1/7 der beobachteten Breite. Die besten Fit-Ergebnisse ergeben
eine Breite von 10.35+1.69

−1.39 Bogensekunden. Unter Benutzung dieses Ergebnisses wurde eine Untergren-
ze für die Magnetfeldstärke an der Schockfront mit verschiedenen Modellen berechnet, welche sowohl
die Diffusions- als auch die Konvektions-Bewegung der Elektronen an der Schockfront beinhalten. Die
Ergebnisse zeigen, dass sehr wahrscheinlich Magnetfeld-Verstärkung in HESS J1731-347 stattfindet und
abhängig von der Schockgeschwindigkeit, dem Abstand zur Quelle und dem benutzen Modell, sich das
Magnetfeld mindestens im Bereich von mehr als 50 µG befinden könnte.



Contents

1 Introduction and Overview 1

2 The studied Source: HESS J1731-347 4

3 The Chandra X-ray telescope 6
3.1 CCD X-ray detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Chandra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 HRMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 ACIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Theoretical Aspects 14
4.1 Supernovae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.1 Supernova Type II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.2 Supernova Type I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Supernova Remnants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Diffusive Shock Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Synchrotron Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 Diffusion of electrons in a fully ionized plasma . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.6 Cosmic Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.7 Synchrotron Shock Filaments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.8 Point Spread Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.9 Exposure Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.10 Background in Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Data Reduction 30
5.1 Background Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Exposure Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Simulating the PSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Fitting of the Filaments 46
6.1 2D fitting with Sherpa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2 Fit with Convolution of an Exponential Profile and the PSF . . . . . . . . . . . . . . . . . 53
6.3 Projection Effect on the Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7 Results 68
7.1 A lower limit on the magnetic field strength at the shock front . . . . . . . . . . . . . . . 68

8 Discussion and Outlook 75

i



ii



List of Figures

2.1 Early HESS and ROSAT images of HESS J1731-347 . . . . . . . . . . . . . . . . . . . . . 4
2.2 HESS J1731-347 in radio, X-ray and TeV . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 The grade system for detected events with Chandra . . . . . . . . . . . . . . . . . . . . . 8
3.2 The Chandra space telescope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 The High Resolution Mirror Array of Chandra . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 The HRMA off-axis PSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 ACIS detector in the focal plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6 ACIS effective area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.7 The Science Instrument Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Onion structure of a 25 solar mass star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Evolution stages of a shell-like supernova remnant . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Diffusive shock acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Motion of a charged particle in a magnetic field . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5 Cosmic ray spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6 Extensive air shower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.7 X-ray image of Cas A and plot of theoretical shock filament emission profile . . . . . . . . 26
4.8 Airy function approximated with a Gaussian and the Rayleigh limit . . . . . . . . . . . . 27
4.9 Normalized particle background spectra for different telescopes . . . . . . . . . . . . . . . 29

5.1 Chandra counts image of HESS J1731-347 . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Spectra extracted from the Chandra image of HESS J1731-347 and from the 2005 Blank

Sky background image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Excluded 5x5 grade events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4 Background image multiplied by scaling factor . . . . . . . . . . . . . . . . . . . . . . . . 36
5.5 Dithering pattern of Chandra during an observation . . . . . . . . . . . . . . . . . . . . . 37
5.6 Weighted exposure map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.7 Two color Chandra image of HESS J1731-347 . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.8 Fitted spectrum of HESS J1731-347 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.9 Exposure corrected and uncorrected image of HESS J1731-347 in comparison . . . . . . . 40
5.10 Marked position for the PSF simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.11 MARX simulations of the PSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.12 Fit of simulated PSF for a point-like source . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.13 Principle of fitting the emission profile of the filaments . . . . . . . . . . . . . . . . . . . . 44
5.14 Fit of simulated PSF for a circular source . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1 Filaments selected for two dimension fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

iii



LIST OF FIGURES

6.2 Selected fit regions for two dimensional fit in Sherpa . . . . . . . . . . . . . . . . . . . . . 49
6.3 Two dimensional fits of two shock filaments . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4 Fit of the average background in the 2005 Blank Sky background image . . . . . . . . . . 57
6.5 One dimensional fit of the filament near the CCO, using a convolution with the PSF . . . 58
6.6 One dimensional fit of the NW filament, using a convolution with the PSF . . . . . . . . . 59
6.7 Projection of 3D SNR on image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.8 Effect of summing up a filament with the wrong geometrical model . . . . . . . . . . . . . 61
6.9 Comparison of simulated and measured emission profiles for the NW filament . . . . . . . 63
6.10 NW filament emission profile fitted with function considering the projection . . . . . . . . 64
6.11 peak of NW filament emission profile fitted with function considering the projection . . . 65
6.12 Comparison of best fit profile with PSF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.1 Lower limit for the magnetic field strength at the shock front of HESS J1731-347 if the
distance is 3.2 kpc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2 Lower limit for the magnetic field strength at the shock front of HESS J1731-347 if the
distance is 5.2 kpc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

iv



Chapter 1

Introduction and Overview

At the beginning of the 20th century cosmic rays were first discovered when it was realized that there is
other radiation on earth than natural radioactivity. This was discovered when electroscopes discharged
in an environment shielded from the natural radioactivity on earth. The next evidence was found in 1912
and 1913 when Hess and Kolhörster measured the ionization of the atmosphere in a balloon at different
altitudes (Hess 1912). The results showed that the ionization increases with altitude, clearly suggesting a
radiation component from outside the earth. Results from measurements during a total eclipse excluded
the possibility for the sun to be the source. In the 1920s Millikan named the particles “cosmic rays” and
proposed that they were γ-rays as by-product of fusion of hydrogen. However, in 1929 an experiment by
Kolhörster and Bothe, which includes two coincidence counters with a thick gold plate between them,
showed events in both counters (Bothe & Kolhörster 1929). This is only possible if the cosmic rays are
charged particles.
There are different sources considered as potential origins of cosmic rays. Active galactic nuclei (AGN),
super massive black holes in the center of galaxies, are considered sources for cosmic rays from outside
the galaxy and for the very high energy cosmic rays up to 1021 eV. Pulsars, pulsating neutron stars with
a very high magnetic field, are also considered sources of galactic cosmic rays. For galactic cosmic rays it
was already calculated in 1934 by Baade and Zwicky (Baade & Zwicky 1934) that supernovae can provide
enough energy output to explain the cosmic ray energy density in the galaxy. The acceleration process
expected for this is the second order Fermi acceleration, named after the physicist Enrico Fermi. It is
explained in more detail in section 4.3 and describes how particles are accelerated by diffusing through
the shock and back, in a stochastic process.
The galactic cosmic rays with energies up to the knee at about 1015 eV in the cosmic ray spectrum (see
section 4.6) are then expected to come from supernova remnants (SNR). Only a few bright non-thermal
shell-type TeV SNRs have been discovered up to now (Yang, Rui-zhi et al. 2014). One of these is HESS
J1731-347, which was discovered in 2008 as a TeV source and is described in more detail in chapter 2.
The fact that shell-type SNRs are observed in TeV γ-rays is evidence for particle acceleration.
There are two different possibilities for the origin of these γ-ray photons: the so called leptonic and the
hadronic scenarios (as for example discussed in case of HESS J1731-347 in Yang, Rui-zhi et al. (2014)). In
the leptonic case, the γ-rays originate from inverse compton scattering of cosmic microwave background
photons through electron-photon scattering. For very high electron cosmic ray energies in the range of
TeV, the scattering is suppressed by the Klein-Nishina-effect. For a high magnetic field strength at the
shock front of the SNR the leptonic case is also suppressed because of strong synchrotron cooling of the
electrons (Tanaka et al. 2008).
In the hadronic scenario the accelerated hadrons, mainly protons, interact through inelastic scattering
with the surrounding nuclei and produce π0 which then decay into γ-rays. To accelerate protons at the

1
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SNR shock front to TeV energies, the magnetic field there has to be amplified to values significant higher
than 12µG from the compression of the interstellar medium because of the shock. If not, the protons will
escape from the acceleration region because of a too big gyroradius ∝1/B.
As explained above, the magnetic field at the shock front plays an important role in the acceleration
of cosmic ray particles in a SNR. Therefore in this work a lower limit of the magnetic field strength at
the shock front of the SNR HESS J1731-347 is calculated using X-ray synchrotron emission at the shock
front. This will help to characterize the conditions for the acceleration of particles at the shock front and
could help to create spectral energy distribution models for the γ-ray spectrum including the leptonic
and hadronic scenarios. Furthermore, the limit will give evidence if the acceleration of hadronic particles
is possible in HESS J1731-347 at all. How this limit is determined together with an outline of the work
is now described.
In chapter 2 the studied source HESS J1731-347 is discussed. In chapter 3 the Chandra X-ray telescope
is presented together with the X-ray CCD detectors that are used in it. Some important concepts used
in the analysis are introduced and discussed.
For the understanding of the topic, of the analysis and of the main results, several specific topics are
introduced in chapter 4: First the supernova itself and then the remaining supernova remnant are dis-
cussed to explain the origin of HESS J1731-347 and how it will evolve with time. Then the diffusive shock
acceleration of particles is explained to show how cosmic rays can reach TeV energies before escaping from
the shock region. How the observed X-ray synchrotron emission in HESS J1731-347 is produced is also
presented, using electrodynamics. The process of diffusion of charged particles in a magnetic field plays
an important role in the calculation of the limit on the magnetic field strength, therefore it is explained
together with the case of a turbulent magnetic field. Then again cosmic rays are discussed, but this time
more emphasis is put on their properties. The last part of chapter 4 is dedicated to four important topics
for the data analysis. The theory on synchrotron shock filaments is discussed, what shape the emission
profile should have and how it can be used to calculate a lower limit on the magnetic field strength at
the shock front. Also the origin of the point spread function (PSF) which broadens the image structures
is discussed and how it can be approximated by a gaussian function. Then the exposure map used to
exposure correct the image in the analysis part is discussed theoretically by showing how the conversion
from counts to flux is performed. Since a background reduction is done in the image in the analysis part,
the different background influences in an observation are also discussed.
The data reduction for preparing the study of the spatial properties of the Chandra image of HESS
J1731-347 is presented in chapter 5. First the background in the image is studied and reduced using the
software package CIAO. For this the energy range is limited to part where the synchrotron emission is
higher than the background emission, potential particle events are excluded and an image of a background
observation is prepared for being fitted in a later chapter to model the background. To exposure correct
the image, a spectrum is extracted from the image and studied. With the spectral parameters, a weighted
exposure map is produced and the observation image divided by it. To study the size and influence of
the PSF, images are simulated at the positions of the studied X-ray structures in the observation image.
These are then fitted with the fitting software Sherpa included in CIAO.
In chapter 6 the shock filaments in the image are studied using the obtained data. The filaments are
fitted two dimensional to determine the morphology of the structures. A fit function consisting of the
convolution of a gaussian PSF with an exponential fit function is used to fit the X-ray emission profiles,
including the influence of the PSF. Using the fit results for the morphology, the filaments are fitted one
dimensional as a projection along the filament. Also, the background observation is fitted here in the
same way to get a model for the background. After this, a different model, which assumes that the
observed profile is a projection of the intrinsic 3-dimensional emission profile on the image plane, is used.
With this model the emission profile is fitted and compared to simulated projection profiles.

2
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In chapter 7 the fitted width of the X-ray synchrotron emission profile is used to calculate a lower limit
on the magnetic field at the shock front of HESS J1731-347. This is done by using the length scale of
the cosmic ray distribution at the shock front in a model which considers that the electrons move away
from the shock front by diffusion and by convection. Two special cases are treated where the electrons
mainly suffer synchrotron losses while moving only either with diffusion or by convection. The results of
these different models are calculated with different published shock velocities and compared.
At the end, a conclusion and an outlook is given based on the results of this work.

3



Chapter 2

The studied Source: HESS
J1731-347

In this work, the supernova remnant HESS J1731-347 is studied. It was first discovered in TeV in
observations with the HESS telescope (Aharonian et al. 2008), a Cherenkov telescope array located in
Namibia. At the time of discovery, it was still an unidentified source, since no counterpart in other
wavelengths was known and the observation time of 14h was not enough for a good resolution of the
structure (see figure 2.1(a)). However, in 2008 a counterpart in radio was discovered as the supernova
remnant G353.6-0.7 (Tian et al. 2008) which is shown in figure 2.2 (left). The TeV source overlaps the
whole radio source, confirming it as a counterpart (Tian et al. 2008). Furthermore, the all-sky survey of
the ROSAT X-ray Observatory of 1993 shows a diffuse X-ray emission (see figure 2.1(b)) with the same
morphology as the lower half of the radio SNR (Tian et al. 2008). Only the lower half being visible could
be due to the fact that the absorption increases towards the upper half of the image (Tian et al. 2008;
Abramowski et al. 2011). Later observations in X-ray with XMM-Newton and a new observation with
HESS with four times the initial exposure time, both shown in figure 2.2, showed a similar morphology as
the radio observation in the overlapping regions, confirming their association (Abramowski et al. 2011).
The TeV γ-ray morphology of HESS J1731-347 was identified as being of a shell-type (Abramowski

Figure 2.1: The first two images made of HESS J1731-347. Left: HESS TeV image smoothed with a
gaussian. (Aharonian et al., 2008) Right: X-ray ROSAT image, exposure-corrected in the 0.1-2.4 keV
band and smoothed with a Gaussian. (Tian et al., 2008) Only lower part of the remnant visible due to
absorption.
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et al. 2011). The angular radius of the remnant in radio is given in Tian et al. (2008) as ≈0.25◦. In
Abramowski et al. (2011) a fit of the radial γ-ray profile was done and the best fit angular radius is given
by 0.27◦, in agreement with the radio result. At the center a central compact object (CCO) can be seen
(Klochkov et al. 2013).
The emission observed from HESS J1731-347 includes radio, X-ray and γ-rays. The X-ray emission was
identified as synchrotron emission, but also in the radio and γ-ray emission clearly identified non-thermal
emission was found (Abramowski et al. 2011). The extended X-ray emission is concentrated in arc-like
structures like it is often seen in shell-type SNR (Abramowski et al. 2011), with parts of them also visible
in radio and γ-ray.
Concerning the distance of HESS J1731-347 from the earth, in Abramowski et al. (2011) a lower limit of
3.2 kpc was estimated. This was done by comparing the absorption in the observation with that of the
foreground and using galactic rotation curve models. In Abramowski et al. (2011) also an estimate on
the position in the Galaxy and on the upper limit of the distance is done: Assuming that, because of the
density of massive stars, supernovae are more likely to happen in the spiral arms of the galaxy, HESS
J1731-347 could either be in the Scutum-Crux arm at a distance of ≈3 kpc or in the Norma arm, located
at a distance of ≈4.5 kpc. There is also the Sagittarius arm at 12 kpc, but this distance would lead to a
much higher luminosity and size than that of other TeV shell-type SNR, so it is more likely that HESS
J1731-347 is near the first two arms. Another estimate on the distance was recently calculated in Fukuda
et al. (2014) as 5.2 kpc.
In Abramowski et al. (2011) an upper limit for the density of the medium surrounding HESS J1732-347
was derived. Because of the lack of thermal X-ray emission in the observation, a thermal component was
added to the X-ray spectrum assuming a non equilibrium ionization state with an ionization timescale
and electron plasma temperature typical for young SNR. Depending on the temperature, they get either
a density of 1 cm−3 or 10−2 cm−3 as a result. However the value of 1 cm−3 is unlikely because the shock
speed would be one order of magnitude lower than in other SNR with measured synchrotron radiation.
Using a density of 10−2 cm−3 they give a rough estimate of 3000 km s−2 for the shock speed and ≈2500
y for the age of HESS J1731-347.

Figure 2.2: Three images of HESS J1731-347 in radio, X-ray and γ-ray.The radio (left) and γ-ray (right)
image show the whole remnant, while the X-ray image is zoomed in and shows details of the shell. Left:
ATCA radio image at 1.4 GHz. Middle: XMM-Newton image showing the energy band of 0.5-4.5 keV.
The CCO inside the SNR is marked with a red arrow. Right: HESS TeV γ-ray image, smoothed with a
Gaussian. (Abramowski et al., 2011)
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Chapter 3

The Chandra X-ray telescope

The observation used in the analysis of this work was done with Chandra, an X-ray telescope. Since it is
important to understand the telescope and its properties for the data analysis, the Chandra telescope will
be discussed in this chapter based on the Chandra Proposers’ Observatory Guide (Chandra X-ray Center
2013) and Arnaud et al. (2011). The Chandra detector is a X-ray detector, therefore in the beginning
these detectors and especially CCD detectors will be discussed.

3.1 CCD X-ray detectors

In X-ray astronomy, as the name implies, observations are done by observing X-rays. This is done with
X-ray detectors. A detector needs to have different important properties to give the best observational
results. The incoming X-rays have to be converted into an electronic signal and then into data for
analysis. This data should include information like the X-ray photon energy, the time when the X-ray
was detected, the position on the detector and the detector should also be able to count the number of
arrived X-rays as well as be able to distinguish between single events. Concerning the distinguishing of
single events, the detector also needs to be able to distinguish the different kinds of events, since not
only X-rays but also other particles can be detected. Apart from detecting events, another important
property of a detector is to be able to survive the conditions in space. In space, it needs to operate in
a very cold environment and vacuum and can also be hit by particle showers and single high energetic
particles. However, the detecting material fulfilling these conditions also needs to have a broad energy
range.
While there are other possible detectors, the in astronomy most popular detector design for the energy
range of 0.5 keV to 10 keV, meeting these conditions, is the CCD detector. It is usually made out of
silicon as detecting material, giving the detector a broad energy range. In the case of Chandra, the
energy range is from less than 0.1 keV up to 10.0 keV in X-rays, however, also optical photons can be
detected. CCDs (Charge-coupled-devices) were invented in 1969 at Bell Laboratories in New Jersey.
CCDs consist of coupled capacitors. When a X-ray photon interacts through photoelectric absorption
with the semiconducting silicon layer, electron-hole pairs are created. The electrons then, with the help
of an electric field, are collected in pixels. In silicon each creation of an electron-hole pair requires an
energy of about 3.7 eV. Therefore by counting the number of electrons produced in the event, the energy
of the incident photon can be measured. Since the pixels are coupled in an array, each pixel row is read
out by transferring the charge of one pixel to the next until the charge reaches a readout amplifier which
measures and digitizes the charge. Here the number of electrons is stored as the pulse height amplitude
(PHA) which linearly depends on the number of electrons and therefore also on the incident photon
energy.
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As the absorption probability of the photon in the semiconductor layer is constant per unit length, the
probability of absorption is sensitive to the thickness of the layer. The inverse of the absorption probability
is the mean absorption depth, which gives the mean depth of absorption of a photon in the layer. It is
a function of the photon energy and therefore, the energy range of the detector is very sensitive to the
thickness of the semiconductor layer. Photons with an energy too low interact at the surface and are not
correctly detected and photons with a too high energy go through the layer without being detected.
However, before a photon can even reach the photo-sensitive semiconductor layer, it has to go through
several dead layers of gates and insulators. Therefore the probability of a photon to be detected as an
event with the detector is given by the Quantum efficiency QE, which depends on the photon energy.
As explained above, the lower the photon energy, the lower the probability of detection with the CCD
design explained above. To improve the low energy performance of a CCD, instead of the above discussed
so called front-illuminated (FI) CCD, a back-illuminated (BI) CCD can be used. It works like a flipped
front-illuminated CCD and begins with the photo-sensitive region after just a very thin dead layer. By
making the photo-sensitive region even thinner, the low energy performance is further improved. However,
this design leads to less QE in the high energy range. By exposing the detecting layer to the radiation
instead of the dead layers containing the electronics first, the danger of the CCD getting damaged is
minimized. The Chandra ACIS detector consists of several front- and back-illuminated CCDs.
The time resolution of a X-ray CCD is limited by its readout time. While in other areas of use, CCDs
are used to collect many photons in one pixel before the readout, astronomical X-ray CCDs are used in
photon-counting mode. This way each individual photon event can be detected. In case of Chandra, the
whole CCD consisting of 1024x1024 pixels is read out by four readout nodes with each having a readout
frequency of 100 kHz (105 pixels per second), which means that reading out the whole image takes about
3 seconds. This has to be considered when observing a source with a known flux, since this can lead to
the later discussed pileup problem if more than one photon per pixel is collected during the readout time.
To improve the time resolution, only a fraction of the pixels in the image can be read out, but at the cost
of image size.
When the pixels are read out as explained above, each PHA is compared to a predefined threshold to
determine wether the event is a real source event or not. Additionally the PHAs of the surrounding pixels
are recorded. In Chandra this is either a 3x3 pixel island in the FAINT mode or a 5x5 island in the
VFAINT mode. Like shown in figure 3.1 this information is used to calculate a grade value, classifying
the event. When analyzing the observational data, this is used to reject events which have a too high
grade. While X-ray photons are expected to mainly have a PHA higher than the threshold in the center
pixel, cosmic rays and other charged particles will also have high enough PHAs in the outer pixels because
of producing additional electron-hole pairs.
Although CCDs are widely used in astronomy, they can have some problems which have to be considered
when analyzing the data. The already mentioned pile-up due to high source flux per pixel is one of
the problems. When two or more photons are detected in one pixel at the same readout time, these N
photons are considered as one event. This makes the energy higher and since events at lower energies are
lost while one high energy event is detected, pile-up effects harden the spectrum. In the HESS J1731-347
observation used in this work, this should not be a problem, since the source flux per pixel is low in this
diffuse source.
Another problem is Charged transfer inefficiency (CTI) which all space-used CCDs suffer. It describes
the phenomenon of charge lost in charge traps during the transport to the readout amplifier which leads
to loosing electrons and therefore the event is detected with less energy. These traps are caused either by
the manufacturing process or by radiation damage, which is why CCDs normally have a shield that can be
used for protection if dangerous radiation or particles are expected. The Chandra ACIS front-illuminated
CCDs where damaged due to low energy protons and therefore significantly suffer of CTI. This can be
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corrected when the data is prepared for analysis. Also it is possible to try to locate the source near to
the readout amplifiers to reduce CTI. This however increases the PSF (see section 3.2.2).

Figure 3.1: The grade system for a 3x3 pixel island. The pixel with the highest PHA compared to the
threshold is defined as the middle pixel with a grade number of 0. The other grey pixels also have PHAs
higher than the threshold. The full grade of an event is calculated as the sum of all grade numbers of
pixels inside this 3x3 island with PHAs higher than the threshold. The calculated grade is a code that
gives the positions of the activated pixels. (Arnaud et al. 2011)

3.2 Chandra

The Chandra X-ray space telescope (see figure 3.2) is one of NASA’s four great observatories, together
with the Hubble Space Telescope (optical), the Compton Gamma-Ray Observatory and the Spitzer Space
telescope (infrared). It was launched on July 23, 1999 from the Kennedy Space Center on board of the
Space Shuttle Columbia. It is maintained and controlled from the ground by the Chandra X-ray Center
(CXC), the Operations Control Center (OOC) and the Engineering Support Center (ESC). Chandra
orbits the earth in a highly elliptical orbit with an apogee height of about 140000 km. With this it is
outside of the radiation belts most of the time which grants an observation time of 63.5h per orbital
period. To protect the detectors from radiation damage, a particle detector is mounted at the telescope,
searching the environment of Chandra for charged particles. Furthermore, to hinder low energy electrons
up to 100 keV from hitting the focal plane, a magnetic baffle is installed inside the telescope.
Chandra was built using the same optical principle of previous X-ray telescopes like the Einstein and
ROSAT telescopes, but provides an angular resolution one order of magnitude higher. The High Resolu-
tion Mirror Array (HRMA), Chandra’s optical system, is built in a Wolter type I configuration, focusing
the incoming X-rays into one focal point on the detector.
Chandra has two different detectors: The Advanced CCD Imaging Spectrometer (ACIS) and the High
Resolution Camera (HRC ). The ACIS consists of a 4 CCD array for imaging (ACIS-I ) with 4 FI CCDs
and a 6 CCD array with 2 BI and 4 FI CCDs for imaging and spectroscopy (ACIS-S). For improved
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spectroscopy resolution, the ACIS-S can be used with the High-Energy Transmission Grating Spectrom-
eter (HETG) which has a resolution of E/∆E up to 1000 for energies within 0.4 keV and 10.0 keV. The
ACIS is discussed in more detail below as it was used in the observation of HESS J1731-347.
The HRC consists of two micro channel plates. The HRC-I is used for wide-field imaging and has the
largest field of view and highest image resolution on Chandra, but has a low spectral resolution. The other
is the HRC-S which is used to read out the Low Energy Transmission Grating Spectrometer (LETG).
Between low energies of 0.08 keV to 0.2 keV it provides the highest spectral revolution in Chandra.

Figure 3.2: The Chandra space telescope. (Chandra X-ray Center 2013)

3.2.1 HRMA

The HRMA is based on the Wolter type I principle and consists of 4 pairs of concentric iridium coated
mirrors (see figure 3.3) with the front pair mirror direction based on a paraboloid curve and the back
mirror direction oriented on a hyperboloid curve. When an on-axis beam enters the telescope, it is
reflected at both mirrors and focused in a point at a shorter focal length than with just a paraboloid
oriented mirror. This means that the telescope can be built shorter and also the shorter focal length
focuses the image on a smaller detector area, giving a better signal-to-noise-ratio. Normally, X-rays
hitting a material either penetrate it or are absorbed within the material. However, for small grazing
angles on metal surfaces, X-rays can be totally reflected, with the incident angle being the reflection
angle.
The unobscured geometrical aperture of the HRMA of Chandra is 1145 cm2. The obstruction of the
mirror supporting structure is less than 10%. However, the effective area of the HRMA depends on the
X-ray energy, since reflectivity, as well as the total reflection angle depend both on the photon energy.
The optical axis of the HRMA and therefore of Chandra is defined as the direction of the sharpest PSF.
As explained in section 4.8, theoretically the on-axis PSF can be described as the diffraction image of a
source and gives the smallest possible image in case of a point source. For off-axis sources, the size of
the PSF is not only a consequence of diffraction. For off-axis angles the PSF is much larger than on-axis
and a function of both the X-ray energy and the off-axis angle (see figure 3.4). The increase in PSF size
is because of two reasons: Mirror aberrations lead to a broadening of the PSF, strongly dependent on
the off-axis angle and the energy, and additionally the X-ray scattering ∝ E2 is increased for the higher
X-ray energies.
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Figure 3.3: The Chandra HRMA with two pairs of concentric mirrors. (Chandra X-ray Center 2013)

Figure 3.4: The size of the HRMA off-axis PSF shown for different energies and off-axis angles. The
encircled energy radius gives the radius for 50% and 90% of the X-ray beam’s energy to be included in
the PSF. (Chandra X-ray Center 2013)

3.2.2 ACIS

The ACIS is one of the Chandra detectors. It is schematically shown in the focal plane in figure 3.5,
which shows the 4 ACIS-I and 6 ACIS-S CCDs with the S1 and S3 CCDs being back-illuminated. The
aimpoints for both, defined as the position of the source flux of a point source on the optical axis of the
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HRMA with no offset, are also shown in figure 3.5. Of these 10 CCDs, 6 can be used at the same time,
and it is recommended by the Chandra X-ray Center to specify 5 optional CCDs, even if only one is
needed for the observation.
Each CCD contains 1024x1024 pixels with a pixel size of 23.985 microns, which corresponds to 0.492 arc
seconds in the image. The on-axis optical resolution of the ACIS is limited by this pixel size and not by
the optical capabilities of the HRMA. Considering the gaps between the CCDs, the size of the ACIS-I
array is given by 16.9x16.9 arc minutes and the size of the ACIS-S by 8.3x50.6 arc minutes.
The effective area of the ACIS (see figure 3.6) is a function of the energy and the off-axis angle. It is
a combination of the effective area of the HRMA and the QE of the detector, degrading off-axis due to
vignetting. Vignetting is an optical effect which depends also on the X-ray energy and describes the ratio
of the on-axis effective area compared to off-axis area. The QE of the ACIS, describing the probability
of a photon to be detected as an event, is different for the FI and BI CCDs, but in both cases it strongly
depends on the photon energy. For the FI CCDs it is higher than 30% for energies between 0.7 keV and
11.0 keV, with a maximum of about 90% near 5 keV.
The ACIS is mounted on the Science Instrument Module (SIM ) (see figure 3.7). It is a movable bench
which connects the detector with the telescope and provides the possibility to move the detector as well
as thermal isolation. The detector can be moved by up to 0.8 inches along the X-axis to adjust the focal
length and up to 20 inches along the Z-axis in the detector plane (see figure 3.5).
The ACIS can be used in two different operation modes, the Continuous Clocking (CC) Mode and the
Timed Exposure (TE) Mode. In the CC mode, the spatial size of the image is reduced by one dimension
and images of 1x1024 pixels are produced, which can be read out much faster than a full image of
1024x1024 pixels. The TE mode, used in the observation of HESS J1731-347, uses all 1024x1024 pixels
for an image and has variable exposure times for accumulating events. These exposure times are called
frame times and can be selected from 0.2 seconds up to 10.0 seconds. To read out the complete CCD
still takes about 3.2 seconds, independent of the exposure time. To reduce the readout time, it is possible
to select subarrays of the CCD and use less than 1024x1024 pixels for the observation. The good time
intervals (GTI) are the time intervals during which detector events are accumulated.
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Figure 3.5: The ACIS detector shown schematically in the focal plane. On the lower right the coordinate
system and the possible detector movement direction with the SIM module is shown. The not shown X
direction is along the focal axis. The x and + give aim points for the ACIS-I and ACIS-S. (Chandra
X-ray Center 2013)
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Figure 3.6: The ACIS effective area calculated for the ACIS-I3 and ACIS-S3 CCDs in dependance of
the X-ray energy. The effect of the molecular containment is already included. (Chandra X-ray Center
2013)

Figure 3.7: The SIM module which provides thermal isolation and movement to the Chandra detectors.
(Chandra X-ray Center 2013)
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Chapter 4

Theoretical Aspects

In this chapter we summarize some of the concepts that will be extensively used in the context of this
work.

4.1 Supernovae

At the end of its life, a star with a mass high enough becomes a supernova, a luminous explosion
which can be brighter, for a few weeks, in the optical than a whole galaxy. There are different types of
supernovae, with some of them leaving a neutron star or black hole behind and some of them disrupting
the star completely. In this section, following the explanations in Longair (2011), these different types of
supernovae are discussed and also the evolution of stars with masses high enough to trigger supernovae.

Evolution of a Star

At the beginning a star consists mainly of Hydrogen H but also Helium He and heavier elements. Due to
its high mass and therefore high pressure and temperature inside the core, burning hydrogen to helium
He can take place. This core where the burning takes place consists of 7% of the star’s mass. When
the hydrogen in the core is exhausted, not longer providing energy to the burning process stabilizing the
core, the core collapses while at the same time, the outer shell expands. The helium burning continues in
the inner part of the outer shell. With the collapse of the core, the temperature inside rises. If the mass
of the star is sufficiently high, this leads to helium burning as 3 4He →12 C using the triple-α process
and also burning to oxygen. Again, when the fuel in the core is exhausted, the core consisting of C and
O collapses but the He burning continues in a shell outside the core until it reaches the shell of the H
burning and the temperature is not sufficient for He burning anymore. If the star has not enough mass,
the burning chain ends here, and the collapsed C-O core can become a white dwarf and a planetary
nebula is formed when the shell around it is blown away. For lower mass stars the same can happen after
the H burning phase and a He white dwarf is formed.
For higher mass stars however, the burning in the collapsed core and outside continues in the same way
as described above. Each time the core collapses a new layer of a burning element is left outside the
core with the star eventually getting an “onion”-like structure as shown in figure 4.1. The order of the
burning to heavier elements can also be seen in figure 4.1 and it ends with Silicon Si burning to Iron Fe
and Nickel Ni. With iron the fusion to heavier elements cannot continue since it has the highest binding
energy of all elements, meaning that fusion to heavier elements is not energetically favorable. Therefore
the core collapses but is not stabilized this time and a supernova of type II occurs.
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Figure 4.1: Onion structure of a 25 solar mass star. The typical values for mass fraction per shell, density
in g cm-3 and temperature in K are shown. (Longair 2011)

.

4.1.1 Supernova Type II

Type II supernovae are core collapse supernova, where the collapse of the iron core leads to the explosion.
There are different types of supernovae type II, which can be identified by different light curves. All of
them have in common that Hydrogen lines are present.
In the fusion processes explained above, a lot of neutrinos are produced, which can, because of their
small cross section leave the star and take energy with them. From each fusion phase to the next, the
neutrino production increases greatly, leading to a much faster energy loss of the core and to an earlier
collapse. For example in case of a star with 15 solar masses, the Hydrogen burning takes 11 My, the
carbon burning only 2000 y and the Silicon burning only 18 d. After this a core made of Iron of about
1.5 solar masses is formed. The temperature inside the core reaches temperatures in the range of 109 K
leading to additional energy draining reactions. The inverse β-decay in the form of

p+ e− → n+ νe

leads to even more energy loss through neutrinos and also high energetic γ-rays lead to the photodisin-
tegration of Iron into Helium

56Fe+ γ → 14 4He

also draining energy of the core. An energy of more than 1046 J is released, which is about 10 percent of
the core’s rest mass. With this much energy loss, the core cannot maintain the pressure for stabilizing
and collapses within about 1 second into a proto-neutron star. Its density is high enough to trap even
the neutrinos inside. When the density of the collapsed core is high enough to reach nuclear densities
it cannot be further compressed, which causes a shock wave, traveling back outside through the still
infalling material. The shock wave looses energy through dissociation of nuclei, ram pressure of the
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infalling material and neutrino emission, when the shock reaches regions where the density is low enough
that neutrinos can escape (Pejcha & Thompson 2012). This leads to a quasi-static accretion phase with
an accreting proto-neutron star surrounded by a quasi-static shock (Pejcha & Thompson 2012). The
supernova is then continued by the delayed neutrino mechanism which describes the process of neutrinos
diffusing out of the proto-neutron-star and reheating the shock which causes then the explosion (Pejcha
& Thompson 2012).

4.1.2 Supernova Type I

Type I supernova are not caused by core collapse. They are believed to be caused by a white dwarf
exploding in thermonuclear reactions. There are also different type I supernova, which are distinguished
by different emission lines visible in their light curves. In opposite to type II, there are no Hydrogen
lines visible, which is due to the fact that the type I supernova’s origin is a white dwarf which has no
Hydrogen shell left. A white dwarf cannot have more than about 1.4 solar masses, which is called the
Chandrasekhar mass. With more mass, the electron degeneracy pressure is not enough to stabilize it
and it collapses into a neutron star and is stabilized due to the neutron degeneracy pressure. A white
dwarf can for example gain mass by accreting matter from a companion star. However, it is believed to
be possible that due to the energy released with the fusion of Carbon and Oxygen, the star explodes in
a supernova type I, before it can collapse.
Apart from being interesting objects, type I supernovae are very useful in astronomy as so called standard
candles. Since the typical absolute magnitude of type I is known as -19.5 ± 0.1, it can be used to compare
it to the observed magnitude, helping to determine the distance of the observed supernova.

4.2 Supernova Remnants

In this section an explanation on supernova remnants (SNR) and their evolution is given, based on
Longair (2011). Supernova remnants are, as the name implies, what remains of a star after it exploded
in a supernova. They are considered as sources for high energy particles with radio, γ-ray and X-ray
observations as evidence. There are two different types of remnants: The shell-like remnant with the
emission maximum at the shell region and the crab-like remnant with the emission maximum at the
center from an emitting neutron star, also called pulsar wind nebulae (PWN). Supernova remnants are
emitting in different parts of the electromagnetic spectrum. Hot gas emits in optical and infrared and
very hot gas, heated by the supernova shock wave emits in X-ray via bremsstrahlung and emission from
atomic transitions. A remnant also emits in radio and X-ray via synchrotron radiation, caused by high
energetic electrons accelerated at the shock front. This X-ray synchrotron radiation is studied in this
work. Some SNR like HESS J1731-347 are also bright in the TeV range, emitting γ-rays.
The evolution of a supernova remnant, from its formation until its end, can be described with four stages.
The first stage begins right after the explosion with the star’s shell being heated up by the explosion and
ejected with a velocity in the range of 104 km/s. Since the ejected material at the beginning has much
more mass than the swept up interstellar gas, the momentum of the shock is assumed to be constant and
the remnant’s radius is proportional to the speed of the ejected material in phase 1. With the speed being
supersonic, a shock front is formed ahead of the ejected material. Between the swept up and shocked gas
and the ejected material is a so called contact discontinuity. It describes a transition layer between plasma
with different properties on both sides. The mass density in the region behind the shock is several times
higher than in the region ahead of the shock. This is very important for the diffuse shock acceleration
explained later.
The second stage starts when the swept up material’s mass is of similar order as that of the ejected
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material. Due to conservation of momentum the expansion is decelerated and according to a calculation
done by Taylor end Sedov (Taylor 1950) the radius of the remnant is now given by the proportionality
relation r ∝ t5/2. With the most outer parts of the ejected material first decelerated, now also material
from inside the remnant is swept up here, increasing the mass density. With increasing density, the speed
of sound decreases and the swept up material from outside begins to enter the remnant with supersonic
speed, leading to a reverse shock. This reverse shock travels back trough the remnant to its origin, heating
up material on the way, leading to thermal X-ray emission.
In the third stage, seen in remnants with an age in the range of 104 years, the until now not important
cooling due to radiation becomes important. The dense outer shell of the expanding remnant cools down
below 106 K and X-ray line emission of heavy ions and mainly optical emission gets important which lets
the remnant further loose energy. The still hot material from further inside pushes against the cool outer
shell, which is why this stage is called the snow-plow phase.
In the last stage, the expansion has lost nearly all of its momentum and becomes subsonic. The cooled
material of the remnant is mixed with the interstellar medium and the remnant vanishes. The evolution
and stages of a shell-like supernova remnant can be seen in figure 4.2, showing the remnant’s radius
versus its age.

Figure 4.2: The evolution stages for a typical shell-like SNR showing the radius of the remnant vs. its
age. (Rosswog & Brüggen 2007)

4.3 Diffusive Shock Acceleration

Supernova remnants are considered as one of the sources for cosmic high energy particles. The acceleration
of these particles is expected to take place at the shock front. This process is called diffusive shock
acceleration or first order Fermi acceleration since this kind of acceleration was first introduced by Fermi
(Fermi 1949).

17



CHAPTER 4. THEORETICAL ASPECTS 4.3. DIFFUSIVE SHOCK ACCELERATION

For the acceleration to take place, a strong shock like in a supernova remnant is needed which propagates
through the medium. Behind the shock on the so called downstream side is the compressed interstellar
medium and before the shock is the uncompressed interstellar medium on the so called upstream side.
On both sides of the shock, relativistically high energy particles are expected, moving much faster than
the shock speed. The conditions at the shock front can be seen in figure 4.3. In figure 4.3(a) the shock

Figure 4.3: The conditions at the shock front with the dark grey area as the downstream side and the
light grey area as the upstream side. (a) shows the shock front moving with velocity U through matter.
The pressure, temperature and mass density are different on both sides of the shock front. In (b) the
velocity of the matter on the upstream and downstream side is shown in the shock frame with the shock
at rest. (c) shows the velocity of the downstream matter when the upstream side is at rest with the
velocity of the upstream particles isotropic. In (d) the same is shown when the downstream side is at
rest. (Longair 2011)

moves with velocity U through the medium. Like shown for example in Longair (2011), with a specific
heat capacity of γ = 5/3 the ratio between the densities is ρ2/ρ1 = 4 in case of a strong shock. With the
conservation of mass

ρ1v1 = ρ1U = ρ2v2 (4.1)

this means that in the rest frame of the shock like shown in figure 4.3(b) the matter on the upstream side
flows with a velocity of v1 = U into the shock region and leaves with a velocity of v2 = 1

4v1. Looking
at the shock front from either the downstream rest frame or the upstream rest frame like shown in figure
4.3(c) and (d) this means that in both cases the region of one side approaches the region of the other side
with a relative velocity of v = 3/4U . Another important point is that on both sides, turbulences in the
magnetic field are present and scattering of the particles with the magnetic field takes place. Considering
now a particle from ahead of the shock in the upstream region diffusing through the shock, its velocity
vector gets randomized and gets isotropic with respect to the particles motions in the downstream region.
With this the particle can again diffuse through the shock front and this can be repeated. With the two
sides approaching each other, the particle gains energy every time it crosses the shock front and never
loses energy. This can be shown by doing a Lorentz transformation. With the velocity of the approaching
side of v = 3/4U the energy E′ of the particle with initial energy E after crossing the shock front is given
by (Longair 2011)

E′ = γv(E + pxv) (4.2)
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with px being perpendicular to the shock front. Since v � c and therefore the shock being non-relativistic,
γv = 1. The crossing particle however is considered relativistic with E = pc and with px = p cos θ, the
energy change ∆E and the fractional energy change ∆E/E of the particle can be written as:

∆E = pv cos θ ∆E
E

= v

c
cos θ (4.3)

Averaging cosθ over the range of 0 to π/2 which equals 2/3 (Longair 2011), leads to an average fractional
energy increase for crossing the shock twice, to the other side and back, of〈

∆E
E

〉
= 4

3
v

c
= U

c
. (4.4)

This means that after k cycles the particle with initially an energy of E0 has then an energy Ek of

Ek =
(

1 +
〈

∆E
E

〉)k
· E0 =

(
1 + U

c

)k
· E0. (4.5)

However, an accelerated particle cannot gain infinite energy this way. There is a probability given by the
fraction of particles leaving the shock per unit time for the particle to get away from the shock front. This
can be calculated by comparing the number of particles which cross the shock every time 1

4Nc (Longair
2011), with N as the number density of the particles, and the number of particles which are swept away
from the shock every cycle 1

4NU (Longair 2011). By dividing them one gets the fraction of lost particles
as U/c which is also the escape probability. Assuming a typical shock velocity of 3000 km/s would result
in an escape probability of about 1%. As shown in equation 4.4 this is then also the amount of energy
gained per cycle. Comparing these numbers at first look it seems as the acceleration does not give the
particles much energy during the process. However, statistically there are a few particles which can stay
much longer in the shock region and gain much more energy. This can also be seen in the differential
energy spectrum of the particles which is given as (Longair 2011)

N(E)
dE

∝ E−2. (4.6)

Once a particle is away from the shock front, the shock and the particle move away relatively from each
other, so the particle cannot be accelerated again.
There are two reasons why the magnetic field at the shock front has to be high enough as condition for
acceleration to happen. As explained above, the particles scatter with the magnetic field and are therefore
directed back to the other side of the shock front. This change of sides is needed for the acceleration
and therefore the magnetic field has to be high enough for the scattering process. The other reason is
the gyroradius rg of a charged particle with charge q in a magnetic field B given by rg = γm0v⊥

|q|B . The
gyroradius gives the radius of the circular motion of a moving charged particle in a magnetic field due to
the Lorentz force. The lower the magnetic field, the bigger the radius, giving a particle with an energy
high enough the possibility to escape from the shock region without being accelerated. This means that
the magnetic field has to be high enough to confine the particles in the shock region while they cross the
shock front and are accelerated.

4.4 Synchrotron Radiation

In this work the synchrotron emission of high energetic electrons in the magnetic field at the shock front
of the supernova remnant HESS J1731-347 is studied. From classical electrodynamics it is known that
this is due to the Lorentz force: Charged particles moving in a magnetic field with a velocity component
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perpendicular to the magnetic field (see figure 4.4), are accelerated in a direction perpendicular to both
the magnetic field and the initial velocity component. The particles do not gain energy in the process
and the energy of the movement in the initial direction is radiated as synchrotron emission. Since the
electrons have an energy in the TeV range this has to be treated relativistically and the equation of
motion for an electron with mass me and charge e moving in an uniform and static magnetic field ~B with
velocity ~v becomes:

γme
d~v

dt
= e(~v × ~B) (4.7)

with γ as the Lorentz factor. With ~v = ~v⊥ + ~v‖ like shown in figure 4.4 and ~v‖ × ~B = 0 the acceleration

Figure 4.4: Motion of a charged particle with velocity v in a uniform and static magnetic field B. Adopted
from (Longair 2011).

perpendicular to the electron’s motion can be written with equation 4.7 as

dv⊥
dt

= a⊥ = e|v⊥||B|
γme

= e|v||B|
γme

sin θ (4.8)

with θ as the angle between ~v and ~B as shown in figure 4.4. Using the relativistic version of Larmor’s
formula, which describes the total energy loss rate of an accelerated charged particle, equation 4.8 can
be inserted and in case of only perpendicular acceleration the total loss rate is given as (Longair 2011):

−dE
dt

= γ4e2

6πε0c3
|a⊥|2 = e4B2

6πε0cm2
e

v2

c2
γ2sin2 θ (4.9)

By using the relation c2 = (µ0ε0)−1, Umag = B2/2µ0 as the energy density of the magnetic field and
e4

6πε2
0c

4m2
e

= σT as the Thomson cross section, equation 4.9 can be written as:

−dE
dt

= 2σT cUmag
(v
c

)2
γ2sin2 θ (4.10)

Averaging over the pitch angle θ the average energy loss rate results in (Longair, 2011)

−dE
dt

= 4
3σT cUmag

(v
c

)2
γ2. (4.11)

With
(
v
c

)2 ≈ 1 for highly relativistic electrons and with γ2 = E2

m2
ec

4 equation 4.11 can be integrated by
separation of variables which results in

E(t) = E0

1 + t/τ
≈ E0

1 + E0B2t/635 (4.12)

as a relation for the electron energy changing with time when radiating and having an initial energy E0.
τ = 3m2

ec
3

4σTUmagE0
is the synchrotron loss time after which the electron has lost half of its energy.
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4.5 Diffusion of electrons in a fully ionized plasma

As described in section 4.3, the electrons move by diffusion from one side of the shock to the other during
the acceleration process. Diffusion in plasma describes the motion of plasma due to unequally distributed
numbers of particles in the plasma or an unequal temperature distribution in the plasma. Diffusion can
be described by a random walk (Inan & Golkowski 2011). This means that all particles start at x = 0
and change their position by ∆x each time step ∆t. While the average position of the particles 〈x〉 stays
constant with time, the variance of the particle position 〈x2〉 grows linearly with time (Inan & Golkowski
2011). The reason of diffusion is a force given by the pressure gradient (Inan & Golkowski 2011)

F = −∇p = −kBT∇N (4.13)

with the pressure p described by the perfect gas law with T as the temperature of the particles and N
as the number density of the particles in the plasma. Assuming that the momentum equation, due to
frictional drag force by particle collisions, is in a steady state, it can be written as (Inan & Golkowski
2011)

−∇p = −kBT∇N = mvN~u (4.14)

with ~u as the plasma fluid velocity and mv as the particle momentum. The flux Γ of particles from a
region with higher particle density to a region with lower density can therefore be written as (Inan &
Golkowski 2011)

Γ = N~u = −kBT
mv
∇N = −D∇N (4.15)

with Γ = −D∇N known as Fick’s first law where ∇N describes the gradient of density and D is the
diffusion coefficient which describes the amount or strength of the diffusion process.
In case of a fully ionized plasma in a magnetic field like the plasma at the shock front of a SNR, the
diffusion of the plasma can be described as the diffusion of a single conducting fluid (Inan & Golkowski
2011). The steady state of the magnetic forces and the forces due to a pressure gradient can be written
similar to equation 4.14 as (Inan & Golkowski 2011)

∇p = ~J × ~B (4.16)

with ~J = σ( ~E + ~u × ~B) as the current density. Calculating the cross-product of the current density ~J

with the magnetic field vector ~B and inserting the result in equation 4.16 gives

~u⊥ =
~E × ~B

B2 − ∇p
σB2 (4.17)

as the plasma fluid velocity perpendicular to the magnetic field lines. The first part on the right side of
equation 4.17 is the velocity due to the electromagnetic forces while the second part describes the velocity
due to diffusion. Using the diffusion part and calculating the flux by inserting the perfect gas equation,
a comparison with Fick’s first law

Γ = N~u⊥ = −N∇p
σB2 = −NkBT

σB2 ∇N = −D⊥∇N (4.18)

shows that the diffusion coefficient for a fully ionized plasma in a magnetic field is given by

D⊥ = NkBT

σB2 . (4.19)
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Normally however, not the D⊥ ∝ 1/B2 dependence is found in experiments, but a faster diffusion given
by the Bohm diffusion coefficient (Inan & Golkowski 2011)

D⊥,Bohm = kBT

16qB (4.20)

with q as the charge of the diffusing particles. It is an experimental result that was found by Bohm in
1949 (Bohm et al. 1949). It is believed that it is caused by plasma turbulences (Inan & Golkowski 2011)
which is not considered in the classical theory above.

4.6 Cosmic Rays

HESS J1731-347 is considered as a source for cosmic rays. Therefore in this section we give a brief
introduction on cosmic rays and their most relevant properties.
Cosmic rays are the only particles detected on the earth from sources outside the solar system. They
consist 98% of protons and nuclei and 2% of electrons. These 98% are divided in 87% protons, 12%
helium nuclei and 1% heavier nuclei (Longair 2011).
Cosmic rays were first discovered in 1912 and 1913 by Hess and Kolhörster who measured the atmosphere’s
ionization and discovered that the ionization increases higher up in the atmosphere, which means that
the radiation has to come from above the atmosphere. After their discovery, cosmic rays were used for
a long time to perform particle experiments, and while particle experiments are now performed with
built accelerators, nature can still produce higher particle energies as shown in figure 4.5. It shows the
power-law distribution of the cosmic rays measured by various experiments from 1012 eV up to 1021 eV.
However, no cosmic ray has been detected until now with an energy of 1021 eV. The noticeable features
in the spectrum are the knee at about 1015 eV and the ankle at about 1018 eV. The knee is considered
as the limit for cosmic rays accelerated in supernova remnants. Cosmic rays with higher energies are
expected to be accelerated in other ways inside the galaxy like large-scale galactic winds or to originate
from sources outside the galaxy. However it is still not certain where they come from, especially the
cosmic rays with energies beyond the ankle.
The abundance of elements in the cosmic rays is mostly similar to the elemental abundance in the solar
system, however there are a few differences. The cosmic rays contain less hydrogen and helium relative
to the heavier elements. Also the elements lithium, beryllium, boron and also a few elements with less
protons next to iron are far more abundant in the cosmic rays compared to the solar system abundances.
The reason for the overabundance of these elements is the spallation of heavier elements. This means
that the heavier elements collide with cold interstellar matter on their way to earth, getting divided by
this into less heavy elements and making their abundance higher.
To define a confinement volume as well as to try to explain the knee in the spectrum in figure 4.5, the,
in section 4.3 introduced, gyroradius can be used:

rg = γm0v⊥
|q|B

(4.21)

With this, the limit of about 1018 eV can be interpreted as the energy where cosmic rays can leave the
galaxy because of their big enough gyroradius and therefore not longer being confined in the galaxy by
the galactic magnetic field. For a galactic magnetic field strength of 3·10−10 T, the gyroradius of a proton
with an energy of 1018 eV is roughly as big as the thickness of the galaxy (Longair 2011). With an energy
of 1020 eV the trajectory of a cosmic ray is barely influenced by the magnetic field (Longair 2011).
However, with cosmic rays at these high energies the distance of the origin of the observed ray is limited
by the GZK -effect (Greisen-Kuzmin-Zatsepin). In the rest frame of high energy cosmic rays the photons
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Figure 2. Recent compilation of the cosmic ray energy spectrum [2]. The flux is
multiplied by the power law E2.5.

observed energy increases, the radius of the GZK ‘sphere’ shrinks. With 90% probability,
protons with energy above 5 ⇥ 1019 eV must have come from a distance shorter than 250 Mpc,
while the corresponding figure for protons with energy above 1020 eV is about 75 Mpc.

The effect of the interaction of protons with the CMB has been studied in detail. The
interaction length (mean free path for interaction) and the attenuation length, defined as the
distance corresponding to attenuation of the proton energy by a factor e on average, are shown
in figure 5.

As shown in figure 5, the interaction length for pion production is of the order of 10 Mpc
above 1020 eV and the energy loss per interaction is about 15–20%.

A relevant quantity is the value of the energy E1/2, where the integral spectrum of
protons would be reduced to one half as a consequence of the interaction with the CMB.
Numerically, E1/2 was predicted [9] to be 1019.76 eV (corresponding to about 5.5 ⇥ 1019 eV),
almost independent of the power-law spectrum at the production. It is therefore a signature of
the GZK cutoff.

Production of electron–positron pairs is also present, but it is much less effective than pion
production in terms of reduction of the proton energy (see figure 5). However, if the spectrum
is totally dominated by protons, this process is predicted ([10] and references therein) to be

New Journal of Physics 12 (2010) 075009 (http://www.njp.org/)

Figure 4.5: Cosmic ray spectrum, showing observations of different experiments. The Knee at about
1015 eV and the marked Ankle at about 1018 eV indicate a change in the shape of the spectrum. For
a comparison of the reachable energies, accelerator experiments are marked on the upper energy axis.
(Matthiae 2010)

of the cosmic microwave background have a very high energy. The threshold photon energy in the proton
rest frame for creating pions when the protons are hit by photons lies at 200 MeV. This threshold is
reached with a proton energy of about 5·1019 eV. When the pion is created, the cosmic ray looses energy.
The fraction of energy loss per pion creation reaction is 1/10. With the mean free path for this reaction
of 3 Mpc and assuming that the proton looses always the same amount of energy, the traveling distance
of the proton would be limited to 30 Mpc. Of course, the proton does not loose always the same amount
but each time less. Still it looses each time energy as long as its energy is above 5·1019 eV, and therefore
reaches earth with much less energy than the initial energy. This leads to a decrease of the observed very
high energy cosmic rays in the cosmic ray spectrum, because they are shifted to lower energies by the
GZK -effect.
Cosmic rays are detected by observing the extensive air showers they generate when entering the at-
mosphere. This process is shown in figure 4.6. When the cosmic ray protons or heavier nuclei hit the
atmosphere’s molecules, nucleonic cascades are created. First, either neutral π0, charged pions or sec-
ondary nucleons are created. The nucleons can then again create pions in further reactions if their energy
is still high enough. The π0 decay into two γ’s which will then create electrons and positrons with pair
creation. These leptons then radiate γ’s which can do pair creation again if their energy is still high
enough. This leads to an electromagnetic shower. The charged pions decay into muons and anti muons
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which then decay into electrons and positrons and also produce electromagnetic showers. These showers
at TeV can then be observed for example with the HESS telescope array, by detecting the Cherenkov
radiation caused by the electrons and positrons when moving faster than the speed of light in the atmo-
sphere.
The ultra-high energy (UHE) cosmic rays with energies higher than 1018 eV can be observed by the
Pierre Auger Observatory and the Telescope Array. UHE cosmic rays are very rare and therefore both
experiments are designed to have a very large detection area, much bigger than the one of the HESS
telescope. Both experiments use a hybrid detection method, which includes ground detectors, measuring
the distribution of the air shower on the ground, as well as fluorescence detectors which measure the
fluorescence light emitted by the air shower.

Figure 4.6: Nucleonic cascade shown shematically that is caused by a cosmic ray proton or heavier nuclei
when hitting the atmosphere. (Longair 2011)

4.7 Synchrotron Shock Filaments

The lower limit on the magnetic field strength at the shock front of HESS J1731-347 is determined in this
work by studying synchrotron shock filaments. To understand what these filaments are and how they
can be used to calculate the magnetic field strength, an introduction to this topic is given in this section.
Typical shock filaments can be seen for example as thin structures in the outer parts of Cas A in figure
4.7(a)
As explained in section 4.3, the electrons at the shock front are expected to be accelerated with diffusive
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shock acceleration. The electrons and the shock front move away relatively from each other. The electrons,
expected to have energies in the TeV range, move through the magnetic field at the shock front and as
explained in section 4.4 this leads to synchrotron emission. The typical synchrotron frequency νsync is
hereby given by (Ballet 2004)

νsync = 1.82 · 1015BmGE
2
ergHz. (4.22)

For a magnetic field strength at the shock front of B = 30 µG and electron energy of Ee = 50 TeV,
this would result in a for HESS J1731-347 typical X-ray energy of EX−ray = 1.45 keV. The cosmic
ray electrons mainly suffer synchrotron losses near the shock front (Berezhko et al. 2003), assuming a
magnetic field high enough. The one-dimensional steady-state transport equation for cosmic ray electrons
which suffer synchrotron losses under the assumption of a plane shock, has an exponential cosmic ray
distribution f as solution, which is given by (Berezhko et al. 2003)

fi(x, p) = f(x = 0, p)exp
(
−|x|
li

)
(4.23)

for cosmic rays with momentum p in the upstream (i = 1 and x < 0) and the downstream region (i = 2
and x > 0). It describes the distribution of the cosmic rays at the shock front in dependance of the cosmic
ray momentum p and the distance x to the shock front. The width li of the curve is the length-scale for
synchrotron losses. Assuming a simple model of a mono-energetic ensemble of electrons as it is done in
the calculations in section 7.1, equation 7.2 can be written as

fi(x(t)) = f(x = 0)exp
(
−|x(t)|
li(τ)

)
(4.24)

with τ as the in section 4.4 introduced synchrotron loss time τloss ∝ 1/B2. How the length scale l1/2
depends on τ is discussed in detail in section 7.1. Equation 4.24 describes the cosmic ray distribution
in dependence of the distance to the shock front, which is a function of the time for a constant electron
velocity. From equation 4.24 it can be seen that for a traveling distance x equal to the synchrotron loss
length-scale l2 in the downstream region, only the fraction of 1/e of the initial electrons with an energy
E0 still have the same energy:

f2(x(τ) = l2) = 1
e
f(x = 0) (4.25)

The typical synchrotron frequency in equation 4.22 depends on the electron energy as νsync ∝ E2
e .

For mono-energetic electrons, the typical synchrotron frequency is therefore also mono-energetic. Since
in this model the typical synchrotron frequency is mono-energetic and is radiated by mono-energetic
electrons, the number of radiated synchrotron X-rays with this frequency also follows the relation given
in equation 4.25. This means that with the simple mono-energetic model the measured X-ray synchrotron
emission will show the same synchrotron loss length-scale l2 for the downstream region as the cosmic ray
distribution. Therefore the synchrotron loss length-scale for the cosmic ray electrons can be measured
from the X-ray data and then be used to calculate a lower limit on the magnetic field strength at the
shock front.
An emission curve similar to one of the emission curves expected from HESS J1731-347 is plotted in
figure 4.7(b) and the length scale l2 is marked.

4.8 Point Spread Function

Due to the wave nature of light and particles, the resolution of an optical system is always diffraction
limited and the image of a point source can only be as small as the diffraction image of the point. The
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(a) 3-color X-ray Chandra image of Cas A
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(b) Expected exponential X-ray synchrotron emission profile in the
downstream region

Figure 4.7: Left: 3-color X-ray Chandra image of Cas A1 (Red 0.5-1.5 keV; Green 1.5-2.5; Blue 4.0-6.0)
showing thin synchrotron shock filaments in blue in the outer parts of the remnant. Right: Expected
form of an exponential X-ray emission profile of a synchrotron shock filament in case of a mono-energetic
ensemble of electrons at the shock front. The marked synchrotron loss length scale l2 is with a width of
0.2 pc similar to the width found in one of the emission profiles found in HESS J1731-347.

theory of diffraction is based on the Huygens principle which was later extended by Fresnel. It describes
that each point of a wavefront can be the source for new waves. These new waves are then super positioned
into a new wavefront. The special case of Frauenhofer diffraction can be applied when the image plane
is far away from the diffracting object, like it is normally for telescopes and astronomical sources. In this
case, the amplitude U(P ) of the superposition of waves in a point P (x, y, z) in the image plane, can be
calculated by integrating over all areas dS on the wavefront, summing up the amplitude contributions of
each point on the wavefront (Schroeder 1999):

U(P ) = C

∫
wavefront

exp[ik(s−R)]dS (4.26)

R is the distance between the source and image plane along the optical axis and s is the distance between
P and an arbitrary point on the wavefront. C is a constant proportional to the amplitude in that arbitrary
point and k = 2π/λ.
For an optical system like a telescope with a circular aperture and therefore like Chandra, the optical
system is symmetric around the optical axis and the result of equation 4.26 then gives (Schroeder 1999)

U(P ) = CA

(
2J1(v)
v

)
(4.27)

for a system with zero obscuration, with v as a dimensionless coordinate, A as the area of the aperture
and J1(v) as the first order Bessel Function. In this case, the on-axis PSF is the normalized absolute
value of U(P ) (Schroeder 1999):

PSF(P ) = |U(P )|2

C2A2 =
(

2J1(v)
v

)2
(4.28)

1source: http://chandra.harvard.edu/photo/2013/casa/casa.jpg
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(a) Airy function (line) approximated with a Gaussian
(dashed) using the condition σ = 0.44λ

D
for the standard

derivation of the Gaussian.

(b) Rayleigh limit, showing the minimal separation of two
diffraction images to be separated into two individual images

Figure 4.8: Comparison of Gaussian and Airy curve1 and the Rayleigh limit2.

Equation 4.28 gives the "Airy" pattern. For off-axis sources, as explained in chapter 3 the PSF is not
only influenced by diffraction but also by other effects.
If one is only interested in the middle peak of the PSF and not in the outer parts, the PSF can be
approximated as a Gaussian function, as the middle peak includes 84% of the whole energy included
in the beam producing the Airy pattern (Hardy 1998). A Gaussian matching the middle peak can be
constructed by using a standard derivation of σ = 0.44λ

D (Hardy 1998) like shown in figure 4.8(a) with D
as the diameter of the optical system’s lens or mirror.
In figure 4.8(b) the Rayleigh criterion is shown, which is often the used limit for the resolution of diffraction
limited optical systems. It describes that the middle peak of the diffraction images of two sources need
to be at least 1.22λ

D apart to be separated. Since this is just a little bit more than the FWHM of 1.04λ
D

of the Gaussian defined above, the FWHM of the PSF is often used as the resolution limit. Of course,
this is the theoretical way to describe the PSF of an ideal telescope and in reality there is no perfect
telescope, so the real PSF could differ to some degree from this Airy or Gaussian image. What has also
to be considered is that in case of a CCD detector like the one used in Chandra, the pixel size could limit
the resolution of the image.

4.9 Exposure Map

In section 5.2 an exposure map is used to convert the count image into a exposure corrected image in flux
units. It mainly corrects variabilities in exposure in different parts of the image due to the effective area
varying with position and the motion (dithering, see section 5.2) of the telescope. The exposure map can
be seen as an image that serves as a conversion factor between counts and flux. The number of counts
from photons with a wavelength inside a range dλ accumulated during an effective observation time τeff
which are coming from a sky coordinate p̂ and produce a pulse height h are given as (Davis 2001)

C(h, p̂) = τeff

∫
dλ E(h, λ, p̂)SF (λ, p̂). (4.29)

1source: http://en.wikipedia.org/wiki/Airy_disk#Approximation_using_a_Gaussian_profile
2source: http://bki.net/ricc/xtra/wavelettune-filer/image002.jpg
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SF (λ, p̂) =
∫
dp̂′PSF(λ, p̂, p̂′)S(λ, p̂) describes the PSF smeared source flux. The exposure map E is given

by (Davis 2001):

E(h, λ, p̂) = 1
τeff

∫ τ

0
dt T (σ(p̂t, t)D(σ(p̂t, t), h, λ)M(λ, p̂t) (4.30)

with σ(p̂t, t) as the sector coordinate in dependance of the sky coordinate. T (σ(p̂t, t)) stands for the GTIs
(see chapter 3) and D(σ(p̂t, t), h, λ) is the probability for a photon with wavelength λ to produce a pulse
height h at the detector coordinate σ. M(λ, p̂t) is the off-axis effective area (see chapter 3) at position p̂
for a wavelength λ.
To get statistically enough counts per pixel, the sum of counts per pulse height h is build over a range
∆h:

C(∆h, p̂) =
∑
h∈∆h

C(h, p̂) = τeff

∫
λ∈∆λ

dλ E(∆h, λ, p̂)SF (λ, p̂) (4.31)

Assuming now that the effective area is relatively constant in the range ∆h, then E is about constant for
a wavelength λ0 corresponding to a pulse height h inside ∆h and equation 4.31 can be written as:

C(∆h, p̂) = τeffE(∆h, λ0, p̂)
∫
λ∈∆λ

dλ SF (λ, p̂) (4.32)

Here E(∆h, λ0, p̂) = E0 is an exposure map for a given energy band containing λ0. With equation 4.32
the image consisting of counts can be converted to an image containing the flux:∫

λ∈∆λ
dλ SF (λ, p̂) = 1

τeff
· C(∆h, p̂)

E0
(4.33)

For an image containing a broad energy range however, it is unlikely that the effective area of the telescope
is about constant over the energy in this range. In this case E(∆h, λ, p̂) has to be divided into several
exposure maps with each containing a wavelength range ∆λi were the effective area does not vary much.
With this, equation 4.32 is written as:

C(∆h, p̂) = τeff
∑
λi

E(∆h, λi, p̂)
∫
λ∈∆λi

dλ SF (λ, p̂) (4.34)

By introducing weights wi as

wi =
∫
λ∈∆λi

dλ SF (λ, p̂)∫
λ∈∆λ dλ SF (λ, p̂)

(4.35)

equation 4.34 can be written as ∫
λ∈∆λ

dλ SF (λ, p̂) = 1
τeff
· C(∆h, p̂)
Eweighted

(4.36)

calculating the flux image with a weighted exposure map Eweighted =
∑
i wiEi.

4.10 Background in Observations

Instrumental Background

In astronomical observation in X-ray, not only the source events, but also background events are col-
lected with the detector. The instrumental background can consist of different components like particle
background which is due to the high energetic particles always present in space but also for example of
readout noise. During the observation these particles hit either the detector directly or the surrounding
materials, producing fluorescent and Bremsstrahlung X-rays, which then interact with the detector. On
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the image when looking at it, these events cannot be distinguished from the real source events. However,
like explained in chapter 3 each event is given a grade number which can be used to distinguish real source
events from particle events. To measure this kind of background, observation with a shielded detector, or
of the dark moon and dark side of the earth are done (Hickox & Markevitch 2006). This way no X-rays
of sources can reach the detector. Some spectra of these measurements for different telescopes are shown
in figure 4.9. As can be seen here, the background consists of a continuum part, originating from direct
hits on the detector and Bremsstrahlung, and the fluorescent lines. The shape of the background spectra
varies with time, since it depends on the changing particle environment and the position of the telescope
in the orbit. Therefore, standard backgrounds from the measurements described above are available for
the different telescopes. The standard background of a telescope can then be scaled to the background
of an observation done with this telescope.

Figure 4.9: Normalized particle background spectra for different telescopes. FI: Front-illuminated, BI:
Back-illuminated. (Arnaud et al. 2011)

Other Backgrounds

Apart from the particle background, there are other background influences in an observation. Not only
high energetic particles, but also soft protons with an energy of about 150 keV can contaminate the
observation. They are influenced by the magnetic field of the earth and their background flux therefore
like with particle background also depends on the telescope’s position and also its pointing direction.
Soft protons are always evident in XMM and Chandra observations (Arnaud et al., 2011).
Other than that there is also an X-ray background, coming from our own galaxy as well as from extra-
galactic sources. The galactic background is mainly due to the Local Hot Bubble, a region with hot gas,
surrounding the Sun with a radius of about 100 to 200 pc and a part of it is also coming from cataclysmic
variables in our galaxy. The extragalactic part is mostly coming from unresolved Active Galactic Nuclei
(AGN).
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Chapter 5

Data Reduction

In the next three sections we describe how the data in the Chandra image of HESS J1731-347 are prepared
for the fitting of the X-ray synchrotron shock filaments, which is done in chapter 6. To obtain a reliable
image, effects originating from the telescope should be excluded or studied in a way so that the result
can be used in a fit.
There are three potential major effects that are studied in the following: The background, the exposure
and the PSF. In section 5.1 the background in the image is studied. To this aim the energy range of the
image is reduced to the range in which the X-ray synchrotron emission is the main contribution, while
the higher energy range, where the background is dominating, is excluded. After this also potential high
energy particle events are excluded. In chapter 6 the remaining X-ray background is included in the fit
function. A background image is prepared in section 5.1, using Chandra Blank Sky files, background
observations provided by the Chandra X-ray Center. The fit of the background is performed later in
section 6.2.
In section 5.2 the image is divided by an exposure map to minimize the influence on the emission profiles
of the filaments due to the varying exposure. We perform a spectral study on the image to create a
weighted exposure map.
In section 5.3 the influence of the PSF on the image is studied. Depending on the size of the PSF,
significant systematics can affect the width of the emission profile and therefore the result for the lower
limit on the magnetic field strength. The image of the PSF is simulated at the positions of the different
researched structures and is then fitted with a Gaussian to represent the PSF and to get an idea of its
size.

5.1 Background Reduction

The main goal for this work is to obtain an accurate lower limit on the magnetic field at the shock fronts
of HESS J1731-347. For this, the width of the X-ray synchrotron shock filaments is needed to calculate
the limit. Some preliminary work was already done in Rottenanger (2013) and following these results, a
more refined analysis on the width, considering different effects on the image, is done in this work. The
Chandra image of HESS J1731-347 used in the analysis is shown in figure 5.1. The image shows a smaller
part of the remnant than in the XMM image shown in figure 2.2, but gives a better angular resolution
of the shock filaments. This is due to the smaller PSF of Chandra compared to the much bigger XMM
PSF, broadening the structures and giving a worse resolution.
One of the major systematics on the image in X-ray, when observing a source, is the background, con-
sisting of the astrophysical and the instrumental background. In this work three different methods were
used to reduce the background in the analysis of the Chandra image.
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We used the software package CIAO (Fruscione et al., 2006). CIAO (Chandra Interactive Analysis of

Figure 5.1: Chandra counts image of the supernova remnant HESS J1731-347. The image is not exposure-
corrected and no background is subtracted. The CCO at the center of the SNR is marked with a blue
circle and the optical axis of the observation corresponds roughly to the red +.

Observations) has been developed as an analysis tool especially for Chandra observations, since Chandra
was the first astronomy mission with high resolution 4-dimensional data (Fruscione et al. 2006), including
the position, time and energy of a detector event. CIAO can also be used for data of other telescopes
and also includes the fitting tool Sherpa and the plotting tool ChIPS.
The results of a Chandra observation consist of different files in two folders named primary and sec-
ondary and one observation report which includes the Chandra parameters for the observation. Some of
the parameters from the report which are used later in the analysis are given in table 5.1. These can be

Table 5.1: Some of the observation parameters given in the observation report on the Chandra observation
of HESS J1731-347.

Principal investigator Dr. Gerd Puehlhofer
Observation id 9139
Nominal RA [deg] 263.019117
Nominal Dec [deg] -34.707126
Livetime [s] 29231.47
SIM focus pos [mm] -0.781
SIM defocus [mm] 0.0014
SIM translation stage pos [mm] -220.392
SIM translation stage offset [mm] -13.2

downloaded from the internet once the proprietary phase of the data is over. The image data is saved
in FITS files. FITS is an open standard file format, originally developed by NASA in 1981 and is the
standard image format in astronomy. Its main feature is the support of multi-dimensional arrays which
allows to contain a large set of data in the image.
The primary folder contains already prepared files that can be used for analysis. For the analysis in this
work the relevant files in this folder were the level 2 event FITS file, which contains the detected events
minus the already excluded events, and the aspect solution FITS file, which describes the orientation of
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the telescope as function of time. The aspect solution file was used later in creating the exposure map.
The excluded events are saved in a so called Bad pixels FITS file, the criterias for that will be explained
later. In opposite to that, the secondary folder contains pure observation data with, for example, the
completely unfiltered level 1 event FITS file that includes every occurred event during the observation,
including the bad ones from the Bad pixels file in the primary folder.
To get the best results out of an analysis, it is necessary to use data that has been created with use of
the newest calibration data. The observation of HESS J1731-347 (Observation ID 9139) used here was
done in 2008 and so the data in the primary folder was not created with the newest one. Therefore the
chandra_repro script provided by CIAO was used on the downloaded data, to create a new folder like
the primary one, containing a new level 2 event file and a new bad pixel file. Using the CIAO command
dmcopy, which can also be used to filter FITS observation data in many ways, figure 5.1 was created out
of the level 2 event file with a binning factor of 8.
The image in figure 5.1 shows about a third of HESS J1731-347 with a CCO (marked with blue circle)
at the center of the supernova remnant and synchrotron filaments on the outside, marking the outer
shock front of the remnant. On the left, the contours of the four front-illuminated ACIS-I CCD chips
are visible, while on the right side one front-illuminated and one back-illuminated ACIS-S chip can be
seen. The pointing position of the telescope is roughly marked with a red cross.
This image shows the whole Chandra energy range between 0.15 keV and 15 keV and includes background
events together with events due to synchrotron emission from the shock filaments. To reduce the back-
ground we limited the energy range in the image. For this, a spectrum was extracted from the image.
This can be done in CIAO with the specextract command. To this aim, a source and a background region
has to be selected first. The background region can also be selected in a separate background file.
CIAO provides so called Blank Sky Files. These are background observations and there are two kinds of
them: Observations of high galactic latitude (Doane, 2008), which means outside of the galactic plane
and therefore few actual sources, and observations with the detector shielded. Shielded observations show
only quiescent background (Hickox & Markevitch, 2006), meaning interactions of high energy particles
with the telescopes’ materials and directly with the detector. The shielding blocks celestial X-Rays and
low energy particles (Hickox & Markevitch, 2006). There are observations for different years from 1999 to
2009 and they are separated into files for the single ACIS-I and ACIS-S CCD chips. The acis_bkgrnd_-
lookup command in CIAO automatically looks up background files for FITS files that match the CCD
chips used in the observation. CIAO recommended the Blank Sky observation files of 2005. These files
then had to be merged into one image of all included CCD chips of the studied observation, which was
done with the dmmerge command. For some unknown reason an attempt to merge the files of 2009 did
not work. Therefore they could no be used for a comparison, which was unfortunate since chronologi-
cally they are the nearest to the observation of HESS J1731-347 of 2008. After that, for actually fitting
the background image later and for using the same in DS9 defined region for the spectrum extraction
in both the real observation and the merged background observation, the pointing information in the
header of the real observation’s FITS file was added to the background file’s header with the commands
dmreadpar and dmmakepar. After that, the reproject_events command was used, which uses the aspect
solution file of the real observation, to adjust the coordinates of the background events to those of the
real observation’s events.
For the selection of the background region, the merged image of the 2005 Blank Sky background was
used. The selection of the region for the extraction of the spectrum can be done in DS9 and saved as a
region file. DS9 is a software developed at the Smithsonian Astrophysical Observatory, Cambridge, that
can be used to view and analyze FITS images. Even though the thermal emission originating from the
CCO in the image has a lot of counts, it is a small number compared to the whole number of counts
in the image and the influence on the shape of the spectrum should be negligible. Therefore the whole
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ACIS-I region was used as source and background region.
To open the spectrum file, the software XSPEC (Arnaud, 1996) was used. It is a commonly used spec-
tral fitting tool for X-Ray data and is designed to work mission independently. When loading spectral
data in XSPEC, the background spectrum is automatically subtracted from the source spectrum. To
select a reasonable energy range for the further analysis it is important to get an overview of both the
image and the background spectrum. Therefore in XSPEC a spectrum with included background, with
background subtracted and a background spectrum was prepared and the exported spectral data was
then plotted in Python. They are shown in figure 5.2 with the below explained VFAINT cleaning already
applied. Python is a programming language that is popular among scientists since it is open source and
there are a lot of in science useful packages available. A big part of this work was done in Python, also
since Sherpa is based on Python. Looking at the spectrum in figure 5.2(a), showing the image spectrum
without background subtraction, there are several smaller peaks visible corresponding to emission lines
of specific materials. These are fluorescence lines of Chandra’s materials from being hit by a particle.
Chandra’s effective area is nearly zero in the range of 9 to 12keV, and therefore only high energy particles
are detected in this range by interacting with the detector or Chandra itself. In the logarithmic plot of
the spectrum with subtracted background in figure 5.2(b) what can be clearly seen from around 0.5 keV
to about 6 keV is the expected absorbed power law also found in (Abramowski et al., 2011). As explained
in section 4.7, it is expected that this is synchrotron emission. Therefore this is the energy range that
was used for the further analysis to secure that all the synchrotron emission is included, but also the
least amount of unnecessary background events. As explained in section 4.7, the model for calculating
the lower limit on the magnetic field strength assumes a mono energetic electron energy at the shock
front and therefore also a mono energetic X-ray energy. This means that for a very precise analysis only
a small energy range around the peak of the spectrum should be used for the image. This is not possible
here because the statistics would then be too bad for a precise analysis.
To further reduce the background in the image, the above mentioned VFAINT cleaning was used. This
was possible since the observation of HESS J1731 has been taken in the so called VFAINT (very faint)
mode. In this mode, the grade of an event (see also chapter 3) is not determined with a 3x3 pixel island
as in the FAINT mode, but with a 5x5 island. It is then possible to flag events as bad events, for example
caused by cosmic rays, if an event causes some of the outer 16 pixels to be above their threshold value.
These events would not have been necessarily flagged as bad with only 3x3 pixels.
An event detected by Chandra is characterized by 32 bits that can also indicate potential problems like
the event caused by a cosmic ray. Making a level 2 event file out of a level 1 file, leads to filtering out bad
events with such status bits and these bad events are saved in a bad pixels file. However, this automatic
process is based on the evaluation of a 3x3 pixel island grade and the 5x5 grade is not used. This is
for security reasons, to not filter out source events automatically. As explained in the CIAO manual in
bright sources there are some source events marked as potential background events and therefore flagged
as bad events.
By using the chandra_repro command with the option check_vf_pha, the events that are flagged as bad
based on the 5x5 grade are also filtered out when creating the new level 2 event file. This was done and to
check if there were also events of the synchrotron structures filtered out, two things were done: First the
spectrum of the cleaned event file was checked and second, an image with only the excluded 5x5 grade
events was created. The spectrum of the the image with and without the excluded events are shown for
comparison in figure 5.2(a). As also described in Vikhlinin (2014), the background is reduced in different
energy ranges by a different factor, but the shape of the spectrum, especially that of the power law, is
still about the same and also the peak at about 0.25keV was nearly completely excluded. The image of
the excluded 5x5 events (figure 5.3) shows no noticeable structures compared to the image in figure 5.1.
We were thus confident that most excluded events were background events.
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Figure 5.3: Potential particle background events that are excluded of the image when using a 5x5 grade
to rate events.

After reducing the image background by limiting the energy range to that of the synchrotron emission
and filtering out potential background events with the VFAINT mode, we fitted the background with
the same method the filaments are fitted later. These background fits are shown in section 6.2. This
way a model for the background can be found that can be used in the fit of a filament, to consider the
background in the image. To perform a background subtraction for the purpose of imaging analysis, the
CIAO manual recommends the so called stowed background factor Cbg by (Hickox & Markevitch, 2006)
multiplied by the ratio between exposure lengths, as scaling factor between image and background data.
Although not a subtraction of the background but a fit is done here, the background has to be correctly
scaled to the observation to get a correctly scaled model for the background. Cbg compares the difference
in particle background of a real observation and a background observation. As explained above, in the
9 to 12 keV range only particle background is detected. Therefore a comparison of both the source and
background observation is possible in the 9 to 12 keV range. Considering the difference in exposure times
t1 (image) and t2 (background), the complete scaling Cscale factor results in

Cscale = Cbg ·
t1
t2

= f9−12keV,observation − 0.0132f9−12keV,readout

f9−12keV,stowed
· t1
t2

(5.1)

with f9−12keV,readout being due to readout artifacts, because of the time needed to read out the CCD
(Hickox & Markevitch, 2006). This count rate can be obtained from an image constructed with a Perl
script written by Markevitch (Hickox & Markevitch, 2006). In this case, the count rate was in the range
of 10−2 and multiplied by the fore factor of 0.0132 this is in the range of 10−4 smaller than the the
observation count rate and therefore negligible. To obtain the count rate we restricted the energy range
in both the observation image and the background image to 9-12 keV, did a VFAINT cleaning, and
then extracted the spectra with specextract. After that, by loading the spectra into XSPEC, the count
rate is automatically shown, and, in this case, it is important to make sure that the background is not
subtracted by XSPEC. The count rate for the image of HESS J1731 is f9−12keV,observation ≈ 0.5 ctss and
f9−12keV,stowed ≈ 0.49 ctss is the rate for the Blank Sky background image of 2005. With this, Cbg ≈ 1.02
is the resulting stowed background factor and with t1 = 2.923 · 104s and t2 = 1.55 · 106s the scaling factor
is Cscale ≈ 0.02. The background image scaled with Cscale and with excluded 5x5 grade events, like in
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the prepared observation image, is shown in figure 5.4. This is image is used later in section 6.2 to fit the
background.

Figure 5.4: The correctly scaled background image from the 2005 Blank Sky observation with a energy
range of 0.5 keV to 6 keV that is used to fit and model the background in the observation of HESS
J1731-347. It shows the same four ACIS-I and two ACIS-S CCDs as in the real observation.

5.2 Exposure Correction

After studying the background, the next step necessary to obtain the image of HESS J1731-347 for further
analysis was to exposure correct the image. This is done by dividing the image by an exposure map and
considers the difference in exposure time and effective area (see also chapter 3 and section 4.9) per pixel
due to several reasons. Note here that in "CIAO terms", the exposure map is a multiplication of the
exposure map in section 4.9, including only the effective area, and the exposure time. In section 4.9 only
the effective area map, here called instrument map, is included in the exposure map. The unit of the
exposure map is in cm2 · s · cts/photon. Therefore the image (cts/pixel) divided by the exposure map is
in units of photon

cm2·s·pixel . This gives an image in units of flux instead of events per pixel. One important
thing to mention, is that even tough the image used for analysis will be divided by the exposure map,
the resulting units will not be in flux here but in "exposure corrected counts". The reason for this is, that
there is still particle background included in the image, from the not subtracted background, and these
measured events are therefore not from observed X-rays.
The difference in exposure time is a consequence of the dither mode often used in Chandra observations.
For the reason of averaging signal inhomogeneities and protecting the detector (Nichols et al. 2010) and
to avoid empty space between the chip gaps, Chandra moves (dithers) around the initial pointing in a
Lissajous pattern with a size of typically about 20 arcsec (Nichols et al. 2010) during an observation,
like the one shown in figure 5.5. By knowing the Lissajous pattern equation, Chandra calculates the real
position of the events and corrects the coordinates. As a result of this movement, especially the pixels at
the CCD chip edges do not get the same amount of exposure time as the pixels on the inner regions.
As described in chapter 3, the effective area of the ACIS varies with position and energy. The dependence
on the energy can be seen in figure 3.6. The finished exposure map used to exposure correct the image of
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Figure 5.5: Dithering in a Lissajous pattern around the Chandra pointing during an observation with
activated dither mode. (Nichols et al. 2010)

HESS J1731-347 can be seen in figure 5.6. It also shows how the effective area varies with the position.
How it was created will be explained now.

Figure 5.6: Weighted exposure map created with CIAO that was used to exposure correct the image of
HESS J1731-347.

In section 4.9 we introduced the concept of the unweighted and weighted exposure map. The unweighted
is made for one specific energy and the weighted is a superposition of exposure maps for different energies,
each multiplied with a weighting factor. As explained in section 4.7 the calculation of the magnetic field
strength at the shock front is done with one energy value since the model of mono-energetic electrons is
assumed. Therefore an unweighted exposure map could be sufficient here to obtain an exposure corrected
image. However, since we search for the synchrotron emission profiles, a weighted exposure map would
be necessary if the energy distribution changes significantly inside a shock filament, distorting the real
profile. To verify this, a two color image was made of the observation image, showing two different energy
ranges. The two ranges were chosen so that each range contains the same amount of counts. This was
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checked by loading a spectrum of the 0.5-6 keV image into Sherpa and calculating the number of counts
inside an energy range with the command calc_data_sum. The image contains about 120000 counts and
by choosing the two ranges 0.5-2.15 keV and 2.15-6 keV, each of them contains about 60000 counts. In
figure 3.6 it can be seen that the effective area also changes significantly above 2 keV, which is another
reason for choosing these two energy ranges. The resulting two color image, put together with DS9, can
be seen in figure 5.7. Along the filaments the color is relatively constant, meaning that the energy stays
in the same range. What can also be seen is that the energies get harder from left to right which is due
to the change of the absorption column in this direction. Still a weighted exposure map was used since
it can be easily obtained with CIAO and should represent the broadband distribution of energies in the
image better.
With the electron cooling through synchrotron emission one would expect the spectrum to change and
to get softer when moving away from the shock front. Therefore it would be more precise to split the
image in several energy bands and to exposure correct every energy band separately before adding the
energy bands back together. However spectral variation is also not considered in the calculation of the
magnetic field and this can give a larger uncertainty than the small changes in the value of the exposure
map. Extracting a spectrum at the position of the shock front showed that the peak energy is below 2.15
keV. Therefore a softer spectrum is not influenced by the observed jump of Chandra’s effective area at
2.15 keV (see figure 3.6).

Figure 5.7: Two color image of HESS J1731-347 consisting of two images with different energy ranges:
0.5-2.15 keV (green) and 2.15-6.0 keV (blue).

Creating an exposure map can be done by using the fluximage script provided by CIAO. For creating
a weighted exposure map a source spectrum is needed. To make an exposure map representing the
whole source area with all filament structures, the complete ACIS-I area was chosen for extracting the
spectrum and the same was done in the 2005 Blank Sky background image as background region. In
case of a weighted exposure map, it is necessary to provide the script with a weights file created by the
make_instmap_weights script. It provides the weighting factor for each energy for the instrument maps
in the superposition for the weighted map. For calculating these factors, the script needs the Sherpa
source model and an energy range together with energy bins has to be specified. In the case of HESS
J1731-347 this model is an absorbed power law. Sherpa can also use XSPEC models, therefore the model
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is a product of the Sherpa 1D power law powerlaw1d and the XSPEC absorption model xsphabs, which
stands for photoelectric absorption. The make_instmap_weights script also needs the spectral index γ of
the power law and the line-of-sight column density nH for the absorption. Both can be found by fitting
the source spectrum with XSPEC using xsphabs*powerlaw1d as model. The fit can be seen in figure
5.8, showing the unfolded spectrum, which gives the spectrum in units of flux. The energy range of 1-6
keV was chosen for the best fit with a reduced χ2 of 48.68/39 = 1.248 and therefore a null hypothesis
probability of 0.138. The results for the spectral index and the absorption coefficient are γ = 2.31± 0.04
and nH = (1.2±0.04)E+22. With these values, a spectral weights file was created with make_instmap_-
weights, using an energy range of 0.5-6 keV like in the image used and energy bins of 0.1keV. The script
creates a spectrum with the fit values for the chosen model and calculates the weight for each energy bin
in the spectrum.
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Figure 5.8: Spectrum of HESS J1731-347, showing the energy range of 1-6 keV. It was fitted with XSPEC
(χ2 = 48.68/39 = 1.248), showing the residuals at the bottom.

After this, the fluximage script was used to exposure correct the image of HESS J1731-347. The script
takes either a specific energy, a spectral weights file or predefined energy bands for specifying if the
map is weighted or not and additionally a directory containing the observation files or an FITS file as
input. The observation image with the VFAINT correction was used for this. Fluximage first creates
a binned image using the event file and then takes the aspect solution file belonging to the event file,
which contains the direction vs time information, and creates an aspect histogram for each CCD chip
used in the observation. Instrument maps containing the effective area are also created for each CCD.
Then the instruments maps are projected into the sky, using the coordinate and time information in
the aspect histograms. The exposure maps created for the single CCDs are then merged together to an
image fitting the observation image. The before created image is then automatically exposure corrected
by dividing the image by the merged exposure map. After running fluximage, we have the count image,
the exposure corrected image and the exposure map. With the background still included in the image,
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it was also exposure corrected even though the particle background does not have to be corrected since
the events it causes are not influenced by the optics. The effect of the correction on the background
is studied in section 6.2 where the background is fitted by using the 2005 Blank Sky background image
which is divided by the exposure map.
The exposure corrected image can be seen in figure 5.9 together with the uncorrected image for compar-
ison. Comparing the images, two results can be seen: In the exposure corrected image, the events at the
outer CCD edges and at the edges between the CCDs (marked with red arrow) are a lot brighter due to
the corrected exposure time and the whole image looks more like one image than the images of several
individual CCD chips attached together and looks also sharper. Especially the image of the bottom one
of the the two CCDs on the right side, a back illuminated CCD, is no longer much brighter than the
other CCDs. One major difference that cannot be seen here, but for example when loaded in DS9 is
the difference in the values of the pixels. In the further analysis, both the uncorrected and the corrected
image were used, to see how the results compare.

(a) Exposure corrected Chandra image of HESS J1731-347,
containing the events from 0.5 keV to 6 keV.

(b) Uncorrected image of HESS J1731-347 with an energy
range of 0.5 keV to 6 keV for comparison.

Figure 5.9: Corrected and uncorrected Chandra image of HESS J1731-347. In both images the VFAINT
cleaning was applied. The position of the chip edges between the CCDs is marked with red arrows.

5.3 Simulating the PSF

As described in section 4.8, the PSF limits the resolution of a optical system since the image of a point-like
source is always only as small as the size of the PSF. In the same way, the PSF influences the image of an
extended source, which can be represented by a sum or integral over point sources or delta functions. To
carefully estimate the width of the synchrotron emission profiles in the image, the influence of the PSF
had to be considered. The size of the PSF depends on the distance to the optical axis. Since the optical
axis is not near the outer shock front, the PSF size could have a major influence on the width. The
resulting size of "source and PSF" is calculated by a convolution. It is impossible to do a deconvolution
without knowing the source function, even when the function of the PSF is known. What is possible
and what has been done in a later chapter, is fitting the emission profile with a convoluted fit function,
including a constant width for the PSF. What was needed for this is the size of the PSF and an image
of the PSF for a fit in Sherpa. Therefore in this section the PSF has been simulated and the size of it
estimated in different ways.
The Chandra X-Ray Center provides a chart in the Proposers’ Observatory Guide (Chandra X-ray Center
2013), showing the size of the PSF for the ACIS-I as the encircled energy radius versus the distance to
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the optical axis for off-axis observations. According to the Proposers’ Observatory Guide the PSF is
asymmetric and this chart only shows the distance up to 10 arc minutes, less than the distance of the
filament with respect to the optical axis. Therefore the size was simulated here to see how the sizes in
the different directions differ. Furthermore, the curves in Chandra X-ray Center (2013) are calculated
for different energies than the peak energy in the HESS J1731-347 image.
To get an actual image of the PSF, simulations were done with MARX (Model of AXAF Response to X-
rays) (Wise et al. 2003). Developed at the Chandra X-Ray Center at MIT, it is a ray trace software. The
results of the simulation are saved in standard FITS file. MARX allows the user to specify parameters
like source position, position of the optical axis, dithering, quantum efficiency, source flux, observation
time and also the shape of the source. The shape can be selected out of five predefined models and
four options of file input, like a user defined model. In this work a point and a disk model was used.
The shock filament mainly studied in this work is the north-west (NW) filament (top left in the image,
corresponding to north-east in the remnant) shown in figure 5.10 in the upper left. It is about 13 arc
minutes away from the optical axis, also roughly shown in figure 5.10. Here the PSF could already be at
a size where it influences the image significantly. Therefore a point source was simulated at the filaments
position, to get an image of the actual PSF, and a disk structure which was used as a circle like shown
in figure 5.10. This was done to simulate the PSF of the actual filament since it is believed to be also
a part of a circle. A point was also simulated at the position marked with a ? in figure 5.10, since the
filament structure there was also under study. However this structure lies near the CCO, about 1 to 3
arcmin away from the optical axis, and therefore the small PSF should not have much influence on the
width.
For all simulations several parameters had to be inserted into the marx.par parameter file. For both the
same parameters were used, except for the source position. The source positions used for the simulations
are marked in figure 5.10 by a + and ? for the point simulations and by a circle, marking the radius
and the circle’s center for the circle simulation. These parameters can be directly obtained in DS9 when
marking the structures.
The position of the SIM module during the observation (see also chapter 3) as well as the coordinates of
the optical axis were obtained from the observation report in the downloaded folder with the observation
files (see also table 5.1). Testing several values showed that the Z offset of the SIM module has the
opposite sign in the report than in MARX. For the exposure time, 2.923 · 104 seconds was selected as in
the real observation and the radius for the disk was set to 112.5 arc seconds. For the dithering model,
FILE input was selected and the aspect solution file of the real observation was used. The last thing
to decide were the source spectral parameters. For the spectrum, also FILE input was selected and the
spectrum of HESS J1731-347 was used. The source flux (photons/(cm2 · s)) was set to 0.1. The reason
for that was to have about 100 times the amount of average counts as in the real image in the filament,
because of better statistics when fitting the PSF image. To get this flux value, simulations with different
flux values were done and compared with the real observation image. The simulated points and circle
can be seen in figure 5.11. The images have the same binning like the observation image in figure 5.10
with a binning factor of 8.
Considering that a point and a circle without extension was simulated, without the PSF these structures
should have a maximum extension of one pixel. As the simulated point PSF at the position of the NW
filament is so wide spreaded and the width of the circle is a lot more than one pixel, it can be already
seen that the PSF has a considerable size at this position on the image. As expected, the size of the PSF
at the position near the CCO is only a few pixels. These structures were modelled by fitting them with
a gaussian PSF model.
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Figure 5.10: Image of HESS J1731-347, showing the markings for the PSF simulation at the structures
we are interested in. The + and ? mark the point simulations and the circle marks the circle simulation.
The optical axis of the observation is roughly at the position of the X.

(a) simulated point structures (b) simulated circle

Figure 5.11: With MARX simulated structures, showing the size of the PSF at this position.

As fit function, a two-dimensional elliptical rotated Gaussian was used, given by

A · exp
(
−
(

(x(α)− x0(α))2

2σ2
x

+ (y(α)− y0(α))2

2σ2
y

))
. (5.2)

The Gaussian is transformed into a rotated coordinate system, rotated by an angle α, by multiplying the
coordinates (x, y) and center coordinates (x0, y0) with a rotation matrix. The fitting was done in Sherpa.
For the fit C statistics and the neldermead algorithm was used, since these worked best when comparing
the fit algorithms and results. The simulated point structure on the upper left together with the fitted
Gaussian and a contour plot of both can be seen in figure 5.12. The best fit standard deviation in y
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direction in the rotated system is σy = 9.6′′ and in the x direction σx = 8.4′′. In average this gives a width
of σavg = 9′′. For the right point the fitting was difficult because of the small size and the distribution of
most counts in a small number of pixels, even with less binning. With a binning factor of 2, most counts
are concentrated in a square of 4 pixels with a length of about 2 arc seconds. Considering the minimum
resolution of Chandra of FWHM ≤ 0.5′′ ≈ 2.35σmin (Chandra X-ray Center 2013), a bit more than 1/3
of the side length of this square was selected as the size of the PSF, corresponding to σ = 0.75′′ as a
conservative value for the width for the small PSF structure.
Here the concept of the encircled energy fraction (EEF) is introduced. In section 4.8 it was explained
that the PSF can be represented by an Airy or Gaussian function. The EEF is the fraction of energy
included in a PSF when integrating these functions over a circular area given by the so called Encircled
Energy Radius (EER). Of course, when using the Gaussian PSF approximation, this is only accurate
when staying inside the Airy middle peak. Integrating a symmetric 2d Gaussian over σavg as EER gives
EEF= 0.46. This value of 0.46 is equal for all 2d Gaussians when integrated over the standard deviation
as EER, so the connection between EER and EEF can be used as a general concept to compare the size
of the PSF on basis of the standard deviation. This concept will be used later when comparing different
PSF sizes. One has to be careful when comparing PSF sizes like this, because not only the position in
the focal plane but also the energy of the X-rays change the size of the PSF.
The fit of the simulated circle is done in the exact same way as the real structure later. The simulation
of a 1 pixel sharp circle shows smearing due to the PSF, and a fit of the circle provides a fit of the PSF in
the circle. This way the same PSF is fitted as the one that should be present inside the NW filament in
the real observation and this gives the size of the PSF that has to be considered when the real filament
is fitted. The data of the structure in the real image was fitted in the same way as in Rottenanger (2013)
by summing up the data of the pixels along the structure, sorting them by the radius and then normal-
izing them on the number of elements per radius to calculate the normalized average counts. By doing
this, one gets a one-dimensional projection of the two-dimensional profile. This principle is schematically
shown in figure 5.13. This is done for getting better statistics since the counts are not very high in the
real observation. More on the normalization is discussed in section 6.2. The problem of this however is,
that one has to know the geometrical properties of the structure that is fitted, especially the radius for
specifying the fit region. For the simulation this is known, but not for the real filaments. This problem
is considered in the next section. The fitted area together with the resulting measured data and fit curve
is shown in figure 5.14. Here the best fit result is σcircle = 8.34′′ as the width of the PSF. The error bars
on the data were calculated by normalizing the square root of the unnormalized data by the number of
summed up elements per radius.

(a) Image of simulated point struc-
ture

(b) Fit with 2d Gaussian (c) Contour plot of data and fit function

Figure 5.12: Fit of simulated point structure.
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Figure 5.13: Principle of fitting the filament structures. The data of the pixels is summed up along the
structure in a pre-defined fit area, sorted by the radius and then normalized by the number of elements
per radius to calculate the average counts. By doing this, one gets a one-dimensional projection of the
two-dimensional profile.

(a) Fit area for fitting a Gaussian to the simulated circle by
projecting the data along the circle and normalizing it.

(b) Normalized projected counts and gaussian fit curve

Figure 5.14: Fit of simulated circle structure.

In the fitting of both, the point at the position of the NW filament and the circle, the statistics of the
fit were not good, with the reduced statistics being much higher than 1. Therefore, calculation of errors
was not possible. This is most likely due to the not entirely gaussian peak with a maximum too high to
fit into a gaussian curve. This can be seen well in figure 5.14 where the gaussian curve fits all points well
except the one at the peak maximum. Attempts to fit only the inmost 5 data points with a gaussian also
showed no good results for fitting the data point at the curve maximum. Therefore it is reasonable to
assume that the problem arises because of the maximum.
Comparing the estimated size of the small simulated point PSF for the structure near the CCO to the
PSF curve given by the Chandra X-Ray Center given in the Proposers’ Observatory Guide (Chandra
X-ray Center 2013), it can be seen that the value of σ = 0.75′′ obtained for the EER of the PSF is in
the correct range for the EER given in Chandra X-ray Center (2013), while still a bit too high. However,
it is unlikely that this small PSF size will even have a visible influence in structures with a size of more
than 10 arcsec. For the bigger structures, simulated at the position of the NW filament, the CIAO tool
psfsize_srcs was used as comparison. It takes the coordinates, the energy and the EEF as parameter
and then produces a region file containing a circle region with the EER corresponding to the EEF as
radius that can be loaded for example in DS9. For the coordinates of the point simulation on the left,
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the synchrotron peak energy of 1.75keV and an EEF of 0.46 results in an EER of 9.9 arcsec. Comparing
this to the fitted EER of σavg = 9′′ and σy = 9.6′′ for the simulation with MARX, shows that the fitted
PSF size is in the same range as the value given by CIAO and only slightly smaller. The simulation
most likely puts too much counts into the peak maximum, since this is the main difference in figure 5.14
compared to the expected gaussian shaped curve, making the peak higher and the width smaller. With
the difference in size between the CIAO value and the fitted value being only small, it can be concluded
that the simulated image of the PSF can be used in the Sherpa fittings in the next chapter, where an
image of the PSF is needed to account for the PSF size.

45



Chapter 6

Fitting of the Filaments

In this chapter the obtained data are used to study a few selected shock filaments in HESS J1731-347.
As introduced in section 4.7 in the simple assumption of mono-energetic electrons, the emission profile
is given by an exponential function. Therefore the filaments are studied with the assumption of an
exponential emission profile.
In section 6.1 the filament structures are fitted with a two-dimensional exponential fit function, mainly
to determine the geometrical shape of the structures. The simulated image of the PSF from section 5.3 is
used to consider the effects of the PSF in the fit. The result is used in section 6.2 to collect and average
the filament emission data in the image using the geometrical properties of the filament structures. The
fit function used is a convolution of an exponential profile and a gaussian PSF as it is expected in the
image data.
In section 6.3 the same data is fitted again, however here it is considered that the image is a two-
dimensional projection of the three-dimensional SNR. First a simulated emission profile, considering this
projection effect, is compared to the real emission profile, to test two different geometrical models from
the fit in section 6.1 for one of the shock filaments. After this a fit of the emission profile is done with a
fit function from integration the three-dimensional emission along the line of sight.

6.1 2D fitting with Sherpa

To calculate a lower limit on the magnetic filed strength at the shock front of HESS J1731-347 by using
the synchrotron loss time, the width of the synchrotron emission profile has to be known. Therefore
the emission profile has to be fitted in the observation image. However, the statistics are very low in
the Chandra image of HESS J1731-347. In Rottenanger (2013) the emission was summed up along the
emission profile to get and average emission profile with better statistics, as explained in section 5.3. The
problem of this method is, that the geometrical shape of the shock filament has to be known to collect
the data correctly. The mast important value to know is the center of the circular region, which is used
to collect the data. Up to now in Rottenanger (2013), the center of the circle was determined in DS9
by fitting a circle region manually to the shock filament. However, an incorrect center can have a large
influence on the resulting emission profile.
The expected emission profile of a shock filament should have an exponentially decreasing synchrotron
emission on the downstream side (where the shock already has gone through) and should have nearly
no synchrotron emission on the upstream side and the curve should rapidly decrease towards zero. The
reason for this is that, as explained in section 4.7, one would expect an exponential synchrotron emission
profile from the electrons, when moving away from the shock and loosing energy through synchrotron
emission. For electrons it is impossible to escape in the upstream region and therefore there is no syn-

46



CHAPTER 6. FITTING OF THE FILAMENTS 6.1. 2D FITTING WITH SHERPA

chrotron emission expected on this side of the filament. In Rottenanger (2013), the profiles were nearly
symmetric on both sides, which was either due to some non-synchrotron emission on the upstream side
or because of the chosen center of the circle. In section 6.3 it is demonstrated how a wrong fit region can
lead to emission that seems to originate from the upstream region. Fitting the center manually by eye,
there are various possibilities to find a circle that looks like if it fits the profile.
In a supernova explosion, the shock front originating from the position of the progenitor star moves
radially outside. Therefore in an ideal model with an isotropic supernova remnant, the shock front can
be seen as a spherical shell around the remnant. In this case the shock front should be part of a circle
with a center at the center of the SNR. In the special case of HESS J1731-347, the CCO is still at the
geometrical center of the remnant. In general however, the compact object in the center of the SNR
moves away from the center because of the momentum it gets in an inhomogeneous supernova explosion.
In Rottenanger (2013), the data was collected with a small circle region with a center far away from the
geometrical center of the SNR. This small circle was found to be the best fit for the filament by trying
to fit a circle manually to the filament in DS9. Physically it is possible for the filament to get a shape
like this, because the shock moves through an inhomogeneous medium which can slow down the shock in
some parts. However, as explained above, the found emission profiles turned out to be symmetrical and
therefore it is possible that the wrong center for the fitting region was chosen.
To obtain results fitted with the physically correct center, the shock filaments were fitted two-dimensionally,
with a fit function where the free parameters consist of the center coordinates, the radius and the emission
profile, including the width of the profile. In this fit also the influence of the PSF size on the emission
profile’s width is considered by using the simulated PSF image made in the chapter before. Aside from
finding the correct center, the other important task here for the NW filament was to find out whether the
best fitted center lies near the filament or near the CCO. The center near the CCO would be evidence
for the NW filament to be part of the outer shock front.
For the fitting, a Sherpa script was used. In the first step, the script loads the observation image and
then selects the fit region with a region selected in DS9.
After that, the coordinate system, the fit statistics and the fit algorithm are selected. Image coordinates
were selected, which means units in pixels since then the fit gives the results in the coordinates of the
binned image. cstat statistics were chosen, which are given as (Doe et al. 2014)

C = 2
∑
i

[Mi −Di +Di(logDi − logMi)] (6.1)

with Mi as the model amplitude in pixel i of the image and Di as the corresponding data counts. The
reason for this choice of statistics is, that compared to the often used chi squared, it does not rely on the
statistical error of the data. In a chi squared fit as seen also later in section 6.3 an over- or underestimation
of the errors on the data will lead to an over- or underestimation of the errors on the fit parameters.
Furthermore, chi squared statistics cannot be used for low counts per bin like in the Chandra observation
of HESS J1731-347 (Doe et al. 2014). As fit algorithm, both the simplex method (Nelder-Mead, see
Nelder & Mead (1965)) and the moncar method (Monte Carlo method, see Storn & Price (1997)) were
used separately in fits and the results compared. Both are recommended on the Sherpa website (Doe
et al. 2014) for complex models with correlated parameters. While the simplex method can calculate fit
errors and the moncar does not and is less time efficient, moncar was still also used. The reason for
this is, that while both are global fitting methods, the moncar method does probe more points of the
parameter space to find the best fit statistic. Since the start parameters for the center are at the position
of the CCO, this gives the fit a better chance to still decide for the small circle with the center near the
filament, like the one chosen in Rottenanger (2013), instead of ending in a local minimum.
The next step was to include the PSF by loading a simulated PSF image made with MARX. The images
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shown in the chapter before were used for this. Sherpa takes the image and does a FFT (Fast fourier
transform) of the PSF and the fit model, convoluting them. After that, a user defined fit function is
loaded. The two filaments fitted are shown in figure 6.1. While the NW filament is expected to be at
the outer shock front where the forward shock lies, it is not known, what the filament near the CCO
is. Assuming an age of 2500 y for the remnant as given in chapter 2, a reverse shock already near the
CCO would be very unlikely. Still it is very likely, that this emission is caused by high energy electrons,
which were accelerated in a shock emitting now synchrotron. As explained above, it is possible that the
shape of the filament is due to inhomogeneous medium the shock crossed. Even though these structures
are not at the outer shock front, they were still studied, since they could have a smaller width judging
from looking at the observation image and the results in Rottenanger (2013) and this could indicate a
higher magnetic field strength. The other reason is that they are much nearer at the optical axis of this
observation and as shown in section 5.3 the PSF should have nearly no influence here, which gives a much
better resolution here than at the position of the NW filament.

Figure 6.1: The two shock filaments in HESS J1731-347, marked with red and green, that were fitted
two dimensional with Sherpa.

For the red marked NW filament, the same exponential fit function as in Rottenanger (2013) was used,
but transformed into a two dimensional function by transforming the one dimensional x coordinate into
a radius r =

√
x2 + y2:

f(x, y) = A · exp

(
−

∣∣∣∣∣
√

(x− x0)2 + (y − y0)2 − r0

w1/2

∣∣∣∣∣
)

+ C (6.2)

with A as the function’s amplitude, x0 and y0 as the center coordinates of the circle, r0 as the circle
radius and w1/2 as the width of the emission profile, changing at the maximum amplitude of the profile.
C is a constant that represents the background. As shown later in section 6.2, the background can in
average be approximated as a constant. Each one of these parameters was fitted and the function was
written so that the width w1/2 = w2 if

√
(x− x0)2 + (y − y0)2 > r0, for upstream and else w1/2 = w1 for

downstream.
Concerning the green marked structure near the CCO, in Rottenanger (2013) it was suspected that
fitting this filament with an elliptical fit function could give better results, since the structure looks more
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elliptical than circular. Therefore the fitting of this structure was not done with equation 6.2 but with an
elliptical function. The two dimensional gaussian ring defined in Xu et al. (2013) was used by leaving the
elements making the ring elliptical unchanged and changing the gaussian to an exponentially decreasing
function with an absolute value as argument, as in equation 6.2. This gives

f(x, y) = A · exp

(
−

∣∣∣∣∣ (1− k)
√

(x− x0)2 + (y − y0)2

w

∣∣∣∣∣
)

+ C (6.3)

k = ab√
a2(y − y0)2 + b2(x− x0)2

with a as the radius in x direction and b as the radius in y direction. Depending on the fit result, one
will be the major half axis of the ellipse and the other the minor half axis. It was fitted in a similar way
as the red marked NW filament with two widths, but with the condition (x−x0)2

a2 + (y−y0)2

b2 > 1, which
comes from the equation of the ellipse.
After loading the fit function, the script does the fit and plots the fitted function with the best fit
parameters together with the residuals and also a contour plot of the fit. The last step of the script is to
calculate the parameter errors for a one sigma confidence level in case of the simplex fits.
The regions selected for the fit are shown in figure 6.2. For the NW filament, the fit area was limited
to only the brighter part since the part following on the north east has less average counts and seems to
make a curve of 180 degrees, so it could be a different structure.

Figure 6.2: Selected fit regions for the 2D fit of the two shock filaments in Sherpa.

Both the NW filament and the filament near the CCO were fitted 8 times with the combinations shown
in table 6.1. The background was not subtracted here, because the logarithm in the cash statistics does

Table 6.1: Fit combinations used for fitting the NW filament and the filament near the CCO in Sherpa
image VFAINT cleaning applied? fit algorithm
counts yes moncar

simplex
no moncar

simplex
exposure corrected yes moncar

simplex
no moncar

simplex

not allow negative counts. Therefore the background is included in the constant in the fit function. As
seen in the next section, where the background is fitted, on length scales like 100 arc seconds it is about
constant in average, while a small gradient can be seen on larger scales, but does not have much influence.
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However the not exposure corrected background has also a big negative peak at the chip edges, while
the exposure corrected one does not have this due to the correction. The exposure corrected image was
normalized by multiplying it with the average pixel values in the exposure map, to have comparable
values to the count values in the counts image. For the filament near the CCO, the start parameters
were determined with an elliptical region laid on the structure in DS9. The NW filament was fitted with
a circle as start parameter that has the center at the CCO and a radius big enough to reach the filament
on the outer shock front. The shock front that causes the shock filament should also have its origin at
the CCO, if it is really a part of the outer shock front and the shock front is not distorted.
For both filaments, in three out of the four possibilities shown in table 6.1 the moncar and simplex
method had about the same geometrical results. However for the NW filament in the VFAINT cleaned
counts image and for the filament near the CCO in the VFAINT cleaned exposure corrected image, the
results were greatly different when comparing the moncar and simplex result in this case. In general, of
the eight fit possibilities for the two structures, only two results for each structure have an acceptable
reduced statistics and Q-value (probability of getting the same or higher reduced statistic, assuming that
the model is true and the fit results are the correct values): For the NW filament the simplex fits for the
VFAINT cleaned exposure corrected and the counts image, and in case of the filament near the CCO
the moncar and the simplex fit with the VFAINT cleaned exposure corrected image.These four results
are shown in table 6.2 and in figure 6.3 showing the fit regions, a contour plot and the residuals. In all
other fits the Q-value is several magnitudes smaller. Comparing first the results for the NW filament, one
can see that, while the widths are similar within the uncertainties, for the exposure corrected image the
filament is part of a big circle with its center being near the CCO and for the counts image the filament
is part of a small circle which has a center near the filament. All other fits of the NW filament also favor
the big circle solution but are not trustworthy because of their low Q-value. One reason could be the
above explained difference in background shape when the image is exposure corrected and not exposure
corrected. For the counts image there is a chip gap with a negative background peak between the CCO
location and the filament which could interfere with the fit which has a constant background included.
Looking at the Q-value, it is also less likely for the small circle solution to be correct. However there could
also be a local minimum issue with the fits which have the center near the CCO, because the fit starts
with these coordinates as start values. Therefore in section 6.3 both solutions will again be compared to
see which of the solutions is more likely the correct one.
Looking at the results for the filament near the CCO in figure 6.3, the residuals show that the fit failed,
even though the reduced statistics and Q-value in table 6.2 seem acceptable. The two different fits
also find two different geometrical shapes for the filament. Studying the residuals in DS9 shows, that
some brighter residuals are nearly as high as the corresponding values in the source. Furthermore the
distribution of the residuals is not like for the NW filament fits approximately gaussian and therefore
in average zero, but differs from a gaussian distribution, by having a lot of high residuals without the
corresponding negative counterparts. With this. it seems as if the structure near the CCO cannot be
described with the typical synchrotron shock filament shape explained in section 4.7. The uncertainties
for the two widths are also very high compared to the fitted value itself in the simplex fit, whereas the
small uncertainties for the ellipse itself indicate a correct model.
Still, all four results are used in the next section to fit the filaments one-dimensional like explained in
section 5.3, by using the geometrical properties gotten in these two-dimensional fits. This will give a
look on the average structure of the filaments, since one of the problems here for the two-dimensional fits
is, that a constant maximum amplitude is used in the fit function, while the data itself has no constant
amplitude.

50



CHAPTER 6. FITTING OF THE FILAMENTS 6.1. 2D FITTING WITH SHERPA

Table 6.2: Fit results of fitting the shock filaments two dimensional with sherpa. For comparison: The
CCO lies at x=232, y=117 and the shock radius would then be about 880 arc seconds. The Q-value gives
the probability of getting the same or higher reduced statistic, assuming that the model is true and the
fit results are the correct values. VFAINT means that the VFAINT cleaning is applied and EXP means
that the image is exposure corrected.

NW filament filament near CCO
image VFAINT EXP VFAINT counts VFAINT EXP VFAINT EXP

fit algorithm simplex simplex moncar simplex
reduced statistic 1, 089 1, 185 1, 065 1, 059

Q-value 0, 074 0, 0018 0, 063 0, 08

amplitude [counts] 7.48+0.5
−0.4 9.3+0.7

−0.6 1.42 1.87+2.6
−0.4

width 1 [arc seconds] 19.88+3.7
−3.8 17+2.2

−2 34.52 51.84+172.8
−22

width 2 [arc seconds] 13.84+3.3
−3 8.52+2.3

−2.1 3.2 31.32+79.6
−33.7

x center [pixel] 231.3+12.6
−12 63.1+12.5

−4 174.3 197+1.3
−0.8

y center [pixel] 107.1+31.2
−26.1 192.4+3.7

−6.7 174 176.1+0.6
−4.9

radius [arc seconds] 900+44.5
−48.3 149.5+45.2

−34.4
constant [counts/pixel] 0.45+0.25

−0.3 0.86+0.17
−0.19 1.32 0.52+0.6

−2.7
semi x [arc seconds] 162 65.2+4.2

−6.4
semi y [arc seconds] 135.5 66+3.1

−3.8
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(a) Fit region for NW filament
in VFAINT cleaned count im-
age.

(b) Contour plot of fit and data, fitted with
simplex.

(c) Residuals

(d) Fit region for NW filament
in VFAINT cleaned exposure
corrected image.

(e) Contour plot of fit and data, fitted with
simplex.

(f) Residuals

(g) Fit region for filament near
CCO in VFAINT cleaned expo-
sure corrected image.

(h) Contour plot of fit and data, fitted with
simplex.

(i) Residuals

(j) Fit region for filament near
CCO in VFAINT cleaned expo-
sure corrected image.

(k) Contour plot of fit and data, fitted with
moncar.

(l) Residuals

Figure 6.3: Two dimensional fits of two shock filaments with Sherpa.
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6.2 Fit with Convolution of an Exponential Profile and the PSF

In this section, like in Rottenanger (2013), the shock filaments in HESS J1731-347 are fitted one dimen-
sional after the data is collected and normalized with the method explained in section 5.3. However, a
few changes are applied, which should give more accurate results. The studied filaments are the same as
in section 6.1, seen in figure 6.1. Instead of finding the center of the circle laid through the NW filament
by hand in DS9, as done in Rottenanger (2013), here the fitted center found in section 6.1 is used. In
addition, not a circular fit region is used for the filament near the CCO, like in Rottenanger (2013), but
the elliptical fit results from section 6.1 are used. The most important change is the use of the exponential
fit function (Rottenanger 2013), convoluted with a gaussian PSF. This takes into account the influence
of the PSF on the filament width, which could be relevant for the NW filament. The width of the PSF
is fixed in the fit, so the fit result is the width of the emission profile. For the PSF, the value of σ = 9.9′′

for the NW filament and σ = 0.75′′ for the filament near the CCO is used (see section 5.3). We also take
into account the background in the observation. For this the background image is fitted in the same way
as the filaments, to get a model for the background emission, which can be used in the actual fit of the
filaments. The fit itself is done in Python with the lmfit package.
To perform the fitting, first the exponential function f(x) of the source has to be convoluted with a
normalized gaussian g(x) representing the PSF:

f(x) = A · exp
(
−
∣∣∣∣x− x0

w

∣∣∣∣)+B g(x) = 1√
2πσ

exp
(
− (x− x0)2

2σ2

)
(6.4)

A is the amplitude, x0 the position of the curve’s maximum, w the width of the emission profile and σ
the standard deviation of the gaussian as its width. B is a constant representing the background in the
image, which is a reasonable approximation, as shown below. Since this fit is one-dimensional, the PSF
is also one-dimensional here and not two-dimensional like in section 5.3 and 6.1. The following integral
calculates h(r) as the fit function:

h(r) =
∫ ∞
−∞

f(x) · g(r − x)dx = A√
2πσ

∫ ∞
−∞

exp
(
−
∣∣∣∣x− x0

w

∣∣∣∣) · exp(− (r − x− x0)2

2σ2

)
dx+B (6.5)

This can be integrated by splitting the integral in two regions and considering the absolute value, with
one going from minus infinity to zero and the other from zero to infinity. This results in

h(r) = A

2

((
1 + erf

(
(x0 − r)w − σ2
√

2σw

))
· exp

( r
w

)
(6.6)

−
(
erf
(

(x0 − r)w + σ2
√

2σw

)
− 1
)
· exp

(
2x0 − r
w

))
+B

which is the fit function used for the fit of the filaments. In equation 6.6 the amplitude not only depends
on A but also on the width w because of the error function. The emission profile is fitted with two
functions like equation 6.6, with two different widths for each side and with the condition to change at
the maximum. Therefore the amplitudes of both functions have to be the same at the maximum. With
the first function h1(r) like equation 6.6 having an amplitude factor A1 and a width w1 and the second
function h2(r) having an amplitude factor A2 and a width w2, with the condition h1(x0) != h2(x0) this
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gives:

A2 =
A1

(
erf
(

σ√
2w

)
− 1
)
· exp

(
x0
w1
− x0

w2

)
erf
(

σ√
2w2

)
− 1

(6.7)

This condition was therefore included in the fit function.
The selection and collection of the data in the image is done as in Rottenanger (2013). In Python, the
area of the data to fit is selected by specifying a center of the circle or ellipse and an inner and outer
radius as well as a range for the angle between 0 and 2π. The Python script then goes through the image
and collects only the data contained in the by angle and radius specified area. The data with the same
radius is summed up and afterwards divided by the number of summed up elements per radius, to get a
curve with the average emission profile. The reason for this normalizing of the profile is that the theory
expects a plane shock front. Here however, the shock is curved in the image and contains more pixels in
the outer regions of the synchrotron structure than on the inner regions. Still, to have good statistics, the
data of the filaments has to be summed up along this curved structure. In this case the curvature could
act as a further compression additional to the normal shock compression of the medium. Therefore the
emission is normalized, to get the emission profile of a plane filament structure. The difference between
normalizing the data and not normalizing it was studied in Rottenanger (2013) and the result was that
the influence is small.
For the NW filament, which is on the edge of the CCDs, it was ensured that only the pixels on the CCDs
were collected. In the case of the elliptical filament near the CCO, the data was also selected and sorted
with a radius. For that, not the image itself, but the elliptical coordinates of the pixels relative to the
selected center were stretched to a circle by dividing the y coordinate by the ratio of the length of the
two axes of the ellipse.
The collected data was then fitted with the Python package lmfit. It can use different fit methods provided
by scipy.optimize but was tested most with the least square method. Compared to scipy.optimize it adds a
lot of features. The fit parameters and results are not just numbers, but objects with different attributes
like for example the reduced statistics, that can be called with a command. Another feature is the
possibility to add boundaries to the fit parameters, which is not possible in the scipy.optimize package
alone. These were programmed like the boundaries in the Minuit (James & Roos 1975) fit routine
developed at CERN.
First the background was fitted to get a model for the fit function for the filaments. This is important
because the background is also exposure corrected when the image including the background is exposure
corrected. Therefore a comparison of both the exposure corrected and the not corrected background was
done to see the influence of the exposure correction. For the filament near the CCO the background was
assumed to be constant. This assumption is reasonable since the radius of the filament structure is small
compared to the whole image size and the filament is near the optical axis. The background emission
itself should be constantly distributed in the image for long enough exposure times and the vignetting
correction should not have much effect on the background at this position in the image. The exposure
correction of the background even has the advantage of correcting the exposure at the chip gap near the
structure.
In case of the NW filament however, for the big circle model obtained from the two-dimensional fit, the
filament radius is with about 900 arc seconds nearly as big as two chip edges together which is about 1000
arc seconds. With this long distance and the position of the filament on the outer part of the ACIS-I
region, the vignetting correction could have a noticeable effect on the background. Furthermore a direct
line from the position of the CCO, which is near the fitted center for the big circle model, to the NW
filament has to cross the center of the ACIS-I region where all CCDs meet and the biggest chip gap lies.
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A comparison of corrected and uncorrected background therefore shows if the exposure correction really
corrects this big chip gap and also how this gap could have influenced the two-dimensional fit of the
uncorrected image leading to the small circle solution for the NW filament. The fit of the background
is shown in figure 6.4. The image of the 2005 Blank Sky background was used in two different versions:
Both images scaled to the observation of HESS J1731-347, but one is exposure corrected and the other
is not. The same center and radius as shown in table 6.2 for the big circle model of the NW filament was
used for the selection of the fit area. The error bars in figure 6.4, 6.5 and 6.6 are calculated by assuming
that the data is Poisson distributed and therefore the error is the square root of the unnormalized counts
C. The errors f for the unnormalized exposure corrected counts F = C/Exp, with Exp as the exposure
map, were calculated as relative errors by using the error σ on the counts:

σ

C
=
√
C

C
= 1√

C

!= f

F
⇐⇒ f = F√

C
(6.8)

The counts C, flux F as well as the corresponding errors σ and f were then normalized by dividing them
by the number of summed up elements per radius.
As fit function for the averaged background a straight line is assumed, which is a good approximation as
seen in figure 6.4. The plotted data shows the averaged background emission from near the CCO up to
behind the NW filament and therefore shows about the range of 1000 arc seconds. In figure 6.4(a) the
not exposure corrected count background is shown together with a fit of the background. The fit covers
roughly the same range as the small circle filament model given in table 6.2. Figure 6.4(b) shows the
exposure corrected background with a fit of the background. The fit range used is the same range as
in the fit of the NW filament in the big circle model, given by a range of about 400 arc seconds. The
fit results are shown in table 6.3. Comparing the background curves in figure 6.4(a) and 6.4(b), one
can observe the differences of exposure correcting the background or not. The uncorrected background
shows the big chip gap in the left part and also the influence of the outer end of the CCD is visible
on the very right. In the exposure corrected background the curve is flat and these influences are not
visible. Another difference, probably caused by the vignetting correction, is that the sign of the gradient
in counts changes: In the uncorrected background in figure 6.4(a) the average number of counts slightly
decreases going from left to right which means from the CCO to the NW filament. In the exposure
corrected background in figure 6.4(b) the counts slightly increase in this direction. The same is shown
in table 6.3 by the slope parameters of the fitted line. However, these slope parameters also show, that
it is reasonable to approximate the background in the fits of the NW filament in both the big and small
circle case as a constant. The peak value in the emission curve of the NW filament is of the order of 5
counts in the uncorrected image and 5·10−7 exposure corrected counts in the exposure corrected image.
The background constant is about one order of magnitude lower than these values and the slope value in
both cases even several orders of magnitude lower. Even when multiplying the slopes given in table 6.3
by the fit range of about 150 arc seconds in case of the small circle model or 400 arc seconds in case of
the big circle model, the change in the background constant would still be one order of magnitude lower
than the constant itself and would not really have an influence on the fit of the filament. Therefore the
background is approximated with a constant in the fit.
As already discussed in section 6.1 the effect of the big chip gap seen in figure 6.4(a) could be the reason
for the fit to select the small circle model when fitting the structure. However this is still only a difference
of about 0.1 counts in average compared to the background on the CCDs and therefore it is also possible
that it is not the reason but for example a local minimum problem.
The fit results with the fitted widths and the fit area for the NW filament and the filament near the CCO
can be seen in figure 6.5 and 6.6. The same center, radius and ellipse axes as shown in table 6.2 were
used for the selection of the fit area. For the fit of the filaments, the VFAINT exposure corrected image
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Table 6.3: Fit result for fitting the background in the exposure corrected and uncorrected scaled 2005
Blank Sky background image with a straight line. As fit range in the uncorrected image roughly the fit
results of the small circle model from table 6.2 were used and for the exposure corrected image the range
of the big circle result.

background constant background slope
uncorrected average background 0.38 -0.0001

exposure corrected average background 2.56E-8 1.4E-11

was used.
From the model for synchrotron shock filaments introduced in section 4.7, on the downstream region
an exponential decay is expected, while there should be no emission present in the upstream region.
However, it is unlikely for the filaments to have a perfect shape with no inhomogeneous parts on the
upstream region. Therefore, when summing up the emission along the filaments, these inhomogeneities
will lead to the shift of some downstream emission to the upstream side of the curve. Therefore emission
is also in the upstream region of the curve to some degree, but most of it should not be real.
For the filament structure near the CCO, the two-dimensional fit in section 6.1 suggested two different
models. As already suggested in Rottenanger (2013), there are two different possible shapes for the
filament near the CCO. One model describes a small filament with a strong curvature which was found
in the simplex fit in table 6.2 and the other one, obtained with moncar, describes a long filament which
starts in the upper CCD, crosses the chip gap and continues in the lower CCD. The fit of the model with
the long filament is shown in figure 6.5(b). The emission curve is similar to what expected, with small
emission on the upstream side and a wider emission on the downstream side. The curve looks similar to
the one found with a similar model in Rottenanger (2013). As calculated in Rottenanger (2013), a width
this big for the downstream region suggests a lower limit for the magnetic field much lower than 12µG.
However, the shock front should be much further outside in the remnant. Therefore the shock conditions
do not necessarily apply here and it could be possible for the magnetic field strength to be lower than
the 12µG from the shock compressed medium. Still, as implied by the residuals of the two-dimensional
fit, another possibility is that the model is wrong in some way and the emission curve does not correctly
represent the structure in the image.
The fit with the model for the smaller filament structure is shown in figure 6.5(d). The emission looks
very symmetric which should not be possible in theory. The width of the upstream emission, which is
nearly as wide as the emission in the downstream region, suggests that the emission is summed up with
the wrong model. However, for both emission curves in figure 6.5, these arguments assume that the same
emission curve is expected here as at the outer shock front. Since the outer shock front is not near the
position of these structures, it is difficult to exactly determine what to expect here for the emission curve.
The fits of the NW filament are shown in figure 6.6. The fit with the small circle model is shown in figure
6.6(b). The residuals, which show systematics, the high χ2 and also the fact that boundaries had to be
used for several fit parameters for the fit to work, suggests that used fit function is not a good model for
the data. Also the peak of the data is not represented very well by the fit curve. The fit using the big
circle model is shown in figure 6.6(d) and does fit the emission curve well, with some residual around the
peak. Assuming that there is no error in summing up the emission of the filament and that the correct
physics is applied, another explanation is needed. Comparing the curves for the NW filament with the
projection model proposed by Berezhko & Völk (2004) and Ballet (2004), shows intriguing similarities to
their curves. The model is studied in the next section. The filament near the CCO is not further studied,
since the projection model can only be applied to a filament at the outer shock front.

56



CHAPTER 6. FITTING OF THE FILAMENTS 6.2. FIT WITH CONVOLUTION

(a) Average background in the not exposure corrected 2005 Blank Sky background image. The fit range is roughly the same
range that is used to fit the NW filament in the small circle model.

(b) Average background in the exposure corrected 2005 Blank Sky background image. The fit range is the same range that
is used to fit the NW filament in the big circle model.

Figure 6.4: Average background in the 2005 Blank Sky background image with one exposure corrected
and the other not. The background data was collected with the big circle model for the NW model from
table 6.2. The background was fitted with a straight line in the fit range for the radius used to fit the
NW filament in the small circle and in the big circle model.
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(a) Fit region for filament near CCO in VFAINT exposure corrected image. (b) wleft = 136.3′′, wright = 11.4′′, reduced χ2 = 0.67.

(c) Fit region for filament near CCO in VFAINT exposure corrected image. (d) wleft = 21.28′′, wright = 17.97′′, reduced χ2 = 0.8.

Figure 6.5: Fit of the shock filament near the CCO with equation 6.6. On the left side of the maximum
is the downstream side (behind the shock) and on the right side is the upstream side (before the shock).
In (a) and (b), the fit result when using the results of the moncar fit in table 6.2 can be seen together
with the fit region. In (c) and (d) the same is shown for using the fit results of the simplex fit in table 6.2

58



CHAPTER 6. FITTING OF THE FILAMENTS 6.2. FIT WITH CONVOLUTION

(a) Fit region for NW filament in VFAINT exposure corrected image. (b) wleft = 57′′, wright = 22.2′′, reduced χ2 = 4.05.

(c) Fit region for NW filament in VFAINT exposure corrected image. The
circular shape of the filament is deformed due to the different range of the
axes.

(d) wleft = 58.1′′, wright = 9.2′′, reduced χ2 = 2.02.

Figure 6.6: Fit of the NW shock filament with equation 6.6. On the left side of the maximum is the
downstream side (behind the shock) and on the right side is the upstream side (before the shock). In (a)
and (b), the fit result for the small circle solution in table 6.2 can be seen together with the fit region.
In (c) and (d) the same is shown for the big circle solution in table 6.2.
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6.3 Projection Effect on the Image

In the previous section, it was found that an exponential profile, convolved with a Gaussian PSF, is
not a good model for the NW synchrotron shock filament since the peak of the emission profile is not
represented well. Therefore in this section we use models proposed by Berezhko & Völk (2004) and Ballet
(2004).
In section 6.1, two different models for the NW filament with two different centers for the curved profile
were found. However, assuming that the NW filament is at the outer shock front of the SNR, it is
impossible that the center of the small circle filament is the center of a sphere projected onto the image.
Most likely the position of the CCO or near the CCO corresponds to the center of the spherical SNR, as
indeed suggested by the best fit "big circle solution" for the NW filament. Therefore it does only make
sense to fit a projection formula to the emission profile in the frame of the big circle model.
The projection of the three-dimensional SNR on a image plane can be obtained as shown in figure 6.7,
assuming that the distance between the image plane and the SNR is much bigger than the shock radius R
of the SNR. The projection is then parallel to the optical axis in z direction and the emission is summed
up in the image plane along this direction.
To simulate this, a sphere was first constructed in Python with the same size as the models for the filament
suggest, and then filled radially symmetric with an exponential profile (see equation 6.4). For the width
of the profile the result of Berezhko & Völk (2004) and Ballet (2004) were used. They both found that
the intrinsic width of the exponential profile without projection is ∼1/7 of the observed width on the
image. Since the profile was fitted separately and it was only tested if the projected profile approximately
looks like the measured profile, a width of 50 arc seconds was assumed for the simulated profile, divided
by 7. When projecting the sphere, this results in a 7 times wider profile on the image plane, which is 50
arc seconds. This should be in the same range as the width of the observed emission profile. Everything
more distanced from the center than the radius was set to zero.
The simulation allows to compare the real data with the simulated projection curve and to determine if

Figure 6.7: The projection of the three-dimensional SNR on a image plane, assuming that the distance
between the image plane and the SNR is much bigger than the shock radius R of the SNR. The projection
is parallel to the optical axis in z direction and the emission is summed up in the image plane along this
direction.
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the profile collected with the model of a small circle could be an effect of the projection. To this aim, a
big sphere and a small sphere were created and projected on a plane. As shown in figure 6.8, collecting
each of these projections with the wrong model widens either the upstream or the downstream side of the
emission profile.
The data for the emission profile to compare with the simulated data was extracted from the exposure

Figure 6.8: The effect of summing up a big or small circle filament with the wrong model. Collecting the
small circle filament with a big circle model leads to an increase of emission on the downstream region
(green), while collecting the data of a big circle filament with a small circle model leads to an increase of
emission on the upstream side (red).

corrected image, used in section 6.2. For the center of the big circle we used the coordinates of the CCO
with x = 232, y = 117 and a radius of r = 880′′. These are still within the confidence boundaries of the
2d fit and this also changed the shape of the simulated projection profile even more towards the shape
of the image profile. The resulting curves can be seen in figure 6.9. Figure 6.9(a) shows the measured
emission together with that of a projected small sphere and a projected big sphere, when all are collected
with the model for the small circle. Comparing the downstream side, one can see that the choice of
model for the simulated data does not have much influence when collecting the data with the small circle
model. The curve for the simulated small circle, collected with the small circle also correctly goes to zero
at the shock front, as expected from theory. On the upstream side however the real data as well as the
big circle simulated data collected with the small circle model, both show a wide emission which is not
expected in theory. As explained above one would expect some inhomogeneities in the structure of the
real data, because it is unlikely for the filament structure to have a perfect circular structure. However,
this emission is much too wide to be caused by these inhomogeneities and also in the simulated data
such structures should not be present. Therefore this is evidence that the real data is collected with the
wrong model, as shown in figure 6.8, and that the measured emission profile, collected with the small
circle model, is indeed an effect of the projection.
In figure 6.9(b) the data is collected using the big circle model. In case of the big circle simulation, the
collected profile describes the measured data much better on the downstream side. However while it is
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a good representation of the real data near the shock front, going further away the real data gets lower
than the simulated curve. This is most likely due to the not perfect isotropic three-dimensional structure
of HESS J1731-347.
For the upstream side, as expected from theory, there is no emission present in the curve for the simulated
big circle. However the real data shows some emission in this region. Comparing the upstream emission
in figure 6.9(b) with the one in figure 6.9(a) shows that the proportions are very different. While on
the first look the emission seems to have a comparable width, one has to consider that for the big circle
model the distance to the center is about 900 arc seconds while in the small circle model the distance
is only about 150 arc seconds. Furthermore in the case of the big circle model, because of the smaller
curvature, there is much more emission summed up per radius. This way there is easily summed up a lot
of emission in the upstream region from the inhomogeneous structure of the filament.
The next step was to actually fit the profile with a mathematical model for the projection effect.

Berezhko & Völk (2004) and Ballet (2004) already did this and used different fit functions. They both
start with a function of the form f(ρ) =

∫ a
0 ε(r)dz with ε(r =

√
ρ2 + z2) as the spherically symmetric

emissivity of the SNR and f(ρ =
√
x2 + y2) as the surface brightness, being the on the plane projected

emissivity profile. The coordinate systems used are shown in figure 6.7. The integral limit a for the height
of the sphere is given as

√
R2 − ρ2 with R as the shock radius. Both use an exponentially decreasing

function of the form ε(r) = E · exp((r −R)/w) with w as the width of the function.
The difference between their two fit functions comes from the way how they approximated the integral.
While Ballet (2004) developed r for ρ close to R, Berezhko & Völk (2004) developed r for z close to
a. According to Ballet (2004) this leads to their curve representing the peak better, while the curve of
Berezhko & Völk (2004) is more accurate nearer to the center. However, the difference between both
curves for the representation of the peak is not big. Since Berezhko & Völk (2004) say that their curve
is accurate to about one percent for w � 0.1R their function is used for the fit, because like shown in
figure 6.6(d) a much bigger range of the profile than just the peak is fitted. The condition of w � 0.1R
should be fullified here since R is about 900 arc seconds and w should be in the range of 10 arc seconds.
The fit function relative to the projection from Berezhko & Völk (2004) is given by

f(ρ) = 2ERw√
R2 − ρ2

(
1− R2 − 2ρ2

R2z
− e−z

[
1− R2 − 2ρ2

R2z
+ (z + 2)

2

(
2ρ2 −R2

R2

)])
(6.9)

with z = (R2 − ρ2)/(Rw).
The emission profile of the NW filament with the CCO as center, fitted with equation 6.9 plus a fit
constant, is shown in figure 6.10. We used again the lmfit package. The best fit result for the width is
w = 13.29+1.64

−1.42 arc seconds with a reduced χ2 of 150.5/135 = 1.11. It is several times smaller than the
width gotten in section 6.2. This was expected since the fit in section 6.2 does not consider that the
observed profile is a projection. The error is the one sigma confidence interval calculated by lmfit.
The first try to fit the projection profile resulted in a reduced χ2 of 216.8/135 = 1.6. This is not a
very good result, considering that the fit itself when comparing the data and fit curve showed only a
few data points where the difference between fit curve and data was several times the error bar. The
residuals (see figure 6.10) also show no systematics which indicate a wrong model for the data. A reason
for this could be an underestimation of the errors on the measured data. The error is the square root
of the exposure corrected counts which is normalized, however these counts are an average over the
area shown in figure 6.6(c). As can be seen there, the two dimensional image of the data shows a very
inhomogeneous distribution of the events. Therefore taking the average of this region could actually
underestimate the error of the individual data points of the shock filament in the Chandra image. This
would also underestimate the errors of the fit results. Therefore, the errors on the data were enhanced
by 20% to consider this. This value was found by trying different enhancements and comparing the χ2.
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(a) Profiles collected with small circle model. The red dashed line is the profile for a simulated small sphere with the center
near the filament projected on the image plane and the blue line is the profile of a simulated big sphere with the center at
the CCO. The x-axis shows the full radius of about 150 arc seconds from the maximum to the center.

(b) Profiles collected with big circle model. The blue line shows the profile of a simulated big sphere with center near the
CCO projected on the image plane and the red line shows the profile of a simulated small sphere. The x-axis shows only
500 arc seconds of the 880 arc second radius from the CCO to the maximum. The curve for the small sphere shows too
much downstream emission and is obviously the wrong model here.

Figure 6.9: Emission profiles of the NW shock filament collected with the small circle model which has
the center near the shock filament and collected with the big circle model which has the CCO as center.
For comparison the profiles of simulated big circle and small circle filaments are shown which are collected
with the same model as the real data.
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Since the fit curve has a very specific form with the rapid decrease towards zero after the peak maximum

Figure 6.10: Emission profile of the left shock filament with the CCO as center, fitted with the fit function
of Berezhko & Völk (2004). Best fit width w = 13.29+1.64

−1.42 arc seconds, reduced χ2 = 150.5/135 = 1.11.
The residuals are shown in the bottom.

and not considering emission right of the peak, the fitted data had to be limited. Therefore the fit region
was selected only up to a few data points right of the maximum, for the curve to be able to find the peak
maximum.
The fit constant in this fit is negative with a value of about -5 x 10−8 even tough the background is
still included in the fitted data. This is similar to the simulated curve seen in figure 6.9(b) where the
simulated curve is higher than the measured data nearer to the center. This is most likely due to the
fact, that the fit function expects a perfectly isotropic SNR, which is not the case in HESS J1731-347,
leading to a slightly different emission curve.
To consider these inhomogeneities, a second fit of the emission profile was done, using only data near the
peak maximum for the fit. As already mentioned in section 6.1, and also visible in figure 6.10 as a little
peak, there is a structure directly behind the northern part of the NW filament. Under the assumption
that this structure is not part of the filament, the distance of about 70 arc seconds from the filament’s
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peak maximum to this structure was used as a scale for the inhomogeneities in the region of the shock
front. To stay in a homogeneous region, only about 50 arc seconds to the shock front were used for the
fit, which does not include the little peak from the other structure. The second fit of the data is shown
in figure 6.11. The best fit result for the width is here w = 10.35+1.69

−1.39 arc seconds with a reduced χ2 of
12.2/10 = 1.22. The errors were still enhanced by 20% and no fit constant was used. One can see the
effect, also visible in the simulated curve in figure 6.9(b), that the theoretical curve is higher than the
measured data in regions far away from the shock front. Therefore this seems to be the better fit and the
lower width obtained here is used for the calculation of the lower limit on the magnetic field strength at
the shock front of HESS J1731-347 in the next chapter. In these fits, the fit function was not convolved

Figure 6.11: Emission profile of the left shock filament with the CCO as center, fitted with the fit function
of Berezhko & Völk (2004). Here only the data up to a distance of about 50 arc seconds to the shock
front is used. Best fit width w = 10.35+1.69

−1.39 arc seconds, reduced χ2 = 12.2/10 = 1.22. The residuals are
shown in the bottom.

with the PSF. The Gaussian PSF with a width of about 10 arc seconds and the projection curve plotted
with the best fit parameters can be seen in figure 6.12. It can already be seen that the PSF is much less
wide than the projection curve. Knowing from the fit in figure 6.11 that the width is 10.35 arc seconds,
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it can be estimated that the width of the projected peak is in the range of 70 arc seconds, since the
fitted width is about 1/7 of the projected width. The width of the PSF as standard deviation is given
at the height of about 0.6 times the amplitude. This gives a FWHM/2 of 11.8 arc seconds for σ=10
arc seconds. The projection curve in equation 6.9 is calculated from an exponential curve. Assuming
the projection curve as an exponential curve with a width of 70 arc seconds gives a FWHM/2 of 48.5
arc seconds. Comparing these two numbers, it is unlikely that the influence of the PSF on the emission
curve is higher than the confidence intervals on the best fit result for the width. In case of two gaussian
functions which are convoluted, the new width in this case would be given as

√
48.52 + 11.82 = 49.9.

Even if the PSF would have a significant influence on the width of the curve, it would be no problem
when calculating a lower limit on the magnetic field on the shock front using the width of the curve. The
limit gets lower if the curve gets wider, therefore it is impossible to overestimate the lower limit by not
considering the PSF.
On the upstream side, less wide than the downstream side and in which no emission curve should be
present, the PSF could have a noticeable influence. However, the emission on the upstream side is still
too wide to be only caused by the PSF. It is theoretically possible to see synchrotron emission on the
upstream side, if particles leave the shock on the upstream side. However this is not possible for electrons
but only for heavier particles like protons and this emission region would only be up to about 0.1 pc wide
(Ballet 2004), which corresponds to about 6.5 arc seconds here for a distance of 3.2 kpc. In figure 6.11
the width of the curve in the upstream region is several times this value.
Since the projection curve in equation 6.9 is imaginary in the upstream region due to the 1√

R2−ρ2
part,

the convolution of the projection and the PSF would still be imaginary on the upstream side and could
not be used for fitting. It is also not possible to fit the part of the curve right of the peak maximum with
just a gaussian PSF, since as seen in figure 6.12 the peak maxima of both curves are not at the same
position, even when using the same center coordinate. In figure 6.12 it can be also seen, that the PSF
is by far not wide enough to be alone responsible for the wide upstream emission. By simulating a big
circle filament like explained above and adding an upstream emission, it was made sure that the emission
in the upstream region is also not a projection effect of an emission curve with a width of 0.1 pc on the
upstream side caused by particles radiating there. This would not lead to such a wide curve. One of
the reasons for a deviation from the theoretical curve on the upstream side apart from the PSF and an
upstream synchrotron emission could be the not perfectly spherical shape of the shock front. This makes
the curve wider on the upstream side when collecting the data. This not perfectly spherical shape could
for example originate from small-scale density inhomogeneities of the surrounding interstellar medium
(Berezhko & Völk 2004). In Berezhko & Völk (2004) a similar curve with also emission on the upstream
side was found for Cassiopeia A. Another reason which could also lead to a not perfectly spherical shape
when collecting the data for the fit, is the uncertainty in the center coordinate. Here exactly the CCO
coordinates were assumed as the center, since they show better results for the emission curve compared
with the projection as the originally found coordinates in the two dimensional fit and also it is assumed
that the shock originated from the position of the CCO. However the same argumentation as with the
PSF can be applied here: The emission profile can only get wider by collecting the data with another
center than the correct one. This makes it impossible to overestimate the lower limit on the magnetic
field.
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Figure 6.12: Fit function used in the fit of the emission profile plotted with the best fit parameters. For
comparison also the gaussian PSF is plotted with a width of 10 arc seconds and the same center as the
fit function.
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Chapter 7

Results

7.1 A lower limit on the magnetic field strength at the shock
front

All the work done up to now aims at estimating the width of the shock filament at the shock front of SNR
HESS J1731-347. The best fit value for the width obtained, considering the effect of the three dimensional
SNR being projected on a two dimensional image, is w = 10.35+1.69

−1.39 arc seconds. This value can be used
to get a lower limit on the magnetic field strength at the shock front. A limit significantly higher than
the ∼12µG originating from a compression of the interstellar medium by factor 4 due to the shock wave
at the shock front is needed to accelerate cosmic rays up to the knee in the comic ray spectrum (Bell
et al. 2013). According to theory, magnetic field amplification is due to cosmic rays escaping the shock
in the upstream region (Ellison 2000), and especially protons because of their large gyroradius (Bell et al.
2013). An amplified magnetic field strength, higher than 12µG, would therefore provide evidence that it
is possible, in HESS J1731-347, to accelerate hadronic cosmic rays at the shock front.
In this chapter a lower limit on the magnetic field strength is calculated in different ways and the results
compared with that of other SNR. The calculation is based on the principle of accelerated high energy
electrons radiating synchrotron in the amplified magnetic field at the shock front. While they move away
from the shock front, they radiate and loose energy, as seen in the resulting emission curve in figure
6.10. The electron motion is a combination of diffusion (see section 4.5) and advection (electrons and
shock move relatively away from each other) and it is expected that both effects are of the same order
for loss-limited electrons (Ballet 2004). Loss-limited means that the loss time

τloss = 3m2
ec

3

4σTUmagE0
(7.1)

is less than the acceleration time of the electrons. While this equation is for one electron, the emission
curve in figure 6.10, which is the exponential emission curve at the shock front projected on the image,
is the combined X-ray synchrotron emission of a ensemble of electrons with different energies. However
as introduced in section 4.7 the calculation here will be done under the assumption of mono-energetic
electrons. Chandra has a limited energy range for detecting the radiation. Therefore the width of the
curve, which gives the width at 1/e of the maximum, is used as a length scale for the distance to the
shock front where only a fraction of 1/e of the electrons have enough energy left for radiating synchrotron
detectable by Chandra. The loss time τloss can be used as a time scale for this to occur. Since τloss
depends on the magnetic field strength B, because of Umag = B2

2µ0
, and the loss time and the width of

the curve are connected by the speed of the electrons, they can be used to calculate a lower limit on the
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magnetic field strength at the shock front. The result hereby depends on how the electron moves away
from the shock front. In Rottenanger (2013) the magnetic field was calculated in the pure advection
case. However, as stated above, the movement of the electrons most likely also includes diffusion. This
is considered in Berezhko et al. (2003). They used the result of the one-dimensional transport equation
for the cosmic ray distribution function under the assumption of a plane shock and the steady state case,
which is given as (Berezhko et al. 2003)

fi(x, p) = f(x = 0, p)exp
(
−|x|
li

)
. (7.2)

This function describes the distribution of the cosmic rays with momentum p in the upstream (i = 1 and
x < 0) and the downstream region (i = 2 and x > 0). In the mono-energetic case this is independent of
p and just describes the exponential distribution at the shock front for a specific electron energy. The
width li of the curve is given by

li = 2κi
ui

[
1− (−1)i

√
1 + 4κi

u2
i τi

]−1

(7.3)

with κi as the cosmic ray diffusion coefficient for electrons in the Bohm limit (see section 4.5) κ(p) = vpc
3eB

(Berezhko & Völk 2007) where e is the electron charge, v the particle velocity and p the momentum of
the particle. The quantity ui is the relative plasma speed with respect to the shock front and τi is the loss
time of the cosmic rays. Cosmic ray electrons mainly suffer synchrotron losses (Berezhko et al. 2003) and
τ2 for the downstream side is therefore the same loss time as in equation 7.1. For electrons, equation 7.2
describes the same curve as the X-ray synchrotron emission curve in case of a specific electron energy Ee:
At x = l2, only 1/e of the electrons with initially momentum pe ∼ Ee still have this momentum due to
synchrotron losses. Therefore both the synchrotron and the comic ray distribution have about the same
width in case of electrons and the width in equation 7.3 can be treated as the width of the synchrotron
curve in figure 6.10.
For the downstream, side equation 7.3 can be written as (Berezhko & Völk 2004)

l2 = 2ld2√
1 + 4ld2

lc2
− 1

(7.4)

with ld2 = κ(p)/u as the diffusion length and lc2 = τ(p)u as the convection length. The velocity of
the downstream plasma with respect to the shock front is u = Vs/σ, the shock speed Vs divided by the
compression ratio σ. The loss time is τ(p) = 9m2

ec
2/(4r2

0B
2p) with me as the electron mass and r0 is the

classical electron radius.
The characteristic synchrotron frequency of radiation by an electron is (Ballet 2004):

νsync = 1.82 · 1015BmGE
2
ergHz (7.5)

Using this relation as ν ∝ Bp2, equation 7.4 can be written as

l2 =
√
κτ√

1 + δ2 − δ
(7.6)

with

δ2 = lc2
4ld2

= 0.12
(

c

r0ν

)(
Vs
σc

)2
. (7.7)
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By inserting the loss time τ and the Bohm diffusion coefficient κ into equation 7.6 and solving it to B,
one gets for the downstream magnetic field Bd (Berezhko & Völk 2004)

Bd =
(

3m2
ec

4

4er2
0l

2
2

)1/3

(
√

1 + δ2 − δ)−2/3G. (7.8)

Equation 7.8 is valid when both diffusion as well as convection are involved to a fair amount. However,
there are two extreme cases possible where mainly only one of the processes is involved. Which one of
these three cases applies depends on the value of δ2.
In the case of very strong losses is 4ld2 � lc2 (Berezhko & Völk 2004). It means that the electrons
already lose much energy during the acceleration process when they diffuse away from the shock in the
downstream region. Since this happens very fast, the shock nearly stays at the position where it was
when the electron moved through it and the convection does not have much influence here. With the
diffusion length being much bigger than the convection length, δ ≈ 0 and l2 ≈

√
κτ , which means for the

downstream magnetic field:

Bd,strong losses ≈
(

3m2
ec

4

4er2
0l

2
2

)1/3

G (7.9)

Because of Bohm diffusion, this result depends not on the particle energy and is also independent of the
shock velocity and compression ratio. This is expected, since in the case of strong losses, the shock does
not move far while the electrons loose their energy.
The other extreme case is given for very weak losses when 4ld2 � lc2. Then the emission curve is a result
of the shock and electrons moving away from each other relatively because of the shock moving away
from the electrons, while the electrons slowly lose their energy. This happens after the acceleration, when
the electrons are not longer accelerated and therefore the diffusion movement during the acceleration and
also afterwards has nearly no influence here. With 4ld2 � lc2, it can be seen from equation 7.4, by doing
a Taylor approximation, that in this case l2 ≈ lc2 = τu = τ Vs

σ . By combining the loss time τ and the
typical synchrotron frequency from equation 7.5 the downstream magnetic field can then be calculated
as:

Bd,weak losses ≈

(
l2,pc

1.8 · 10−3 · E1/2
keV ·

Vs,1000
σ

)−2/3

mG (7.10)

The width of the curve l2,pc is used here in units of pc instead of cm like in the equations 7.8 and 7.9.
Vs,1000 is the shock speed in units of 1000 km/s.
The resulting magnetic field strength at the shock front of HESS J1731-347 for the three cases explained
are shown in figure 7.1. The distance used to calculate the width of the filament was d = 3.2 kpc
(Abramowski et al. 2011). An estimated error of 0.5 kpc was used. With this, the width of the filament
was calculated trigonometrically with the fitted width l2 as l2,pc = d · sin(l2,arcsec). The fitted lower and
upper limit on the width was used as an average error of 1.54 arc seconds. In equation 7.8 and 7.10,
the synchrotron energy is used for the calculation of the magnetic field strength. The energy is the peak
energy of the synchrotron spectrum fitted in figure 5.8, representing the energy of the mono-energetic
electrons, about 1.75 keV. The last parameter needed for the calculation is the shock velocity. However,
this has not been measured yet. Therefore a range of 1000 km/s to 5000 km/s, in steps of 1000 km/s,
has been used here. These are typical shock velocities in supernova remnants.
In Abramowski et al. (2011), a shock velocity of 3000 km/s was calculated, following Truelove & McKee
(1999), by estimating the density of the surrounding medium of HESS J1731-347. It is also possible to
calculate a shock velocity using the Sedov-Taylor solution, describing the propagation of a blast wave
during the second phase of the SNR evolution (see section 4.2). The radius of the SNR as a function of
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the time t is then given as (Taylor 1950)

R(t) = S(γ)E0

ρ0

1/5
t2/5 (7.11)

with E0 as the energy released by the supernova explosion, S(γ) as a function of the specific heats ratio
and ρ0 as the density of the medium. This was done in Fukuda et al. (2014), where they calculated a
shock velocity of 2100 km/s, assuming a distance of 5.2 kpc and using the same density of the surrounding
medium as in Abramowski et al. (2011). Both results are in the velocity range selected for the calculation
of the magnetic field value. Comparing the results of the different models in figure 7.1, it can be seen

Figure 7.1: Lower limit for the magnetic field strength at the shock front of HESS J1731-347 if the
distance is 3.2 kpc. The case of strong losses, weak losses and also the case where both diffusion and
convection are involved (mixed case) are shown in dependance of the shock velocity. Also for assuming a
non-linear shock compression at the shock front a mixed case curve is shown calculated for a non-linear
shock compression ratio of 6.

that the difference in field strength depends strongly on the shock velocity. Like explained above, the
result of the strong loss model is independent of the shock velocity and therefore constant. In case of the
weak loss model, for small velocities the magnetic field strength is much lower than for the strong loss
model, but for the high velocities the value gets higher than that of the strong loss model. This can be
explained by the fact that the length scale for the losses is constant. While the strong loss model is not
influenced by the velocity, with the weak loss model, a shorter electron loss time and therefore stronger
losses, implying a stronger magnetic field, are needed to achieve the same length scale with a higher shock
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velocity.
The results of the mixed model, including both convection and diffusion, are for all shock velocities higher
than for the strong and weak loss model. However, the curve shows similarities to the explanation above,
with the results being nearer at the strong loss model for low velocities and being nearer at the weak loss
model for the high shock velocities. This shows the smaller influence of the convection at low velocities
and the lower influence of diffusion for higher shock velocities.
The magnetic field values suggest that the magnet field is amplified at the shock front. Even for a shock
velocity of 1000 km/s the value of the weak loss model minus the statistical uncertainty gives a value
slightly higher than 12 µG. This is however much lower than the estimated shock velocity for a distance
of 3.2 kpc, which gives a lower limit of 34.4 µG for 3000 km/s in case of the weak loss model. For the
mixed model and a shock velocity of 3000 km/s, the lower limit could be higher than 50 µG within the
statistical uncertainty for a distance of 3.2 kpc.
The length scale for the losses given in arc seconds is very sensitive to the distance of HESS J1731-347.
As stated above a recent calculation of Fukuda et al. (2014) shows that the distance of HESS J1731-347
could be 5.2 kpc. However, since B ∝ l

−2/3
2 the influence of the difference in distance on the magnetic

field value is not that big. The results for a distance of 5.2 kpc are shown in figure 7.2. For the distance,
again a uncertainty of 0.5 kpc was assumed. The curves for the different models in figure 7.2 show the
same characteristics and shapes as the curves in figure 7.1, but the lower limit for the magnetic field
strength is lower. For a shock velocity of 2100 km/s the lower limit for the weak loss model is still higher
than 17 µG even within the statistical uncertainty. Therefore even with a bigger distance of 5.2 kpc the
results still show the possibility for amplification of the magnetic field strength at the shock front.
It is not known which one of these 3 models is the most precise to describe the loss process in HESS
J1731-347 at the shock front. However, the limits given above are the ones for the model giving the
lowest magnetic field limit for the estimated shock velocities. Assuming one of the other models as the
best match for HESS J1731-347 would lead to an even higher lower limit for the magnetic field strength
at the shock front.
The compression ratio of 4 assumes a linear shock compression. It is expected however, that the shock
acceleration of comic rays in SNR shocks happens nonlinearly (Ellison 2000). In this case, the shock
compression is nonlinear due to a modified shock structure caused by the the back pressure of the
accelerated particles (Ellison 2000). Assuming a nonlinear compression ratio of 6, like the one chosen
in Berezhko & Völk (2004) for Cas A, the calculated results for the lower limit with the mixed model
from equation 7.8 can be seen in figure 7.1 and figure 7.2. The strong loss model is independent of the
shock compression and in the weak loss model the loss process should not be influenced by the nonlinear
effects, since the electrons are already away from the shock front when the losses mainly happen. The
weak loss model assumes that the synchrotron loss time is much bigger than the acceleration time. The
shock compression in equation 7.8 only influences the plasma and electron velocity in the downstream
region in the rest frame of the shock. This results in lower magnetic field values compared to the linear
shock compression of 4 as seen in figure 7.1 and figure 7.2. For the same length scale of the losses, with
a lower electron velocity the loss time is higher. This requires a less high magnetic field strength as seen
in equation 7.1.
For other SNRs a lower limit for the magnetic field strength at the shock front was calculated in the
same way as in this work in Ballet (2004) and Berezhko & Völk (2004). A comparison of the calculated
magnetic field values, together with some properties of the SNR is given in table 7.1. A comparison of
the magnetic field values shows that the value calculated for HESS J1731-347 is the smallest among the
results. It is more than 10 times smaller than the value calculated in Berezhko & Völk (2004) for Cas
A. However, comparing the width of the filaments together with the SNR age to the magnetic field value
implies that the magnetic field gets smaller with higher age of the SNR. In this case, HESS J1731-347
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follows this trend, being the oldest SNR, if its age is of at least 2500 years. This dependency on the
SNR age was also a result of Bamba et al. (2005), where it was suggested that the emission filaments get
wider, the older the SNR becomes. Since the filament width is connected with the magnetic field value
through the synchrotron loss time, a wider filament leads to a lower magnetic field value.

Figure 7.2: Lower limit for the magnetic field strength at the shock front of HESS J1731-347 if the
distance is 5.2 kpc.
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Chapter 8

Discussion and Outlook

In this work, a lower limit for the magnetic field at the shock front of HESS J1731-347 was calculated
for different velocities of the shock front and source distance. This was done by analyzing the X-ray
synchrotron emission, observed in a Chandra image. The two dimensional fit results as well as the
comparison of the simulated emission profiles suggest that the best model for the morphology of the NW
synchrotron shock filament is given by a circle with center at the CCO, suggesting that the filament is
part of the outer shock front. The comparison of the small circle model, assumed in Rottenanger (2013),
with the simulated projection curves showed that this model is not the best one for the filament.
Concerning the X-ray structures near the CCO, the study of the emission profiles projected along an
ellipse proposed different possibilities: A very broad filament and therefore a very low magnetic field of
less than 12 µG, but also the possibility that the two-dimensional fit of the structures failed, as implied
by the residuals, and the data is therefore wrong collected, making it broader. However, the results are
not conclusive, since the structures are near the CCO and not at the outer shock front, making unclear
what kind of emission profile is expected.
The fit of the NW filament with an exponential profile, convolved with a Gaussian to consider the PSF,
showed that this model is not well representing the emission profile projected along a circle. An improved
function, which takes into account that the three-dimensional SNR is projected on a two-dimensional
image plane, provides a much better model. The model assumes an exponential emission profile at the
shock front as intrinsic profile, before it is projected onto the image plane.
The best fit result for the width of the profile is given as w = 10.35+1.69

−1.39 arc seconds. With this, the
lower limit for the magnetic field strength at the shock front was calculated using the model of Berezhko
& Völk (2004). For a distance of 3.2 kpc and a calculated magnetic field strength of at least 34.4 µG for
a shock velocity of 3000 km/s, it can be concluded that the magnetic field is amplified at the shock front
of HESS J1731-347. For a distance of 5.2 kpc however, the results give a magnetic field of only about 19
µG. This is still higher than 12 µG and fulfills the condition for amplification, but the result is not that
convincing. The determination of the distance with future measuring is essential. In case of a distance
of 3.2 kpc and a shock velocity of 3000 km/s, it can be safely concluded that there are hadronic particles
present at the shock front which are accelerated and amplify the magnetic field.
Coming back to question of the origin of the TeV γ-rays observed in HESS J1731-347 introduced in the
introduction in chapter 1, this result for the magnetic field strength can now be compared with different
models published for the spectral energy distribution, proposing either the leptonic or the hadronic
scenario. In Abramowski et al. (2011) a leptonic model was found, requiring a magnetic field strength of
25 µG and a hadronic model with a magnetic field strength of 50 µG. The lower limit for the magnetic
field strength calculated in this work is at least in the range of 25 µG and is about 50 µG when assuming
the mixed model, including both diffusion and convection, with a linear shock compression of factor 4.
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However, according to Abramowski et al. (2011), the hadronic model would need a one magnitude lower
shock velocity than 3000 km/s, which would also have a big impact on the results of this work and would
result in a decrease of the magnetic field values.
In a recent study of an observation of HESS J1731-347 with Fermi was done in Yang, Rui-zhi et al.
(2014). The distance assumed by the authors is the same as in Abramowski et al. (2011) (d∼3.2 kpc).
The leptonic model requires a magnetic field of about 28 µG, which is very close to the lower limit
calculated in this work of 29.3 µG for the weak loss model within the statistical uncertainty and for a
shock velocity of 3000 km/s. The hadronic model requires a magnetic field of more than 70 µG, which
is slightly higher than the highest lower limit from this work for the mixed model and a shock velocity
of 5000 km/s. In Yang, Rui-zhi et al. (2014) it is discussed that for the hadronic model a higher shock
velocity is needed, which would be in agreement with the results of this work. However, this would be a
problem, because a velocity of 5000 km/s is very high considering the estimated age of HESS J1731-347
and would be more fitting for a very young SNR as seen in table 7.1. The results of this work therefore
favor the leptonic scenario, which describes that the origin of the observed γ-rays from HESS J1731-347
is dominated by inverse compton radiation from scattering between accelerated TeV electrons and CMB
photons.
One very important, but still unmeasured parameter in all this is the shock velocity. The first Chandra
observation of HESS J1731-347 used in this work was done in 2008. An observation for example in 2015
would be 7 years later. Chandra has the highest spatial resolution of all X-ray telescopes. With 7 years
between the observations, the resolution of Chandra of about 0.5 arc seconds would be enough to roughly
measure the shock velocity in units of 1000 km/s by comparing the two images. One pixel of the ACIS-I
has also the size of about 0.5 arc seconds. For a distance of the remnant of 3.2 kpc this corresponds to
about 0.013 pc. Comparing this value with the distance traveled by the shock in these 7 years, shows
that the difference of one pixel for the position of the shock in an unbinned image corresponds to a shock
velocity of about 1000 km/s. For two pixels the result would be about 2000 km/s and for three pixels
about 3000 km/s. To have the least possible influence of the PSF on the structures, the optical axis of
the observation would have to be exactly on the shock position. One problem however could be the PSF
of the previous observation of 2008, which has a size of about 10 arc seconds at the position of the shock.
While the PSF should only broaden the emission profile and not move the emission maximum that was
fitted in this work, the influence of the PSF on the position of the maximum could still be too high,
considering that the comparison of the images would be on a length scale of 0.5 arc seconds. Measuring
the shock velocity could also help to define a distance. If the result is already 3000 km/s for a distance of
3.2 kpc, it would be unlikely for the distance to be 5.2 kpc with a shock velocity near 5000 km/s, which
would be very high given the estimated age of the remnant.
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