
PHYSICAL REVIEW E 88, 022301 (2013)

Stable and metastable hard-sphere crystals in fundamental measure theory
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Using fully minimized fundamental measure functionals, we investigate free energies, vacancy concentrations,
and density distributions for bcc, fcc, and hcp hard-sphere crystals. Results are complemented by an approach
due to Stillinger, which is based on expanding the crystal partition function in terms of the number n of free
particles while the remaining particles are frozen at their ideal lattice positions. The free energies of fcc and hcp
and one branch of bcc agree well with Stillinger’s approach truncated at n = 2. A second branch of bcc solutions
features rather spread-out density distributions around lattice sites and large equilibrium vacancy concentrations
and is presumably linked to the shear instability of the bcc phase. Within fundamental measure theory and the
Stillinger approach (n = 2), hcp is more stable than fcc by a free energy per particle of about 0.001kBT . In
previous simulation work, the reverse situation has been found, which can be rationalized in terms of effects due
to a correlated motion of at least five particles in the Stillinger picture.
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I. INTRODUCTION

The crystal lattices of monatomic substances are very often
of face-centered-cubic (fcc), hexagonal-close-packed (hcp),
or body-centered-cubic (bcc) type. Still, it is a formidable
problem in statistical mechanics and quantum chemistry to
predict the stable crystal structure and its free energy for a
given substance. Approximating the particle interactions in this
substance by classical two-body potentials makes the problem
amenable to a treatment using methods of classical statistical
mechanics, most notably Monte Carlo (MC) simulations
and (classical) density functional theory (DFT). While the
approximation using two-body potentials may not be very
accurate for truly atomic substances, the advance in colloid
synthesis allows to realize systems with simple two-body
potentials to a good degree of approximation, thus colloid
suspensions are a perfect model system for investigating
freezing in classical statistical mechanics.

For isotropic two-body potentials u(r) (r is the center
distance between two particles) a substantial amount of
knowledge has been gathered. For potentials with a repulsive
core the steepness of the core mainly determines the stability of
fcc over bcc, with fcc being more stable for steeper cores. This
has been investigated for power-law potentials u ∝ (1/r)n [1]
and screened exponentials u ∝ exp(−κr)/r [2,3], where the
parameters n,κ determine the steepness of the potential. In
the hard-sphere limit (n,κ → ∞), fcc appears to be the stable,
equilibrium structure and a possible bcc structure is unstable
against small shear [4], which is reflected in squared phonon
frequencies ω2(k) being negative for certain wave vectors k.

For hard spheres, it is a much more delicate issue whether
fcc is more stable than other close-packing structures, most
notably hcp. Early theoretical work by Stillinger et al. analyzed
the free energy of hard disks and fcc and hcp hard-sphere
crystals in terms of an expansion in the number n of
contiguous particles (free to move) in an otherwise frozen
matrix of particles at their ideal lattice positions [5–7] (see
below). This expansion could be done analytically only for
densities in the vicinity of close packing and, for n = 2
and n = 3 (by quite a remarkable feat), resulting in hcp

being more stable than fcc by a free energy difference per
particle �F/N ∼ 10−3kBT . However, the individual terms
contributing in this series are much larger than this value of
�F/N . An extension of this method [8] (still only near close
packing) to n = 5 shows the reverse situation: fcc is more
stable than hcp and �F/N ∼ −10−3kBT , but the last term
in the series is still larger in magnitude than �F/N (about
six times for fcc and three times for hcp). Simulation work
confirms the stability of fcc over hcp also for smaller densities
(around coexistence). Using a single-occupancy cell (SOC)
method, Ref. [9] estimates �F/N = −(5 ± 1) × 10−3kBT at
a density of ρ0σ

3 = 1.041 (approximately at coexistence, σ

is the hard-sphere diameter). In this method, particles are
constrained to their Wigner-Seitz cells and the free energy
difference is found by integrating the equation of state. The
limitations of this method could be overcome by the powerful
Monte Carlo (MC) lattice switch method which allows to
compute directly the free energy difference between two
different lattice structures [10]. At ρ0σ

3 = 1.10 the result is
�F/N = −(0.86 ± 0.03) × 10−3kBT . Thus the result of the
high-density Stillinger series for n = 5 for the stability of fcc
over hcp and the magnitude of the free energy difference is
consistent with the MC simulation result at a considerably
smaller density. One may tentatively conclude that for all
densities the stability of fcc in the hard-sphere system is a
subtle result of the correlated movement of five and more
particles and the effect in the free energy is very small.

In view of this evidence it appears to be very hard to
contribute to the theoretical understanding of the stability
of fcc over hcp beyond the Stillinger arguments. In this
respect, density functional theory (DFT) seems to be the
only promising candidate theory. In the general framework of
classical DFT crystals are viewed as “self-sustained,” periodic
density oscillations of a liquid, which minimize a unique, but
in general unknown, free energy functional. Ramakrishnan
and Yussouff demonstrated [11] that a simple functional,
which is Taylor expanded about a homogeneous liquid state
near coexistence semiquantitatively accounts for the freezing
transition in the hard-sphere system. Such Taylor-expanded
functionals can be devised for a wide range of two-particle
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potentials but they are often not very precise. Nevertheless they
are a useful starting point for deriving more coarse-grained
models via gradient expansions leading to phase field crystal
models for materials science [12]. For hard-body potentials
there is a constructive way to derive functionals “from scratch”
(not relying on perturbative expansions) using essentially
geometric arguments. This approach is known as fundamental
measure theory (FMT) [13–15]. With regard to the description
of crystals, it has proved to be fruitful to consider the zero-
dimensional (0D) limit of density distributions localized to a
point and their exactly known free energy [16]. By requiring
that the density functional reproduces this 0D free energy
for density peaks at one, two, and three points in space, a
density functional may be constructed which exhibits solid
phase properties in very good agreement with simulations [17].
(In the case of density distributions with δ peaks at three points,
the 0D free energy is reproduced only approximately.)

In the seminal work [17], the crystal density distributions
were parametrized with isotropic Gaussians with a variable
width parameter and normalization (to allow for a finite
vacancy concentration nvac). By minimizing the free energy
with respect to the width parameter and the normalization, the
following results were obtained: The crystal free energy per
particle F/N agrees with simulation to within less than 1% and
the Gaussian width is only slightly smaller than seen in simu-
lations. However, furthermore, it was found (i) no free energy
minimum for nvac > 0 and (ii) equal free energies for fcc and
hcp. In a study combining simulation and free minimization
of FMT functionals [18] it was shown that (i) is a defect of the
functional used in Ref. [17] (the Tarazona tensor functional)
and that upon free minimization the White Bear II tensor
functional of Ref. [14] gives thermodynamically consistent
results1 with a small equilibrium vacancy concentration nvac ∼
2 × 10−5 for fcc. The free energies per particle obtained by free
minimization versus constrained minimization using isotropic
Gaussians differ by about 2 × 10−3kBT (near coexistence),
which is of the order of magnitude one would also expect
for the fcc-hcp difference �F/N . Hence one is lead to the
suspicion that (ii) (i.e., �F/N = 0) is an artifact of the
constrained minimization. This issue will be addressed here.

Apart from the issue of fcc versus hcp in hard spheres,
FMT is also suited to investigate the metastable bcc crystal
(which in FMT is simply stabilized by the periodic boundary
conditions). A previous FMT study [19] using constrained
minimization found two metastable bcc branches as well as
a peculiar behavior of the lattice site density peaks when the
density is increased. We will investigate this finding further
by fully minimizing the FMT functional and will relate our
results to the Stillinger series.

The article will be structured as follows: We recapitulate
basic FMT as used here (Sec. II A) and Stillinger’s expansion
in correlated, contiguous particles (Sec. II B). Results from
both approaches are presented in Secs. III and IV summarizes
and concludes our work.

1This is discussed in Ref. [18], Sec. III A under the heading
“μ consistency.”

II. THEORY

A. Fundamental measure theory

1. Definition of functionals

In the framework of density functional theory, the grand
canonical free energy is a functional of the one-body density
profile ρ(r),

�[ρ] = F id[ρ] + F ex[ρ] −
∫

dr[μ − V ext(r)]ρ(r), (1)

where F id and F ex denote the ideal and excess free energy
functionals of the fluid. μ denotes the chemical potential and
the external potential is represented by V ext. The exact form
of the ideal part of the free energy is given by

βF id[ρ] =
∫

drβf id(r) =
∫

drρ(r)(ln[
3ρ(r)] − 1). (2)

Here, 
 is the de Broglie wavelength and β = 1/(kBT ).
Fundamental measure theory (FMT) currently is the most

precise functional for the excess free energy part for the hard-
sphere fluid. The corresponding excess free energy is given by

F ex =
∫

drf ex({n[ρ(r)]}), (3)

βf ex({n[ρ(r)]})
= n0 ln(1 − n3) + ϕ1(n3)

n1n2 − n1 · n2

1 − n3
+ ϕ2(n3)

× 3
( − n2n2 · n2 + n2,in

t
ij n2,j + n2n

t
ijn

t
ji − nt

ij n
t
jkn

t
ki

)
16π (1 − n3)2

.

(4)
Here, f ex is the excess free energy density which
is a (local) function of a set of weighted densities
{n(r)} = {n0,n1,n2,n3,n1,n2,n

t } with four scalar, two
vector, and one tensorial weighted densities. These are
related to the density profile ρ(r) by the convolutions
nα(r) = ∫

dr′ ρ(r′)wα(r − r′). The weight functions are given
by (R = σ/2 is the hard-sphere radius)

w3(r) = �(R − r), w2(r) = δ(R − r),

w1(r) = w2(r)/(4πR), w0(r) = w2(r)/(4πR2),
(5)

w2(r) = r/r δ(R − r), w1(r) = w2/(4πR),

wt
ij = rirj /r2 δ(R − r).

By choosing

ϕ1 = 1 and ϕ2 = 1, (6)

we obtain Tarazona’s tensor functional [17] based on the
original Rosenfeld functional [13]. The choice

ϕ1 = 1, ϕ2 = 1 − −2n3 + 3n2
3 − 2(1 − n3)2 ln(1 − n3)

3n2
3

(7)
corresponds to the tensor version of the White Bear I functional
[20]. Finally, with

ϕ1 = 1 + 2n3 − n2
3 + 2(1 − n3)ln(1 − n3)

3n2
3

,

(8)

ϕ2 = 1 − 2n3 − 3n2
3 + 2n3

3 + 2(1 − n3)2 ln(1 − n3)

3n2
3

,
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the tensor version of the White Bear II functional is recovered
[14]. This functional is most consistent with respect to
restrictions imposed by morphological thermodynamics [21].

In density functional theory, the crystal is viewed as a self-
sustained inhomogeneous fluid. Therefore, beside bulk and
inhomogeneous fluids, it is possible to study properties of the
hard-sphere crystal within the framework of FMT. Using the
variational principle, the equilibrium density profile ρeq(r) is
determined via minimizing the grand canonical free energy
functional, which leads to the Euler-Lagrange equation

β−1 ln
ρeq(r)

ρ0
= −δF ex[ρ(r)]

δρ(r)
+ μex − V ext(r). (9)

For the equilibrium crystal, V ext(r) = 0 and ρeq(r) is lattice
periodic, and ρ0, the homogeneous density (bulk density),
is fixed by the excess chemical potential μex. Being com-
putationally simpler than a free minimization of the density
profile, crystal density profiles are often obtained by a
constrained minimization of a model profile with only a few
free parameters such as, e.g., a Gaussian profile,

ρcr(r) =
∑

lattice sites i

(1 − nvac)

(
α

π

)3/2

exp [−α(r − ri)
2].

(10)

Here, the free parameters are the Gaussian peak width α and
the vacancy concentration nvac.

2. Choice of unit cells for the numerical solution
of Euler-Lagrange equation

Face-centered-cubic (fcc) and hexagonal-close-packed
(hcp) are two regular lattices with the highest possible
hard-sphere packing fraction (η ≈ 0.74). The body-centered-
cubic (bcc) structure can attain only packing fractions up to
η ≈ 0.68. The fcc and hcp structures differ in how sheets of
hexagonally packed hard spheres are stacked upon one another.
Relative to a reference layer A (see Fig. 1), two other layer types
B and C are possible which are laterally shifted with respect to
A. In the fcc structure the stacking of the hexagonally packed
planes corresponds to the crystallographic [111] direction and
every third layer is the same (ABCABCA), whereas in the
hcp lattice ([001] direction) the sequence of A and B repeats
(ABABABA) (Fig. 1). If the binding energy (or free energy)
were dependent only on the number of nearest-neighbor bonds
per atom (bonds have no direction), there would be no energetic
difference between the fcc and hcp structures.

The most convenient unit cell for fcc is the cubic unit
cell with eight particles at the corners and six face-centered
particles (this cell, however, lies oblique in the ABCABCA
packing discussed above). For hcp it is the unit cell with
hexagonally packed hard spheres on the basal plane. In order
to avoid any numerical errors in the comparison between
fcc and hcp, we define two extended unit cells of the same
size with hexagonally packed spheres as the base plane (see
Fig. 1). Discretizing the extended unit cells by the same number
of equidistant grid points ensures that the lattice points in
layer A are on grid points and for layers B and C the lattice
points are equally “off grid” since there is a mirror reflection
symmetry with respect to the x axis between B and C. In
view of the narrow density peaks centered around each lattice

FIG. 1. (Color online) Extended unit cells for the fcc and hcp
crystal structures. The fcc layers cycle among the three identical but
laterally shifted layers, the blue A layer, the red B layer, and the
green C layer. For hcp, the A and B layers alternate. Positions of
the lattice points of the first layers from the bottom are as follows:
Layer A: (0,0,0), (a,0,0), (0,

√
3a,0), (a,

√
3a,0), ( 1

2 a,
√

3
2 a,0); layer

B: (0, 1√
3
a, 1

2 c), (a, 1√
3
a, 1

2 c), ( 1
2 a, 5

2
√

3
a, 1

2 c); layer C: ( 1
2 a, 1

2
√

3
a,c),

(0, 2√
3
a,c), (a, 2√

3
a,c). a is the nearest-neighbor distance in the basal

plane and c/2 is the distance between two neighboring layers.

point, this choice eliminates numerical differences between
fcc and hcp free energies to a large extent. In Fig. 1, a is
the nearest-neighbor distance, and in the close-packed case
a = σ . The fcc cubic symmetry requires c = √

8/3a, which
entails that the distance between nearest neighbors within a
base plane is the same as between neighboring planes. For
hcp, the hexagonal symmetry group does not enforce this
constraint; for a discussion of the implications thereof, see
Sec. III C below.

3. Free minimization

We determine the equilibrium crystal profile ρeq(r; ρ0,nvac)
by a full minimization in three-dimensional real space. The
density ρ(r) is discretized over a cuboid volume with edge
lengths Lx = Ly = Lz = √

(4/3)a for bcc (using the cubic
unit cell) and Lx = a, Ly = √

3a, and Lz = 3c for both fcc
and hcp (using the extended unit cells of Fig. 1) with periodic
boundary conditions. We perform a double step minimization
of the free energy. In the first step, the bulk density ρ0 and the
vacancy concentration nvac are fixed and the Euler-Lagrange
equation (9) is solved iteratively with a start profile given
by the Gaussian profile (10) with optimal width. The excess
chemical potential μex in Eq. (9) is treated as a Lagrange
multiplier to ensure the constraint of fixed nvac. In the next
step, this procedure is repeated for different nvac (still keeping
ρ0 fixed), and the equilibrium density profile is determined by
minimizing the free energy per particle with respect to the the
vacancy concentration nvac. For a more detailed discussion of
this procedure, see Ref. [18].

In the program, the density profile ρ and 11 weighted
densities (two scalar densities n3,n2, three vector densities ω2,i ,
i = x,y,z, and six tensor densities ωt

ij ) need to be discretized
on a three-dimensional grid covering the cuboid boxes. Usually
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we chose grids for the bcc unit cell with 64 × 64 × 64 points in
the x, y, and z directions, respectively, and 128 × 128 × 384
points for the fcc and hcp extended unit cells. Convolutions in
real space are multiplications in Fourier space. The necessary
convolutions are computed using fast Fourier transformations.
We use the FFTW 3.3 library for parallelized fast Fourier
transforms. The other parts of the code are parallelized through
OPENMP.

There are many sophisticated algorithms for minimizing a
function and likewise many techniques to increase the speed
and efficiency of the process. To have a more efficient algo-
rithm, the iteration of Eq. (9) was done using a combination of
Picard steps and discrete inversion in iterative subspace (DIIS)
steps [22]. In order to prevent the procedure from diverging
during the Picard iterations, in each step we mix the new
density with the old one,

ρnew = (1 − α)ρold + αρnew. (11)

Here, α is a mixing parameter and it is usually a small number.
For the case of bcc, α can be adapted in the course of the
iterations in the range of α = 10−5–10−3. For fcc and hcp,
a constant value for α stabilizes the iterations, with values
α = 10−5–10−4. A typical FMT run consisted of an initial
Picard sequence with about 30 steps. Then we alternated
between Picard sequence of seven steps and a DIIS step
(which needs another nDIIS Picard initialization steps); see
also Ref. [23].

B. Stillinger’s expansion in correlated, contiguous particles

1. General outline

Consider the canonical partition function for N hard
spheres:

Q(N,V,T ) = 1

N !
3N

∫
dr1 · · ·

∫
drn

N∏
i,j (i<j )

φ(ij ), (12)

φ(ij ) =
{

0 (rij � σ ),

1 (rij > σ ).
(13)

Here, rij = |ri − rj | is the center distance between particles i

and j . We consider a reference lattice of our choice (fcc, hcp,
or bcc) with M � N lattice sites at positions si spanning the
volume V . We associate each particle i with a lattice site
at site si and that association divides the 3N -dimensional
configuration space into nonoverlapping regions �l,p. The
precise form of this association is discussed in Ref. [5], but one
may think of it loosely in terms of each particle i belonging to
the Voronoi cell around site si of the lattice. For a chosen subset
of N lattice sites {si} and associated cells, the index p runs
over the N ! permutations of the particles among these cells and
this leads to an identical division of the configuration space,
�l,p1 ≡ �l,p2 . The index l runs over the different associations
of N particles with M > N lattice sites and becomes important
in the case of finite vacancy concentration. Thus we obtain for
the partition function:

Q(N,V,T ) = 1


3N

∑
l

∫
. . .

∫
�l,1

dr1 . . . drN

∏
i<j

φ(ij ).

(14)

For zero vacancy concentration, this decomposition is akin to
the SOC method (as, e.g., discussed in Ref. [9]) where each
particle is confined to its Wigner-Seitz cell. Following Ref. [5],
one may write Q in terms of configuration integrals Zl

i ,Z
l
ij , . . .,

which describe the correlated motion of one, two, . . . particles
in a background matrix of N − 1, N − 2, . . . particles fixed at
their associated lattice sites. These configuration integrals are
defined as

Zl
i =

∫
ωl

i

dri

N∏
j 
=i

φ(ij ) with rj = sj (j 
= i),

Zl
ij =

∫
ωl

ij

dridrj

N∏
k 
=i,j

φ(ik)φ(jk) with rk = sk (k 
= i,j ),

... .

The integration domains must fulfill ωl
i,ω

l
ij , . . . ∈ �l,1, and

they depend on the indices of the free particles i,j and also
in the index l determining at which lattice sites the other
particles are fixed. The partition function is now expressed
as the product

Q(N,V,T )= 1


3N

∑
l

N∏
i

Zl
i

N∏
i<j

Zl
ij

Zl
iZ

l
j

N∏
i<j<k

Zl
ijkZ

l
iZ

l
jZ

l
k

Zl
ijZ

l
ikZ

l
jk

· · ·

(15)

=:
1


3N

N∏
i

Y l
i

∏
i<j

Y l
ij

N∏
i<j<k

Y l
ijk · · · . (16)

The Y ’s can also be expressed by the recursive relation

Y l
1...n = Zl

1...n∏
subsets Y l

i1...im

, (17)

where {i1 . . . im} is any proper subset of {1 . . . n}. [For example,
when omitting indices we have Y2 = Z2/(Y1Y2) and Y3 = Z3/

(Y1Y2Y3Y12Y13Y23).]

2. Expansion up to n = 2 for hcp, fcc, and bcc hard spheres

In the following, we restrict calculations to the case N = M

(number of particles equal to number of lattice sites), i.e.,
consider a vacancy-free crystal. From simulations [24] and
FMT [18] we can estimate that the effect of vacancies on
the free energy of the crystal is small: For fcc hard spheres
we have nvac ∼ 10−4 (simulations) and nvac ∼ 10−5 (FMT)
in equilibrium at coexistence, the corresponding free energy
shift compared to nvac → 0 can be estimated from FMT,
�F/N ∼ 10−5kBT .

Truncated after the first term, the Stillinger series is

Q1 = 1


3N
(V1)N, (18)

where Zl
1 has been reduced to V1, the free volume for one

particle in a cage of fixed neighbors at their lattice sites.
Consequently the free energy is

βF1 = −N ln
V1


3
. (19)

For fcc and hcp, V1 is equal and has been calculated
analytically in Ref. [25]; we quote this result in the Appendix.
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TABLE I. Neighbor configurations with multiplicities for the
different lattices.

Lattice Neighbor type k gk

fcc All neighbors 1 6
hcp Within close-packed plane 1 3

In adjacent close-packed planes 2 3
bcc All neighbors 1 4

For bcc, we did not find a literature result and therefore give
the calculation and result also in the Appendix.

The second term in the Stillinger series for Q gives only
a contribution different from 1 if the two fixed particles are
neighbors. Thus the truncated Stillinger series is

Q2 = 1


3N
(V1)N

∏
k

[
V2,k

(V1)2

]gkN

. (20)

Here, V2,k is the correlated free volume of the two neighboring
particles [with dimension (length)6] which may depend on
the type of neighbor configuration (index k). The power gkN

reflects the freedom to choose the first of the two particles to be
any of the N particles in the system and gk is the multiplicity of
the neighbor configuration. It is half the number of neighbors
of type k for a given fixed particle. The associated free energy is

βF2 = βF1 − N
∑

k

gk ln

[
V2,k

(V1)2

]
. (21)

For our considered lattice cases the neighbor types and
multiplicities are given in Table I. The cubic lattices fcc
and bcc have only one neighbor type whereas for hcp there
is a difference whether the neighbor is within the same
close-packed plane or in an adjacent close-packed plane. See
also Ref. [7] for the multiplicities corresponding to the third
term in the series (fcc and hcp).

We calculate the two-particle volumes V2,k for different
densities by a simple Monte Carlo computation. For that we
specify a suitably large cuboid volume Vc for each of the
two free particles from which n sets of random positions
(for each of the two particles) are drawn. For each set of
random positions overlap is checked with the other particle
and the fixed neighboring particle, leading to a total of n′ sets
of random positions with no overlap. Then V2,k = (n′/n)V 2

c .
The statistical error �V2,k/V2,k needs to be below 10−5 for
a reliable assessment of the free energy difference between
fcc and hcp, and this is achieved with 1000 subsets, each
containing n = 109 sets of random positions. In the limit ρ0 →
ρcp (ρcp = √

2/σ 3 is the close-packing density) agreement was
found with the analytical results of Ref. [7], but we had to
approach ρcp very closely to establish that.

III. RESULTS

A. Stillinger series

For fcc and hcp, the Stillinger series truncated at n = 2 gives
very good results for the free energy per particle F/N (see
Fig. 2; to obtain numbers, we put 
 = σ ). We have compared
to very precise simulation data obtained in Refs. [18,26] which
have an error of about 0.002kBT . The Stillinger series (n = 2)

0.95 1 1.05 1.1 1.15 1.2 1.25
ρ0 σ

3

4.5

5

5.5

6

6.5

7

βF
 / N

fcc Still (n = 1) 
      Still (n = 2) 
      Sim
bcc Still (n = 1) 
       Still (n = 2)  
       Sim SOC
      FMT full min

coex

FIG. 2. (Color online) Crystal free energies βF/N for fcc and bcc
from the Stillinger series in comparison to simulation data and FMT
results (bcc). For fcc, simulation data are taken from Refs. [18,26],
and for bcc, simulation data are obtained using the single-occupancy
cell method (SOC) [27]. The FMT data are this work (see Sec. III B).

results for F/N deviate from these ranging from 0.01kBT

(at ρ0σ
3 = 1.0) to 0.03kBT (at ρ0σ

3 = 1.15); this is a less
than 0.5% relative deviation. This is about the same accuracy
we obtain with FMT (see also Ref. [18]). Note, however, that a
deviation of the order of 0.01kBT is about ten times higher than
the fcc-hcp free energy difference obtained from simulations,
as discussed before.

For bcc, the situation is very much different. Since the
bcc structure for hard sphere is unstable against shear, the
crystal can be stabilized in simulations only by constraints
such as in the SOC method. We would expect from the previous
derivation that the Stillinger expansion is a reasonable series
expansion for the free energy of the SOC method. However,
as Fig. 2 demonstrates, the first two terms are quite far away
from the SOC data and also from the FMT results for the
branch with lowest free energy, pointing to the importance
of higher correlations. (Ultimately, the shear instability is a
collective many-body effect, so perhaps the importance of
many-particle correlations also in the constrained crystal is
not too surprising.) See, however, below for a more detailed
discussion on bcc solutions within FMT, especially with regard
to a solution branch with higher free energy which appears to
be linked to the bcc Stillinger solution.

Finally, for fcc and hcp the inclusion of the correlated
neighbor term increases the free energy, whereas for bcc it
leads to a decrease.

B. bcc: FMT results

As already discussed, a bcc crystal solution can only
be stabilized by constraints. In FMT, these are the peri-
odic boundary condition on the cubic unit cell. Within the
Gaussian parametrization [see Eq. (10)], bcc solutions in FMT
(Rosenfeld, tensor, and White Bear tensor—see Sec. II A)
have been investigated by Lutsko [19] (with the additional
constraint nvac = 0, such that in the free energy minimization,
the width parameter α is the only variable which is varied at a
given bulk density ρ0). For small bulk densities (ρ0σ

3 � 1.16),
Lutsko found a single free energy minimum with a rather small
width parameter α ≈ 30–40, indicating a broad Gaussian peak.

022301-5



M. H. YAMANI AND M. OETTEL PHYSICAL REVIEW E 88, 022301 (2013)

1 1.05 1.1 1.15 1.2 1.25 1.3
ρ0 σ

3

-0.2

-0.15

-0.1

-0.05

0

β 
ΔF

/N

(a)

1 1.05 1.1 1.15 1.2
ρ0 σ

3

0.01

0.02

eq
. v

ac
an

cy
 c

on
c.

 

1.1 1.15 1.2
ρ0 σ

3

6

7

8

9

10

11

βF
/N

(b)2nd branch Gauss min
1st branch Gauss min
FMT full min
Still (n=2) 

FIG. 3. (Color online) (a) Difference in free energy per particle between the fully minimized and the Gaussian solution for the first branch
of the bcc solutions as a function of bulk density. Inset: Equilibrium vacancy concentration as a function of bulk density for the same first
branch. (b) Free energy per particle as a function of bulk density for the bcc solution of the second branch: Full minimization (symbols,
nvac = 6 × 10−4 fixed) and Gaussian approximation (solid black line). For comparison the Stillinger result (n = 2) is given (dashed line) as
well as the Gaussian approximation for the first branch (dotted-dashed line).

Interestingly, α(ρ0) exhibits a maximum at ρ0σ
3 ≈ 1.13 and

then decreases again upon increasing the density (i.e., the
density peaks become wider upon compressing the crystal).
Moreover, at bulk densities ρ0σ

3 � 1.16 a second free energy
minimum was visible (with higher free energy). In this second
branch, the width parameter increased (the peak width de-
creased) with increasing density, as one would naively expect.

We investigate these findings further using full minimiza-
tion. For the first branch with lowest free energy, we confirm
that there is a minimal width of the peaks at ρ0σ

3 ≈ 1.13.
Full minimization reveals a rather strong deviation from the
simple Gaussian form in the density peaks: The difference
in free energy per particle F/N between Gaussian and full
minimization is about 0.1kBT [see Fig. 3(a)] and thus about
two orders of magnitude higher than in the case of fcc [18].
Curiously, this free energy difference increases with increasing
density beyond ρ0σ

3 ≈ 1.07. Second, the equilibrium vacancy
concentration nvac is of the order of 10−2 and thus several
orders of magnitude higher than found in fcc. nvac(ρ0) has a
minimum at ρ0σ

3 ≈ 1.10 and then increases again, adding to
the peculiarities of this solution branch. We note that in an FMT
study of parallel hard squares and cubes similar peculiarities
have been found [28].

The second branch found by Lutsko is not an artifact of
the constrained Gauss minimization. By a careful iteration
procedure, we found corresponding fully minimized solutions
whose free energy per particle is very close to the values
from the Gaussian approximation (thus very much as the fcc
solutions and very much unlike the solutions from the first
branch) [see Fig. 3(b)]. For increasing densities, we see a
convergence of F/N to the results of the Stillinger series
(n = 2). Thus the second branch of the bcc solutions has
the same character as the fcc solution when compared with
the Stillinger approach: Only a few correlated particles are
sufficient to obtain the free energy.

One could argue that the discussion of these bcc solutions is
futile and void of physical significance in view of their overall
instability. However, the quality of the FMT functionals and
their success in describing the fcc phase leads us to think
that these solutions are perhaps not to be discarded altogether.
Since around coexistence (ρ0σ

3 ≈ 1.04) the difference in F/N

to the fcc crystal is about 0.3kBT and thus very high, it is
reasonable that bcc crystallites have not been observed in
the nucleation process of a hard-sphere crystal. Nevertheless,
the bcc solutions are perhaps a useful reference point for
discussing the crossover from fcc to bcc as the most stable
crystal structure for other potentials such as of (σ/r)n type.
These could be treated by a suitable perturbation ansatz in
the free energy functional. Also, it could be interesting to
investigate further the dispersion relation of phonons for the
solutions of the first branch and thus shed further light on the
shear instability.

C. fcc and hcp: Free energy differences and density anisotropies

As discussed in the Introduction, FMT gives the same free
energy per particle F/N for fcc and hcp when the Gaussian
approximation is employed [17,19]. Free minimization lifts
this degeneracy in the free energy. In order to understand this
result qualitatively, it is useful to consider the symmetries in
the unit cell of fcc and hcp and the constraints these symmetries
place upon the lattice-site density profiles. For fcc, this is best
discussed by considering the cubic unit cell in Fig. 4(a1).
The nonradial contributions to the density profile around the
lattice point in the origin can be expanded in a Taylor series in
x,y,z where the terms in this series must respect the 48 point
symmetry operations in the cubic unit cell (belonging to point
group 4

m
3̄ 3

m
in Hermann-Mauguin notation) [18]:

ρfcc(x,y,z) = ρrad(r)[1 + K4(x4 + y4 + z4) + · · ·]. (22)

Here, ρrad(r) is an averaged, radial profile which is more
or less of Gaussian shape. The leading anisotropic term is
of polynomial order 4 with expansion coefficient K4. One
can also understand this result by resorting to an expansion
in the subset of spherical harmonics which respect the
cubic point symmetry, this leads to an expansion in the
so-called Kubic harmonics [29]. For hcp, we consider the
unit cell in Fig. 4(a2). The corresponding Taylor expansion
for the nonradial contributions to the density profile around
the lattice point in the origin has to respect only the
24 point symmetry operations appropriate for the hexagonal
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FIG. 4. (Color online) Unit cells and density anisotropies for fcc and hcp. (a1) and (a2) show the most convenient unit cells (cubic for fcc
and hexagonal for hcp) for the mathematical discussion of the density anisotropies [see Eqs. (22) and (23)]. (a3) and (a4) show the unit cells
used in the numerical computations. The hexagonally packed planes (marked in different colors) lie oblique in the cubic unit cell (a1). (b) fcc
and hcp density distributions around the lattice site at the origin in different directions. Here, we used the bulk density ρ0σ

3 = 1.04 and fixed
the vacancy concentration to nvac = 10−4.

group 6
m

2
m

2
m

. According to Ref. [30], this leads to

ρhcp(x,y,z) = ρrad(r)[1 + K ′
2z

2 + K ′
3y(3x2 − y2) + · · ·],

(23)

where polynomial terms up to order 3 have been taken into
account (with expansion coefficients K ′

i ). The corresponding
construction using spherical harmonics leads to the so-called
hexagonal harmonics. We observe that there is a qualitative
difference in the shape of the density profile between hcp and
fcc according to these expansions:

(i) To leading order in anisotropy for hcp, the density peak
ρ(r) should look different in the z direction (perpendicular
to the hexagonally packed planes) than in directions in the
x-y plane. To phrase it differently, one would expect different
width parameters αz,αx,y for a Gaussian density peak of the
form ρhcp(x,y,z) ∝ exp[−αx,y(x2 + y2) − αzz

2]. We did not
observe this in our numerical solutions but we will return to
this point below.

(ii) To next-to-leading order in the anisotropy for hcp, we
expect a different behavior when comparing ρ(0,y,0) with
ρ(0, − y,0) due to the antisymmetric term ∝K ′

3 in Eq. (23).
Such a symmetry breaking is not present in the fcc peak.
To demonstrate this difference, we compare ρ(0, ± y,0),
ρ(x,0,0), and ρ(z,0,0) between fcc and hcp [see Figs. 4(b)
and 4(c)].2

Indeed, we observe that the symmetry is broken for the hcp
profile, in accordance with the anisotropy expansion, and we

2Note that in our numerical computations we used the unit cells
depicted in Fig. 4(a3) (fcc) and in Fig. 4(a4) (hcp). Thus, the fcc
cubic unit cell and the unit cell in Fig. 4(a3) are related by a
three-dimensional rotation. Likewise, the anisotropy expansion for
the extended unit cell must be obtained from the corresponding
expression (22) for the cubic unit cell by applying this rotation.
Let x,y,z be the coordinates of the cubic unit cell, and x ′,y ′,z′ the
ones in the rotated system. The rotation (x,y,z) → (x ′,y ′,z′) is a
linear transformation. Thus (x4 + y4 + z4) = ∑

ijk aijkx
′iy ′j z′k with

the condition i + j + k = 4. For x ′ = z′ = 0 only a term ∼a040y
′4

can contribute to the sum on the right-hand side.

conclude that the fcc and hcp free energy difference in FMT
results from this symmetry breaking.

Our results for the fcc and hcp free energy difference
per particle are given in Fig. 5(a). In FMT (White Bear
II tensor), the difference β�F/N is larger than zero, im-
plying that hcp has lower free energy. Furthermore, there
is only a moderate drop of β�F/N with the bulk den-
sity ρ0. At coexistence (ρ0σ

3 = 1.04), we have computed
β�F/N also for other FMT functionals (Tarazona tensor,
White Bear tensor) and found no change in sign but a
variation in magnitude by 50% or 5 × 10−4. In view of
the variation of βF/N for fcc between the functionals
(about 4 × 10−2, i.e., a factor of 80 larger), the functionals
are very consistent with each other with respect to the
stability of hcp. The results from the Stillinger series (n = 2)
for β�F/N are approximately constant (∼1 × 10−3) with
increasing density and coincide with the analytical value at
close packing obtained in Ref. [7]. It is remarkable that also the
FMT results seem to converge to this value. For comparison,
in Fig. 5(a) we have also included the analytical value from
the Stillinger series (n = 5) [8] and the simulation value of
Ref. [10]. Although FMT does not agree with the sign of
β�F/N obtained in the simulation, it is gratifying to note that
according to these results FMT is correct on the level of two
correlated particles in the Stillinger picture.

Finally, we return to the observation that in the hcp
density anisotropy the leading term ∝z2 [see Eq. (23)] was
missing in our numerical solutions. This is related to our
choice of the distance between the hexagonally packed layers
(c/2 = c0/2 = √

2/3a, where a is the nearest-neighbor
distance; see Fig. 1). With this choice the distance between
nearest neighbors is the same for two sites within the same
hexagonally packed planes and two sites in two adjacent
planes. However, the hcp symmetry group does not require
this, and one is free to choose another distance between the
planes. With a different choice, also the nearest-neighbor
distance is different for sites in two different planes and also
the width of the lattice site density profiles will be different
in the direction normal to the hexagonally packed planes. We
have investigated whether also the free energy minimum for
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FIG. 5. (Color online) (a) Free energy difference between fcc and hcp vs bulk density. The black symbol shows the simulation value from
Ref. [10]. The rest of the symbols show the data obtained from FMT and the Stillinger series (n = 2) and dashed lines show the asymptotic
behavior of the free energy difference near close packing for the Stillinger series (different n) [8]. (b) Distortion parameter γ = c/c0 which
minimizes the hcp free energy vs bulk density. In all FMT calculations we put nvac = 10−4.

hcp shifts to a value different from c0. In order to keep the bulk
density constant we defined a stretching parameter, γ = c/c0,
which describes the distortion of the crystal in the z direction.
In order to keep the bulk density constant, we rescaled the
nearest-neighbor distance in the planes as follows: a′ = a/

√
γ .

Full minimization was done for a range of γ values. The
result for γ which minimizes F/N is shown in Fig. 5 and it is
seen that the equilibrium distortion is quite small, below 10−3.
The corresponding free energy shift per particle compared
to the solution with c = c0 is about 10−5kBT . These results
are actually similar to the ones in Ref. [31]: There, a similar
lattice distortion was calculated for the zero-temperature
Lennard-Jones hcp crystal by lattice sums.

IV. SUMMARY AND CONCLUSIONS

In this work we have performed a study of bcc, fcc, and
hcp hard-sphere crystals using unrestricted minimization in
density functional theory (DFT) of fundamental measure type
(FMT) which is currently the most accurate approach. We have
complemented these investigations with an approach which is
based on the expanding the crystal partition function in terms
of number n of free particles while the remaining particles are
frozen at their ideal lattice positions (Stillinger series).

For the metastable bcc crystal, we have found two solutions
for bcc crystals whose free energies are well above the free
energies of fcc and hcp [see Figs. 2 and 3(b)]. The first
solution (with a rather large density peak width at lattice
sites) is characterized by a rather large equilibrium vacancy
concentration (∼0.01) and its free energy cannot be described
by the Stillinger approach. The shear instability of bcc is
presumably related to this first solution. The second solution
(characterized by a small peak width and small equilibrium
vacancy concentrations) agrees well with the solution from
the Stillinger approach (n = 2) with respect to its free energy.

The free energy degeneracy between fcc and hcp, found in
previous approaches using constrained, rotationally symmetric
density peaks around lattice sites, is broken upon full mini-
mization. The density asymmetries are qualitatively different
for fcc and hcp and agree with expansions in respective lattice
harmonics (see Fig. 4). We found that in FMT the free energy
per particle is lower for hcp than the one for fcc by about
10−3kBT . This agrees remarkably well with the Stillinger

solution for n = 2 (see Fig. 5). Simulations, however, indicate
that fcc has a lower free energy than hcp by about the same
figure. Previous investigations of the Stillinger approach in the
high-density limit (near close packing) have shown that hcp
is more stable than fcc for n = 2–4 and the situation reverses
for n = 5. Thus, the stability of fcc seems to be a subtle effect
involving the correlated motion of at least five particles which
currently cannot be captured by the FMT functionals.

Upon full minimization, also other density functionals
should exhibit a free energy difference between fcc and hcp.
For the Taylor-expanded Ramakrishnan-Yussouff functional
(using the Percus-Yevick direct correlation function and
the reference density ρref = 0.946) we find a difference
β�F/N = 0.06 which is about 50 times larger than the
FMT (and Stillinger) result. Therefore, it seems that the
functional expansion around the liquid state (underlying
the Ramakrishnan-Yussouff functional) has no connection to
the Stillinger expansion.

APPENDIX: ONE-PARTICLE VOLUMES FOR
THE fcc-hcp AND bcc HARD-SPHERE CRYSTAL

1. fcc and hcp

The one-particle free volume is equal for fcc and hcp and
has been given in Ref. [25]. We introduce the nearest-neighbor
distance d = 22/3ρ

−1/3
0 . The hard-sphere diameter is σ and the

formula is valid for densities ρ0σ
3 ∈ [1/2,

√
2]:

V1 = 20

3
c3 − 4

3
c2s − 4c2

√
σ 2 − c2

+2
√

2(c3 − 6cσ 2)

(
arcsin

c

q
+ arcsin m

)

+8σ 3

(
2 arcsin u + π

2
− arcsin w − arcsin t

)
(A1)

with
c = d/

√
2, s =

√
3σ 2 − 2c2, q =

√
2σ 2 − c2.

m = (c − 2s)/(3q), t = (σ 2 + cσ − c2)/(qσ ),

u = [(2σ + c)(σ + [2c − s]/3) − (σ + c)2]/

[q(σ + [2c − s]/3)],

w = (σ 2 − cσ − c2)/(qσ ).

The shape of the free volumes is sketched in Fig. 6.
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(a) (b) (c)

FIG. 6. (Color online) Shape of one-particle free volumes for (a) fcc, (b) hcp, and (c) bcc at a crystal density of ρ0σ
3 = 1.

2. bcc

In the case of bcc the free volume is given by an octahedral-
like body (see Fig. 6) centered in the cubic unit cell. The faces
are parts of the surfaces of the exclusion spheres (of radius σ )
around the corners of the cubic unit cell. Let a = (2/ρ0)1/3 be
the side length of the cubic unit cell. The free volume is then
given by

V1 = 8
∫ zmax

0
dz

∫ xmax

0
dx

×
⎡
⎣a

2
−

√
σ 2 −

(
a

2
− z

)2

−
(

a

2
− x

)2
⎤
⎦ , (A2)

xmax = a

2
−

√
σ 2 −

(
a

2
− z

)2

− a2

4
,

zmax = a

2
−

√
σ 2 − a2

2

= a3

8
+ a

(
3

2
σ 2 − 1

8
a2

)(
arctan

2c

a
− π

4

)
(A3)

−a2

4
c + 2

3
σ 3

(
arctan

a2

4σc
− arctan

c

σ

)
,

c =
√

σ 2 − a2/2.
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