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Abstract The hypothetical notion of consequence is normally understood as the
transmission of a categorical notion from premisses to conclusion. In model-theoretic
semantics this categorical notion is ‘truth’, in standard proof-theoretic semantics it is
‘canonical provability’. Three underlying dogmas, (I) the priority of the categorical
over the hypothetical, (II) the transmission view of consequence, and (III) the identi-
fication of consequence and correctness of inference are criticized from an alternative
view of proof-theoretic semantics. It is argued that consequence is a basic semantical
concept which is directly governed by elementary reasoning principles such as defi-
nitional closure and definitional reflection, and not reduced to a categorical concept.
This understanding of consequence allows in particular to deal with non-wellfounded
phenomena as they arise from circular definitions.

Keywords Consequence · Inference · Proof-theoretic semantics ·
Definitional reflection

1 Introduction

By standard semantics we mean classical model-theoretic semantics in the tradi-
tion of Tarski as well as intuitionistic and proof-theoretic semantics in the BHK
(Brouwer–Heyting–Kolmogorov) tradition and in the proof-theoretic tradition of
Dummett, Lorenzen, Martin-Löf and Prawitz.1 Both the classical and the intuitionis-
tic/proof-theoretic traditions rest on certain fundamental assumptions which will be

1 For the term and the notion ‘proof-theoretic semantics’ see Schroeder-Heister (2011c).
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criticized in this paper and will be opposed to an alternative variant of proof-theoretic
semantics based on different ideas. The three fundamental assumptions criticized are
the following:

I. The categorical is conceptually prior to the hypothetical—the priority of the
categorical over the hypothetical.

II. Consequence is defined as the transmission of a basic categorical concept from
the premisses to the conclusion—the transmission view of consequence.

III. Consequence means the same as correctness of inference—the identification of
consequence and correctness of inference.

As an alternative view, we propose a variant of proof-theoretic semantics according
to which

I*. The hypothetical is conceptually prior to the categorical,
II*. Consequence is a primitive concept which is not explained as the transmission

of categorical truth or canonical provability,
III*. Consequence is a basic semantical notion which does not necessarily, and in fact

not always, coincide with correctness of inference.

2 Standard notions of consequence: the first two dogmas

It is important to distinguish between formal and material consequence. Formal con-
sequence is logical consequence, which is material consequence for every ‘material’
base. In the model-theoretic case this material base is a structure or interpretation,
which says what the domain of reasoning is, and which meaning the non-logical signs
have. In the proof-theoretic case it is the notion of an atomic proof system which gener-
ates the atomic truths. In the general intuitionistic case it is the notion of an elementary
construction that validates atomic sentences. If we denote material consequence with
respect to a material base B by |�B, then logical or formal consequence, denoted by
|�, can be defined by

A |� B =def (∀B) A |�B B. (1)

Here and in the following, with a few exceptions, we assume for simplicity that conse-
quences have only a single sentence in the antecedent.2 Therefore, the basic concept
to be explained is that of material consequence “|�B”. A (material) statement of the
form A |�B B will also be called consequence statement or hypothetical judge-
ment. The difference between classical model-theoretic semantics and intuitionistic
or proof-theoretic semantics is a difference at the level of material consequence.

In classical model-theoretic semantics, where B is a structure M, material conse-
quence A |�M B is explained as

A |�M B =def (|�M A ⇒ |�M B), (2)

2 This is just a matter of abbreviation, dispensing us with considering sets or multisets or sequences on the
left of the consequence sign. The necessary adjustments needed can easily be carried out by the reader.

123



Synthese (2012) 187:925–942 927

where “⇒” denotes ordinary (material) implication and “|�M A” means that A holds
in M, i.e., that M is a model of A. “|�M A” is defined in the usual way along the
lines of Tarski. If we consider “|�M A” to be a categorical concept (the truth of A
with respect to a structure) and “A |�M B” a hypothetical concept (the hypothetical
validity of B given the assumption A [again with respect to a structure]), then (2)
defines the hypothetical concept of (material) consequence in terms of the categorical
concept of truth [with respect to a structure M]. Therefore, with respect to the order of
explanation, the categorical concept of truth comes first, and the hypothetical concept
of consequence comes second. Furthermore, the way the hypothetical is defined in
terms of the categorical can be expressed as the transmission of the categorical (i.e.,
truth) from the antecedent (= left side) of the consequence statement to its consequent
(= right side). This is exactly what the implication “⇒” says: If the left side is true, then
so is the right side. Therefore, in the classical model-theoretic case, the first two dog-
mas: (I) the priority of the categorical over the hypothetical, and (II) the transmission
view, figure prominently in the definition of consequence.

In intuitionistic and proof-theoretic semantics—in the following subsumed under
the heading constructive semantics—the notion of truth is replaced with the notion
of construction or proof. There are various forms of this semantics, from different
forms of the BHK interpretation of logical constants over Kleene’s realizability inter-
pretation, the Curry-Howard interpretation, the meaning explanations in Martin-Löf’s
type theory, and Lorenzen’s admissibility interpretation to Dummett’s and Prawitz’s
proof-theoretic notions of validity. In all these variants, the notion of a hypothetical
judgement is explained in terms of a constructive procedure that transforms a construc-
tion of the antecedent into a construction of the consequent. If we denote by C |�S A
the fact that C is a construction or proof of A with respect to the atomic base S, we can
represent their notion of material consequence (i.e., consequence with respect to S)
by the following definition:

A |�S B =def (∃ f )(∀C)(C |�S A ⇒ f (C) |�S B), (3)

in words: B follows from A (w.r.t. S) if we can find a (constructive) transformation f
that associates with every construction or proof C of A a construction or proof f (C)

of B.
Compared to the classical (model-theoretic) case this definition is more involved:

We do not merely use (material) implication “⇒”, but require in addition the existence
of a constructive transformation (function) that delivers a construction of the conse-
quent given an arbitrary construction of the antecedent of the hypothetical judgement.
This difference is, of course, crucial, as it makes the intuitionistic or proof-theoretic
notion a constructive one, compared to the classical case, which just relies on the
given intuitive meaning of implication “⇒” without caring about how the relationship
between antecedent and consequent of a hypothetical judgement is established. This
also gives the constructive notion of consequence a natural epistemological rendering,
which is a basic ingredient of intuitionism.

However, as far as our first two dogmas are concerned, there is not so much dif-
ference to the model-theoretic approach. In constructive semantics the categorical
concept C |�S A comes first, and the hypothetical concept A |�S B is, according to
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(3), explained as the transmission of the categorical concept from the antecedent A
to the consequent B. Definition (3) uses the notion of construction as an additional
parameter, but this does not change the general picture. Both the classical and the
constructivist approaches to semantics rely on the priority of the categorical over the
hypothetical and on the transmission view of consequence, and as these two concep-
tions of semantics may be called “standard semantics”, it is justified to speak of two
dogmas of standard semantics (Schroeder-Heister 2008).

3 Consequence and correctness of inference: the third dogma

What is the reason for starting with the categorical concept (truth/proof) and define
the hypothetical concept of consequence as the transmission of the categorical one?
This is not too difficult to see. If by reasoning we understand a chain of inferences
that proceeds stepwise from premisses to conclusion, then, so one might argue, our
notion of consequence should be such that all and only correct inferences are rendered
correct. Now an inference is correct if it leads from correct premisses to a correct
conclusion. The easiest way of incorporating this into a notion of consequence is to
define a correct consequence statement as something that leads from a correct state-
ment to a correct statement. In fact, standard proof-theoretic semantics comes close to
such a definition. Now in the classical case, we do not define consequence in terms of
inference. However, as soon as we deal with inference, we (at least implicitly) identify
consequence and the correctness of inference in the sense that both notions have the
same definiens.

If we define the correctness of an inference

A

B

classically, we require that by passing from A to B we stay in the realm of truth,
i.e., we require what is expressed by the right side (the definiens) of (2). If we define
the correctness of this inference constructively, we require that by passing from A
to B we are applying a constructive transformation or function that gives us a con-
struction of B out of a construction of A, i.e., we require what is expressed by the
right side (the definiens) of (3). Therefore, in both the classical and the constructive
case consequence is defined in exactly the same way in which the correctness of an
inference is defined. What differs between the classical and the constructive case is
the order of explanation. In the classical case the semantical notion of consequence
comes first, and the correctness of inference is explained by reference to this semantical
notion: An inference is correct, if it follows a correct consequence. In the constructive
case the epistemological notion of inference comes first, and a correct consequence
is explained by reference to this epistemological notion: A consequence is correct, if
it represents a correct inference step. In both cases these two notions coincide. This
is not surprizing at all. It simply means that for inferences to be drawn in a correct
way, it is necessary and sufficient that they accord to the semantics of the expressions
involved.
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We call this the third dogma of standard semantics: The identification of conse-
quence with the correctness of inference. Note that we do not speak of the identification
of consequence with correct inference, as this would conflate a semantical notion (con-
sequence) with an epistemic act (inference), but of consequence with the correctness
of inference, the latter being a semantical property of inferences.

Altogether, without mentioning the atomic base or structure, and without men-
tioning constructive transformations, the basic tenet of standard semantics can be
paraphrased as

A |� B =def (|� A ⇒ |� B) def= (the inference
A

B
is correct)

where in the middle we have the joint definiens of the notions on the left and on the
right side. As we do not dispute the definition on the right

(the inference
A

B
is correct) =def (|� A ⇒ |� B),

for us the critical fundamental assumption of standard semantics, which will be ques-
tioned in the rest of this paper, is

A |� B =def (|� A ⇒ |� B). (4)

4 Consequence as a basic semantical concept

The alternative conception propagated here is to break up the identification (4) and
keep the concept of consequence (A |� B) separate from the concept of correctness
of inference or transmission of truth (|� A ⇒ |� B). Hypothetical consequence
(A |� B) will be defined directly without reference to categorical truth or valid-
ity |� A, so the hypothetical concept will be prior to the categorical concept, which
means that the first dogma of standard semantics is given up. In fact, it will be reversed,
as the concept of categorical truth or validity |� A will become a limiting case of the
hypothetical concept A |� B, viz. the case where the antecedent is lacking. The second
dogma, the transmission view of consequence, is given up as well. The categorical
concept of truth or validity is no longer available prior to consequence, and there will
be no other concept whose transmission would define consequence. The notion of
transmission or transformation does not play a role in the definition of consequence
any more.

Giving up (4) as a definitional equation and defining consequence independently,
means that we may ask whether what in (4) is forced by definition is in fact valid, i.e.,
whether the biconditional

A |� B ⇔ (|� A ⇒ |� B) (5)
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holds. Of course, this cannot be answered in general, but will depend on our domain of
reasoning. So instead of (5) we might ask whether with respect to a specific material
base B

A |�B B ⇔ (|�B A ⇒ |�B B) (6)

holds.
Now what should a material base B look like for (6) not to hold? Should we not

expect our base always to validate (6), since the most natural expectation is that con-
sequence ensure correct inference? We shall give counterexamples later on. First we
have to elucidate what A |�B B should mean.

We define A |�B B by means of certain rules or inference principles which gov-
ern the meaning of the terms involved. In this sense the definition of the semantical
concept A |�B B is inferential. However, these semantical rules, also called “rules of
consequence”3 are to be distinguished from inferential principles justified as correct
(|�B A ⇒ |�B B). In particular, the notion of correctness of inference is not pre-
supposed in the inferential definition of A |�B B, which means that the third dogma
is given up as well.

4.1 The ‘material’ base generalized: clausal definitions

Normally the material base of consequence deals with the atomic case. In classical
model-theoretic semantics this would be a structure that determines which atomic
sentences are valid. In constructive semantics it would be elementary constructions or
proofs for atomic sentences, e.g. atomic systems in Prawitz’s (1973) sense. Starting
from atomic sentences, logically complex sentences are built up by means of logi-
cal operators. The complex sentences are then valid or invalid according to certain
meaning explanations (truth-functional or constructive, respectively) for the logical
operators.

This presupposes that there is a clearcut distinction between the atomic and the
complex sentences. In standard semantics this is given by the syntax of sentences.
Certain sentences are defined as atomic, whereas others are logically complex, simply
because they contain logical operators. The distinction between atomic and non-atomic
is ‘hardwired’ into the formalism, which means that the material base, which may vary,
only concerns the non-logical aspects.

This may be a plausible way of proceeding, if our ultimate goal is the elucida-
tion of logical (i.e., formal) consequence. However, there is no reason in principle
why the composition by means of logical operators should be treated differently from
any other sort of composition. Even if logical composition represents a particularly
important case, this can be treated as a special case amongst other cases. Proceed-
ing that way gives us a much greater generality and a wider range of applications.
The laws which explain the meanings of the logical operators can be embedded in
a more general framework of rule-based meaning explanations. So we are not just

3 This term has been proposed by Luca Tranchini.
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considering generalized rules for logical constants as done, for example in Prawitz
(1979) and Schroeder-Heister (1984), where the logical meaning explanations are
generalized, but arbitrary definitions. The case of logical constants or of generalized
logical constants can then be obtained by particular definitions.

As the general format for definitions we choose clauses of the form

a := B (7)

where a is an object to be defined and the B is a defining condition for this object. As
in logic programming, we also speak of the head a and the body B of the clause. If we
want to draw a distinction between atoms and complex entities, the definiendum a is
always atomic, whereas a defining condition B can be complex. What complexity here
means, depends on the context considered. In the simplest case, a defining condition
B is just a list of atoms, so that (7) takes the form

a := b1, . . . , bn . (8)

More generally, the condition B may, in addition to the comma (which is a structural
conjunction), contain some sort of structural implication ‘ → ’, so that one can have a
clause such as, e.g.,

a := b, (c → d), (e → f ). (9)

Further generalizations would allow for (structural) quantifiers in the body etc., or
even infinite sets as bodies (corresponding to infinitary [structural] conjunction, see
Hallnäs (2006)). However, most important is the syntax of the objects defined. In
all practical applications we would use variables occurring in defined (and defining)
objects, giving them a term or formula structure. This leads to definitions syntactically
corresponding to logic programs.

What is important already for definitions of the simplest form is that there may be
more than one defining clause for an object a. This is a way to express disjunctive
meaning at the definitional level and is well known from logic programming. It is a
feature in which definitions in our sense go beyond explicit definitions, which would
only contain a single clause.

We propose the clausal format as it has proven quite powerful. Systems of clauses
can be viewed from various perspectives, not only as logic programs but also as induc-
tive definitions. Both the study of logic programs and of inductive definitions have
demonstrated their expressiveness.

It is important to notice that the usual atomic/non-atomic distinction in logic has
nothing to do with the atomic/non-atomic distinction between defined objects and
defining conditions. If we define logical constants, then everything being defined is
atomic in the definitional sense, even if it is complex in the logical sense. This is why
we prefer speaking of defined objects rather than defined atoms.

The idea of considering systems of clauses as basic definitional systems goes back
to well before logic programming. In the context of recursive function theory, such
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systems have been considered by Post (1921,1943) and Smullyan (1961). They fig-
ure prominently in Lorenzen’s operative foundation for logic based on the concept of
admissibility (Lorenzen 1950, 1955).

In the following, a definition D is a set of definitional clauses, where we leave open
the precise structure of defined objects and defining conditions. It will always be clear
from the context which prerequisites are needed.

4.2 Consequence as constituted by definitional principles

Given a definition D, the consequence relation |�D based on D is defined by certain
rules of consequence which generate expressions of the form A |� B. Thus A |�D B
means that an expression (‘sequent’) of the form A |� B can be generated (i.e.,
derived) with respect to the definition D. We omit the reference to the definition D,
speaking just of |�, when the reference is clear from the context, and when it is clear
whether we mean the expression A |� B or the statement A |�D B. Besides general
structural principles, the inferential definition of |�D is based on two major rules of
consequence: definitional closure and definitional reflection. Further principles, such
as induction rules, might be considered in addition, but will not be discussed here.

The rule of definitional closure is a rule for introducing an object on the right
side of a consequence statement. It just expresses the reasoning along a single clause,
expressing that given the body of a clause (a definiens), we may proceed to the head
(the definiendum). This is the principle on which logic programming is based, with
SLD resolution as the evaluation method for backward reasoning. If (7) is a defining
clause for a in D, the corresponding rule of definitional closure is

A |� B

A |� a
(a R) definitional closure

The rule of definitional reflection is a kind of inverse of that rule, representing the
corresponding left introduction rule. It is a more global principle not referring to a
single clause in a definition, but to the definition as a whole. Without considering
variables in clauses, it runs as follows: Suppose a is defined by exactly n clauses

⎧
⎪⎨

⎪⎩

a := B1
...

a := Bn

then the rule of definitional reflection for a is

B1 |� A . . . Bn |� A

a |� A
(aL) definitional reflection

It says that everything that follows from each defining condition of a follows from a
itself. Definitional reflection may be looked upon as formally expressing the extremal
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clause of the inductive definition of a: “Nothing else defines a”.4 If there is only a
single defining clause

a := B

for a, we obtain the axiom a |� B as a ‘direct’ inversion of the closure rule. If a is
not defined at all, we obtain a |� A for any A, i.e., ex falso quodlibet, since the list of
premises of aL is empty.5

Though looking innocuous, definitional reflection adds considerable deductive
power to the evaluation of a clausal definition. In focusing on all clauses of the def-
inition of a and not just on a single defining clause for a, it is non-monotonic in the
sense that consequence statements can loose their validity if the underlying definition
is extended.6

In addition to definitional closure and definitional reflection there must be certain
structural principles such as initial sequents

A |� A

and principles governing structural conjunction and structural implication. For struc-
tural implication we might use as rules of consequence the principles

A, B |� C

A |� B → C
(→R)

A |� B

A, B → C |� C
(→L)

which interpret structural implication as a kind of ‘rule’ that can be established ( →R)
or applied ( →L).7

However, the cut rule is not presupposed. This is absolutely crucial. As in the
standard sequent calculus, this rule does not convey any meaning to the sentences
involved, but serves, if it is admissible at all, to shorten certain derivations.8 In fact,
it is closely related to the idea of correctness of inference. So our definition of conse-
quence with respect to a definition D corresponds to a cut-free sequent calculus with
added definitional principles.9 By putting a definition D into action, this system gives
the semantics of the objects defined in D by generating a consequence relation based
on D. Derivations of consequence assertions A |� B in the system just sketched are

4 Note that according to our convention to list only one object in the antecedent, we have not mentioned
any context of the defining conditions Bi in (aL). More precisely, we should have written �, Bi |� A.
5 However, we may use a metalinguistic framework, in which such a limiting case is not allowed or is
handled in a special way. This cannot be discussed here (see Schroeder-Heister 1991).
6 For further discussions see Hallnäs and Schroeder-Heister (2012).
7 The schema ( →L) differs from Gentzen’s schema for the introduction of implication in the antecedent,
but is particularly suited to our reading of structural implication as a kind of ‘rule’, see Schroeder-Heister
(2011a, b).
8 Yielding, for example, non-elementary (and therefore more than exponential) speed-up in first-order
logic, see Orevkov (1982); Statman (1979).
9 Such systems have recently been investigated by Brotherston and Simpson (2007), albeit in a framework
without structural implication.
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also called semantical derivations with respect to D as they establish the semantical
consequence claim A |�D B.10

4.3 Defining the logical constants

The logical operators ∧, ∨, ⊃ and ¬ can be defined by the following definition:

L

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(X∧Y ) := X, Y
(X∨Y ) := X
(X∨Y ) := Y
(X⊃Y ) := (X → Y )

¬X := (X → ⊥)

where X and Y range over formulas built up from propositional variables by means of
∧, ∨, ⊃ and ¬, and where ⊥ is an undefined object, i.e., an object, for which no defi-
nitional clause in D is given. This definition would have to be extended with rules for
the propositional variables representing the material base. If we are only considering
formal logic, we would just add the void clauses

p := p

for every definitional variable p, which express that p is not given any specific mean-
ing.11 This system is called LI and yields, by means of closure and reflection, intui-
tionistic propositional logic.

Our framework is intuitionistic in spirit. In order to obtain classical logic we would
have to consider additional reflection principles such as a principle corresponding to
classical dilemma in order to make sure that p∨¬p becomes a logical law. However,
the validity of a formula under a specific valuation can be established on the basis of
the definition L extended with a truth constant with an empty defining condition

� :=

but without any propositional variables, i.e., with all formulas built up from � and ⊥
by means of the propositional connectives. This system is called LC. For the validity
of a formula X under the valuation v, we investigate in LC the closed formula in which
every propositional variable p, which is evaluated to true under v, is substituted with
�, and every p, which is evaluated to false under v, is substituted with ⊥.

10 The idea of definitional reflection and the terms “definitional closure” and “definitional reflection” have
been proposed by Hallnäs, who investigated this framework in the context of infinitary clauses (Hallnäs 1991,
2006). The handling of finitary clauses with variables is due to Hallnäs and Schroeder-Heister (1990/91).
A survey of definitional reflection is under preparation (Hallnäs and Schroeder-Heister 2012).
11 If we left p just undefined, it would behave like falsum ⊥. So the fact that a propositional variable p
can stand for anything is expressed by a trivial (void) definition for p, which does not assign any specific
meaning to p.
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5 Consequence versus correctness of inference

Suppose we have a definition D with an associated relation of definitional (=semantic)
consequence |�D. Then consequence (with respect to D) and correctness of inference
(with respect to D) coincide, if

A |�D B ⇔ (|�D A ⇒ |�D B). (10)

The direction from left to right of (10), i.e.,

A |�D B, |�D A ⇒ |�D B, (11)

says that consequence ensures correctness of inference. The direction from right to
left of (10), i.e.,

(|�D A ⇒ |�D B) ⇒ A |�D B, (12)

says that correctness of inference establishes consequence. For reasons to be explained
later, we call, following Hallnäs (1991) a definition D satisfying (11) total, and a
definition D satisfying (12) complete (the latter in a sense somewhat different from
Hallnäs’s). A definition D, which is both total and complete, is called standard, as it
underlies standard semantics.

By formally distinguishing consequence and correctness or inference, we can for-
mulate conditions for D, under which totality and/or completeness hold. This gives us
a possibility to deal with phenomena which are excluded, if consequence and correct-
ness of inference are identified. The main example are non-wellfounded phenomena
such as the paradoxes. For example, if we define a by its own negation (with ⊥ being
an undefined object)

D { a := (a → ⊥)

we obtain the semantical derivations

a |� a
a, (a → ⊥) |� ⊥

(aL)
a, a |� ⊥

a |� ⊥
|� a → ⊥

(a R)|� a
and

a |� a
a, (a → ⊥) |� ⊥

(aL)
a, a |� ⊥

a |� ⊥

which show that both a |�D ⊥ and |�D a hold. Since |�D ⊥ does not hold, as there
is no definitional clause for ⊥ in D, this means that D is not total. It is actually not
necessary to require that ⊥ be undefined, but only that ⊥ be underivable with respect
to D.

A sufficient condition, under which totality holds, is, for example, that defining con-
ditions do not contain (structural) implication. In logic programming, this corresponds
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to the case of definite programs (whereas the previous example corresponds to a non-
definite normal program). Another sufficient condition would be the wellfoundedness
of definitional chains, which in logic programming corresponds to stratified normal
programs. Other conditions refer to the inference machinery used to generate conse-
quences from definitions. If we disallow contraction in antecedents of consequence
statements, we can enforce totality, which corresponds to well-known strategies of
avoiding paradoxes proposed by Curry, Fitch and others. Another such condition is
to prohibit consequence statements of the form a |� a, if a is defined, i.e., if there
is a definitional clause for a in D. The rationale behind the latter condition, which
was proposed by Kreuger (1994), is that if a is defined, consequences involving a
should be obtained according to their meaning, i.e., by means of the rules based on the
definitional clauses for a (which are definitional closure and definitional reflection
with respect to a). This is related to certain three-valued semantics for normal logic
programs and related proof-theoretic accounts (see Schroeder-Heister (1992) and the
references therein).12

A definition, which is total, but not complete, is the above definition of the intui-
tionistic logical constants. It can easily be shown that

|�LI ¬p⊃q∨r ⇒ |�LI (¬p⊃q)∨(¬p⊃r),

but it can also be shown that

¬p⊃q∨r |�LI (¬p⊃q)∨(¬p⊃r)

does not hold. This example essentially expresses the fact that in intuitionistic prop-
ositional logic not all admissible rules are derivable, which was first pointed out by
Harrop using this (and other) examples.13 A nontrivial example of a definition which
is both total and complete is the logic LC of truth and falsity defined in Sect. 4.3.

The reason for calling a definition for which (11) holds total, is that it is sensi-
ble to call definitions, for which (11) does not hold, partial. Any definition conveys
some meaning to the object defined, even if this meaning is very rudimentary and
therefore ‘partial’. If we are successful, i.e., if consequence based on the given mean-
ing ensures correctness of inference, our meaning assignment is total. However, this
success, which might be intended, is not necessarily a syntactic property of the defini-
tion,14 but something which must be proved to hold. In this sense it is, as Hallnäs has
pointed out, related to the usage of “partial” and “total” in recursive function theory.
Whether a partially recursive function is total, is not a syntactic property of its defini-
tion—totality, which corresponds to the halting problem, is even undecidable. As with

12 It should be noted that in the latter two cases, in which the inference machinery is changed in such a way
that totality is always satisfied, we are not again identifying consequence with correct inference. Though in
these cases, consequence coincides with correctness of inference, this is a result which can be proved and
not something forced by definition as in standard semantics.
13 An artificial, but much simpler example is the following: Let D consist of the clauses a := a and b := b.
This definition is total. Since |� a is not derivable, (|� a ⇒ |� b) is valid. However, a |� b is not derivable.
14 Sometimes it is such a property, for example in the case of wellfoundedness.
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the definition of a partially recursive function, we have an elementary description of
what a definition looks like, where the correctness of a definition is not an immediate
feature of its being well-formed. The converse of totality, i.e., (12), is called complete-
ness, because it expresses completeness with respect to admissibility, i.e., it expresses
the fact that every admissible rule is derivable.15

Digression on admissibility and derivability. If |�D is written as the derivability
relation  in a formal system, the principle (10), which is criticized in this paper,
is strongly reminiscent of the identification of derivability with admissibility. A  B

expresses that the rule
A
B

is derivable, whereas ( A ⇒  B) expresses that it is admis-

sible. That these notions do not always coincide, is elementary knowledge. In fact, we
want to introduce an analogous distinction at the semantical level. There the notion
of a rule is played by the notion of a consequence statement A |� B, its ‘derivability’
in a system D by A |�D B, and its ‘admissibility’ by (|�D A ⇒ |�D B). In standard
semantics based on the transmission view of consequence, ‘derivability’ is defined as
‘admissibility’ and therefore identified with it, whereas we want to keep these concepts
apart. However, the analogy with the syntactical case is only partial: There derivability
is the stronger concept which trivially implies admissibility, whereas at the semantical
level, ‘derivability’ does not even imply ‘admissibility’.

6 Our model of inference

According to what we have now proposed, consequence is an independent semantical
concept which does not necessarily coincide with the correctness of inference and
therefore cannot, even in an inferential approach, be defined that way. In this sense, it
does not necessarily result from inference nor can it guide inference. If the definition
considered is not total, consequence would not even imply correctness of inference.
Consequence can be used to guide inferences only if it has been shown beforehand
that the definition in question is total.

Now for us consequence is itself an inferential notion. That a consequence state-
ment A |�D B holds is established by a semantical derivation yielding A |� B. There
is no need to distinguish any further concept of derivation from this one. An inference
step from A to B with respect to a definition D:

A

B

would have to be written explicitly as a step

|� A

|� B

15 So we associate with “completeness” a slightly different meaning from that given to it by Hallnäs
(1991), who associated with it the fact that for every object a, either |�D a or a |�D ⊥ holds (with ⊥ being
undefined). This fact is classically related to completeness in our sense. However, our weaker reading of
“completeness” seems to us to be more natural, as it is directly related to constructive reasoning.
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in a semantical derivation, where the antecedents of semantical sequents are empty.
Its correctness means that if |�D A, then |�D B. What is changed as compared to the
standard view is that this correctness cannot always (i.e., if D is not total and complete)
be expressed by the consequence statement with the premiss A as its antecedent and
the conclusion B as its consequent: A |�D B.

As for us inference steps are steps in semantical derivations, they actually have the
more general form

A1 |� B1 . . . An |� Bn

C |� D
(13)

where antecedents are not necessarily empty. This corresponds to the idea that in
natural deduction, derivations can depend on assumptions. Here this dependency is
expressed by non-empty antecedents, as is the procedure of the sequent calculus. Our
model of inference is the sequent-calculus model (Schroeder-Heister 2004). In this
more general form, the correctness of an inference step of form (13) (with respect to
a definition D) means that, whenever A1 |�D B1, . . . , An |�D Bn , then C |�D D.

More precisely, to show that (13) is correct (with respect to D), we have to show
that, given grounds for for the premisses, we have to provide (= to construct) grounds
for the conclusion. If we denote that g is a ground for A |� B by g : A |� B, we can
reformulate (13) as

g1 : A1 |� B1 . . . gn : An |� Bn

g : C |� D
(14)

where it is understood that g is obtained by some constructive operation from
g1, . . . , gn , i.e., g = f (g1, . . . , gn). We leave it open how to formalize grounds
and their handling. It is important that a ground g for A |� B codifies a seman-
tical proof of A |� B, i.e., (14) expresses that from proofs of the premisses
A1 |�D B1, . . . , An |�D Bn we can construct a proof of the conclusion C |�D D. In
this sense the correctness of an inference step expresses the admissibility of this step
as an inference rule with respect to the basic semantical inference rules. Semantical
steps such as definitional closure and reflection are just a special kind of inference
steps, namely those which are immediately justified. “Immediately” means that the
grounds for the premisses, which are semantical derivations of them, are extended
by an additional step to yield a semantical derivation and therefore a ground of the
conclusion. For steps which are not primitive steps an admissibility procedure must
be given.

For example, take the consequence step

p |� (q⊃r)

q |� (p⊃r)
. (15)

If we indicate, quite informally, the grounds for the respective statements by g and g′,
it reads as:
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g : p |� (q⊃r)

g′ : q |� (p⊃r)
.

Generating g′ from g can be done in an obvious way, checking the ways the premiss
can be proved in the semantical sequent calculus.

This idea differs from standard proof-theoretic semantics, where inferences are
justified by certain transformation procedures, in two respects: Semantical deriva-
tions are not just derivations based on introduction inferences (or Right-introduction
rules), secondly they are based on sequent-style rather than natural deduction deriva-
tions. This way of proceeding makes things simpler in so far as no assumptions need
to be considered which may be discharged. As the handling of assumptions is built
into sequents, the correctness of an inference of form (13) is a simple admissibility
statement, whereas in natural-deduction based proof-theoretic semantics complicated
justification procedures must be used.16

It should be emphasized that the handling of grounds in the sense described is
different from that of terms in the typed λ-calculus. When generating grounds from
grounds according to (14) (and elucidated in the example just given), we consider
grounds for whole sequents, whereas in the typed λ-calculus terms representing such
grounds are handled within sequents. So the notation g : A |� B we used above, which
is understood as g : (A |� B), differs from the λ-calculus notation x : A  t : B,
where t represents a proof of B from A and the declaration x : A on the left side rep-
resents the assumption A. The λ-calculus view and the corresponding Curry-Howard-
interpretation actually incorporates the placeholder view of assumptions by always
using a variable to represent the ground for an assumption, which by means of substi-
tution can be filled with a term standing for a closed proof of it.

7 Reasoning and the paradox of inference

In the dicussion about logical inference, a so-called “tension” between informative-
ness and validity has been discussed, notably by Dummett (1978) with reference to
Cohen and Nagel, but many other authors discuss this issue using different terms.
Here by informativeness it is meant that a logical inference should give some new
information, otherwise it would be useless, and by validity it is meant that it follows
from what is given in the premisses, i.e., without addition of anything from outside.
This problem also applies to the case of material inference discussed here, as material
inference is inference with respect to a definition D, and should not draw conclusions
not contained in D. The solution proposed by Dummett runs roughly as follows: There
is some basic sort of inferences, viz. the introduction inferences in natural deduction,
which are canonical and which are immediately obvious, as they are (in our terminol-
ogy) just definitional. However, the second sort of inferences are based on some sort

16 It should be mentioned that categorial proof theory is nearer to the semantically understood sequential
paradigm than standard proof-theoretic semantics, which is focused on natural deduction. It would thus be
worthwhile to investigate the sequential approach to semantics, with its conceptual priority of hypothetical
judgements, in categorial terms. The anonymous reviewer reminded me of this fact, pointing in particular
to the subobject relationship as the consequence relation in a topos.

123



940 Synthese (2012) 187:925–942

of justification which generates grounds for the conclusion from grounds of the pre-
misses. These are essentially the elimination inferences, and the generation of grounds
is done via reduction procedures of the kind elaborated by Prawitz (1965).

This solution is not so much different in the case considered here. We also con-
sider certain inferences as basic which constitute the grounds for a sentence or for a
consequence statement. These are the semantical inference rules, notably the rules of
definitional closure and definitional reflection, which define consequence statements.
When performing an inference step, there is a step of generating grounds, which is
constituted by certain operations on semantical derivations, where these semantical
derivations have now formally the form of (cut-free) sequent-style proofs. So far the
pattern is similar: There are canonical inferences constituting grounds, and there are
non-canonical inferences obtained by procedures generating grounds from grounds.

The basic difference is that we are now working in a sequent-style framework,
where the canonical (definitional) inferences, our ‘rules of consequence’, comprise
both the Right- and Left-inferences. In this sense, assertions and assumptions are on
par. The basic entities are hypothetical and not categorical judgements. We change
the notion of “canonical” (or “definitional”, as we call it), but not the idea that there
must be justification procedures for those inferences that do not follow the definitional
pattern.

As we do have the distinction between Right- and Left-inferences, one may now
even draw a twofold distinction: Between Right- and Left-inferences on the one hand
and between definitional (i.e., Right- plus Left-) and non-definitional inferences.17

This twofold distinction is justified, as already the Left-inferences are in some way
indirect because they involve a step of reflection upon the definition as a whole and
not just follow single definitional clauses as do the Right-inferences. An inference of
the form (13) may thus be either a direct definitional inference (based on definitional
closure) or an indirect definitional inference (based on definitional reflection) or a
non-definitional inference (based on a procedure generating grounds from grounds).
Whereas direct and indirect definitional inferences are meaning giving and thus do
not generate new information, a non-definitional inference such as (15) is based on
the generation of grounds and is therefore informative.18

The approach sketched here based on the primacy of hypothetical judgements can
be carried over to other reasoning formats as well. In natural deduction style it would
lead to bidirectional natural deduction (Schroeder-Heister 2009). Another framework
would be the dialogical or game-theoretical approach to semantics, in which the dual-
ity of assumptions and assertions is reflected by the roles of the two players of a
game, which means that the primacy of the hypothetical is built into the framework
from the very beginning. A further advantage of all approaches based on hypothet-
ical reasoning is the lack of functionals to interpret iterated implications, which are

17 One might perhaps even introduce a threefold distinction, where one also separates the structural princi-
ples from the semantical principles in the narrower sense (definitional closure and definitional reflection).
18 We are claiming that it is the generation of justifications or grounds which makes an inference informa-
tive. This need not always be a generation of grounds for every single step ‘from scratch’. In the case where
we have totality, it may also establish some consequence and then use this consequence in an inference
using cut. The generation of grounds would then be hidden in the proof of this consequence together with
the cut elimination proof for the whole system.
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necessary in standard constructive semantics, but which, in particular in combination
with non-wellfounded definitions, pose severe problems when they are interpreted
epistemologically.
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