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Restricting Initial Sequents: The Trade-Offs
Between Identity, Contraction and Cut

Peter Schroeder-Heister

Abstract In logical sequent calculi, initial sequents expressing the axiom of iden-
tity can be required to be atomic, without affecting the deductive strength of the
system. When extending the logical system with right- and left-introduction rules
for atomic formulas, one can analogously require that initial sequents be restricted to
“uratoms”, which are undefined (not even vacuously defined) atoms. Depending on
the definitional clauses for atoms, the resulting system is possibly weaker than the
unrestricted one. This weaker system may however be preferable to the unrestricted
system, as it enjoys cut elimination and blocks unwanted derivations arising from
non-wellfounded definitions, for example in the context of paradoxes.

1 Introduction

In standard sequent calculi of first-order logic, initial sequents

A � A,

which express the axiom of identity, can be restricted to atomic A. For non-atomic
A, the sequent A � A can then be derived using the right- and left-introduction rules
for the logical constants occurring in A. This way of presenting sequent calculi is
quite common and has certain technical advantages, such as in the area of automated
theorem proving, and also in proof theory itself. For example, arguments establishing
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340 P. Schroeder-Heister

height-preserving admissibility (see [12]) or arguments concerning rank-preserving
admissibility as in Lemma 2 below depend on it. There is even a philosophical
rationale behind this procedure: If there are specific rules to generate a complex
proposition on the right or left side of the turnstile, these specific rules should be
used. The statement A � A, which is completely unspecific as to the structure of A,
should only be made when no specific way of introducing A is available, that is,
when A is atomic.

This situation changes, when we extend our logical system with rules for atomic
formulas (“atoms”). If right- and left-introduction rules for atoms are available, then
these atoms are still atomic in the logical sense, that is, they do not contain logical
constants, but they are no longer atoms in the semantical sense as they have a specific
meaning given by these rules. This is the case in the theory of definitional reflection
(see [6–8, 14]). There one extends the logical framework with right-introduction
rules for atoms based on the clauses of a definition. This definition has the form of an
extended logic program allowing for logically complex formulas in bodies of clauses.
The rule of definitional reflection complements these rules with a left-introduction
rule based on a kind of inversion principle. However, the points discussed here apply
to any extension of logical systems that provides right- and left-introduction rules
for atoms (see, for example, [1, 11]).

2 The Formal System of Intuitionistic Logic
with Definitional Reflection

We consider intuitionistic propositional logic, which is sufficient to make our point.
Let upper case Latin letters denote formulas in this language, let lower case Roman
letters denote atoms (which in our simplified framework are propositional letters),
and let upper case Greek letters denote finite multisets of formulas. We suppose that
a definition D is given, which consists of finitely many clauses of the form

a ⇐ A

Such a clause is called a (defining) clause for a. We furthermore assume that with
every D its domain dom(D) is associated, which is a set of atoms containing those
atoms for which there is a definitional clause in D, but possibly further atoms. The
elements in dom(D) are called the atoms defined by D. We allow for atoms defined
by D without there being a clause for them. These elements of dom(D) are called
vacuously defined. Atoms that are not defined byD and thus do not belong to dom(D)

are called uratoms. If a ∈ dom(D), let D(a) be the set of defining conditions of a,
that is, the set {A1, . . . , An} if the clauses for a in D are as follows:

⎧
⎪⎨

⎪⎩

a⇐ A1
...

a⇐ An
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Restricting Initial Sequents: The Trade-Offs Between Identity, Contraction and Cut 341

If a is vacuously defined, thenD(a) is empty. If a is an uratom, thenD(a) is undefined.
(In other words, if a is not defined by D, then D(a) is undefined in the metalogical
sense.)

Our system of intuitionistic logic with definitional reflection over the definitionD,
called LI(D), has the following rules of inference, where the antecedent of a sequent
is understood as a multiset of formulas.

(I)
Γ, a a

( )
Γ

(⊥)
Γ,⊥ A

( )
Γ A Γ B

Γ A∧B (∧ )
Γ, A,B C

Γ, A∧B C

( )
Γ A

Γ A∨B
Γ B

Γ A∨B (∨ )
Γ, A C Γ, B C

Γ, A∨B C

( )
Γ, A B

Γ A→B
(→ )

Γ, A→B A Γ, B C

Γ, A→B C

( D)
Γ C

Γ a
C ∈ D(a) (D )

{Γ, a, C A : C ∈ D(a)}
Γ, a A

a ∈ dom(D)

Without the definitional rules in the last line, this is a standard variant of the intu-
itionistic propositional sequent calculus which we call LI. The last line contains the
rules of definitional closure (�D) and definitional reflection (D�), which for any
atom a which is defined by D, delivers right- and left-introduction rules. The right-
introduction rule says that a can be inferred from each defining condition of a. The
left-introduction rule says that everything that can be inferred from each defining
condition of a can be inferred from a itself. If the clauses defining a are viewed as its
inductive definition, the left-introduction rule for a expresses the extremal clause for
this inductive definition: “Nothing else defines a”. For further discussion see [8, 14].
Note that the rules (�D) and (D�) only apply to those atoms a which are defined by
D (i.e., a ∈ dom(D)) and not to uratoms. In view of (⊥), we can disregard vacuously
defined atoms, if we identify a vacuously defined atom a with an atom a defined by
the clause a ⇐ ⊥.

For LI it is well-known that the structural rules of thinning, contraction and cut

(Thin)
��C

�, A�C (Contr)
�, A, A�C
�, A�C (Cut)

��A �, A�C
��C

are admissible (see, for example, [2, 12]). As thinning is admissible, the version of
cut with separated contexts
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342 P. Schroeder-Heister

��A �, A�C
�,��C

is admissible, too.
The admissibility of thinning and contraction extends from LI to LI(D). For

thinning this is obvious, for contraction this is due to the fact that in (D�) the atom
a is repeated in the premisses, which means that we have already built an implicit
contraction into (D�). In fact, this implicit contraction is not even needed. Without
loss of deductive power,we can replace (D�)with its contraction-free variant (D�)cf :

(D�)cf
{�,C�A : C ∈ D(a)}

�, a�A

This can be seen as follows. Consider the system LIcf(D), which results from LI(D)

by replacing (D�) with (D�)cf . For a derivation D in LIcf(D), the D-rank rD(D) is
the maximum number of applications of (D�)cf , where the maximum is taken over
all branches of D. More precisely,

rD(D) = 0, if D is(I ), (�) or (⊥),

rD(D) = rD(D1), if D is of the form D1
� � A , and the last step

is different from (D�)cf ,

rD(D) = max{rD(D1), rD(D2)}, if D is of the form D1 D2
� � A , and the last step

is different from (D�)cf ,

rD(D) = maxC∈D(a){rD(DC)} + 1, if D is of the form {DC : C ∈ D(a)}
�, a � A (D�)cf .

Then we can show the following.

Lemma 1 (Invertibility lemma) IfD is a derivation of �, a � A inLIcf(D), then for
each C ∈ D(a)we can find a derivationDC of �,C � A such that rD(DC) ≤ rD(D).

Proof The only non-trivial case obtains when D is an initial sequent �, a � a. Here
rD(D) = 0. We use that for any C we can find a derivation D′

C of �,C � C in LI.
Since (D�)cf is not used in D′

C , we know that rD(D′
C) = 0. Then, for C ∈ dom(D),

let DC be

D′
C

�,C � C

�,C � a
(� D)

Since rD(D′
C) = 0, we know that rD(DC) = 0. �

Now it is easy to show that contraction is admissible in LIcf(D). More precisely,
we can show the following.

Lemma 2 If D is a derivation of �, A, A � C in LIcf(D), then we can find a
derivation D′ of �, A � C in LIcf(D)such that rD(D′) ≤ rD(D).

psh@uni-tuebingen.de



Restricting Initial Sequents: The Trade-Offs Between Identity, Contraction and Cut 343

Proof by induction on the triple 〈rD(D), deg(A), h(D)〉, where deg(A) is the logical
complexity of A and h(D) is the height ofD (that is, the length of its longest branch).
As an example we present the case in which (D�)cf is applied in the last step and
the atom a introduced by (D�)cf is the contraction formula:

D :

{
DC

Γ, a, C �A
: C ∈ D(a)

}

Γ, a, a�A
(D� )cf

We assume that a is not vacuously defined–otherwise the case is trivial. Obviously,
rD(DC) < rD(D) for every C ∈ D(a). Applying the invertibility lemma (Lemma 1)
to the premiss derivations DC we obtain derivations

{
D′

C

Γ, C, C �A
: C ∈ D(a)

}

such that rD(D′
C) < rD(D) for every C . Therefore, by induction hypothesis, we

obtain derivations

{
D′′

C

Γ, C �A
: C ∈ D(a)

}

such that rD(D′′
C) ≤ rD(D′

C) < rD(D) for everyC . From those we obtain a derivation

D′ :

{
D′′

C

Γ, C �A
: C ∈ D(a)

}

Γ, a�A

such that rD(D′) ≤ rD(D). �

3 The Failure of Cut in LI(D)

The system LI(D) does not enjoy the admissibility of cut. Consider the following
definition:

Dr
{
r ⇐ ¬r

psh@uni-tuebingen.de



344 P. Schroeder-Heister

(with ¬r abbreviating r → ⊥.) Using the right- and left-introduction rules for r and
the rules for implication, this leads to derivations of both r � ⊥ and of � r :

(I )
r, r→⊥�r (I )

r,⊥ � r
(→�)

r → ⊥, r � ⊥
(Dr�)

r � ⊥

(I )
r, r → ⊥ � r

(I )
r,⊥ � r

(→�)
r → ⊥, r � ⊥

(Dr�)
r � ⊥

(�→)� ¬r
(�Dr )� r (1)

If cut were admissible, � ⊥ would be derivable, which is not the case as there is
no right-introduction rule for ⊥. Note that we impose no restriction on the form of
definitional clauses, in particular no well-foundedness restriction. The definition Dr

may be considered a propositional short form of Russell’s paradox, obtained from
the following clause for comprehension:

t ∈ {x : A(x)}⇐ A(t)

by instantiating A(x) with x /∈ x and t with {x : x /∈ x}, and then abbreviating {x :
x /∈ x} ∈ {x : x /∈ x} by r .

In viewof the fact that (D�) is not stronger than its contraction-free variant (D�)cf ,
instead of (1) we may consider the following pair of derivations in LIcf(D):

(I )
r, r→⊥�r (I )

r, ⊥�⊥
(→�)

r→⊥, r�⊥
(�→)

r→⊥�r→⊥
(�Dr )

r→⊥�r (I )⊥ � ⊥
(→�)

r → ⊥ � ⊥
(Dr�)cf

r � ⊥

(I )
r, r→⊥�r (I )

r, ⊥�⊥
(→�)

r→⊥, r�⊥
(�→)

r→⊥�r→⊥
(�Dr )

r→⊥�r (I )⊥ � ⊥
(→�)

r → ⊥ � ⊥
(Dr�)cf

r � ⊥
(�Dr )� r

(2)

This shows that it is not a particular form of contraction of atoms that needs to be used
in the derivation of the paradox, but rather contraction for implicational formulas,
which is the essential form of contraction in LI(D).

4 The Trade-Off Between Contraction and Cut

We have shown by an example that inLIcf(D), which bymeans of the rules (∧�) and
(→�) implicitly contains contraction, and in which therefore the explicit contraction
rule is admissible (Lemma 2), the rule of cut is not admissible. If we consider a
contraction-free variant, in which (∧�) and (→�) are replaced with

�, A�C
�, A∧B�C

�, B�C
�, A∧B�C and

��A �, B�C
�,�, A→B�C
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Restricting Initial Sequents: The Trade-Offs Between Identity, Contraction and Cut 345

respectively, then cut can be eliminated. This is shown in detail in [13]. Therefore
we obtain a trade-off between contraction and cut, when we add definitional rules to
the logical system.

Result 1 If the logical system contains implicit or explicit contraction, then the
admission of cut makes the system inconsistent. If it contains neither implicit nor
explicit contraction, then cut is admissible.

This corresponds to the observation dating back to Fitch [5] that removing
the rule of contraction may be used as a strategy to cope with the paradoxes.
This result can even be refined. The form of contraction used in counterexample
(1) is contraction of an atom defined by Dr with an atom of the same shape used
in an initial sequent. In [15, 16] it was claimed that prohibiting this specific sort of
contraction would be a more specific way of keeping cut admissible in the system
with definitional reflection than abolishing contraction altogether. This claim is not
invalidated by the fact that in LIcf(D) no contraction of atoms is needed, as exam-
ple (2) shows. In fact, it carries over to the present situation mutatis mutandis. The
contraction of r → ⊥, which is implicit in the lowermost application of (→�), is
a contraction of an occurrence of r → ⊥, in which r stems from an initial sequent,
with an occurrence of r → ⊥, in which r is a result of (�Dr ). This means that there
is still an identification of occurrences of atoms which are generated by different
(structural vs. meaning-giving) rules, though in example (2) it is not definitional
reflection (Dr�)cf but the introduction of the atom r on the right side according
to (�Dr ), which is involved. Identifying such critical forms of contraction can, for
example, be achieved by attaching labels to formulas that indicate when definitional
rules are applied (see [3, 4]). A further elaboration of this topic, which will result in
a more finegrained specification of the rules of contraction, is beyond the scope of
this paper.

5 Restricting Initial Sequents: The Admissibility of Cut

In initial sequents �, a � a of LI(D), a can be an arbitrary atom. According to what
was said in the introduction, we now restrict the atom a in initial sequents to uratoms
by replacing (I ) with the following rule:

(I )◦
�, a � a

a /∈ dom(D)

As the rule of definitional reflection we use the contraction-free rule (D�)cf . The
resulting system, with (I )◦ instead of (I ) and (D�)cf instead of (D�), is called
LI◦(D). Lemmas 1 and 2 continue to hold for LI◦(D). The proof of Lemma 1 is now
trivial, as initial sequents involving a defined atom a can no longer occur. Due to

psh@uni-tuebingen.de



346 P. Schroeder-Heister

the restriction on initial sequents, Lemma 2 is easier to prove. Therefore in LI◦(D)

contraction is admissible. The counterexample (2) to cut no longer works, as it uses
initial sequents for r . These initial sequents are not available in LI◦(Dr ), because r
is defined in Dr , and is thus not an uratom.

In fact, in the system LI◦(D) we can eliminate cuts. To demonstrate this, we
use as an induction measure the D-weight of a formula occurrence in a derivation.
Unlike the D-rank as used in Lemmas 1 and 2, the D-weight is not a measure of a
derivationD, but ameasure of a formula occurrence at a certain place in (a sequent in)
a derivation D. In the following, upper indices distinguish occurrences of formulas.
For example, C1 and C2 denote different occurrences of the formula C . It is always
assumed that a formula occurrence below an inference line corresponds to or results
from a particular formula occurrence (or from particular formula occurrences) above
the line. For example, in an application of (∨�) of the form

A1
1, . . . , A

1
n, A

1�C1 A2
1, . . . , A

2
n, B

1�C2

A3
1, . . . , A

3
n, (A∨B)1�C3

it is assumed that, for all i (1 ≤ i ≤ n), the occurrence A3
i corresponds to the occur-

rences A1
i and A2

i , the occurrence C
3 corresponds to the occurrences C1 and C2, and

the occurrences of A and B as immediate subformulas of (A∨B)1 correspond to the
occurences A1 and B1, respectively.

Then the D-weight wD(C1) of a formula occurrence C1 in a given derivation is
defined by induction on the construction of the derivation.

Each formula occurrence in (I )◦, (�) or (⊥) has D-weight 0.
If the last step is

(�→)
A1
1, . . . , A

1
n, A

1�B1

A2
1, . . . , A

2
n�(A→B)1

then wD(A2
i ) = wD(A1

i ) for all i (1 ≤ i ≤ n), and wD((A→B)1) = max{wD(A1),

wD(B1)}. For (∧�) and (�∨) the D-weight is defined in the same way.
If the last step is

(∨�)
A1
1, . . . , A

1
n, A

1�C1 A2
1, . . . , A

2
n, B

1�C2

A3
1, . . . , A

3
n, (A∨B)1�C3

then wD(A3
i ) = max{wD(A1

i ), wD(A2
i )} for all i (1 ≤ i ≤ n), wD(C3) = max

{wD(C1), wD(C2)} and wD((A∨B)1) = max{wD(A1), wD(B1)}, and analogously
for (�∧).

If the last step is

(→�)
A1
1, . . . , A

1
n, (A→B)1�A1 A2

1, . . . , A
2
n, B

1�C1

A3
1, . . . , A

3
n, (A→B)2�C2
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then wD(A3
i ) = max{wD(A1

i ), wD(A2
i )} for all i (1 ≤ i ≤ n), wD(C2) = wD(C1),

and wD((A→B)2) = max{wD((A→B)1), wD(A1), wD(B1)}.
If we consider derivations with cut and if the last step is

(Cut)
A1
1, . . . , A

1
n�A1 A2

1, . . . , A
2
n, A

2�C1

A3
1, . . . , A

3
n�C2

then wD(A3
i ) = max{wD(A1

i ), wD(A2
i )} for all i (1 ≤ i ≤ n), and wD(C2) =

wD(C1).
If the last step is a D-rule, then wD(a) is increased by 1. More precisely, if this

step is

(�D)
A1
1, . . . , A

1
n�C1

A2
1, . . . , A

2
n�a1

C ∈ D(a)

then wD(A2
i ) = wD(A1

i ) for all i (1 ≤ i ≤ n), and wD(a1) = wD(C1) + 1. If it is

(D�)cf
{Ai

1, . . . , A
i
n,C

1
i �Ai : 1 ≤ i ≤ k}

Ak+1
1 , . . . , Ak+1

n , a1�Ak+1
where D(a) = {C1, . . . ,Ck},

thenwD(Ak+1
j ) = max1≤i≤k{wD(Ai

j )} for all j (1 ≤ j ≤ n), andwD(a1) = max1≤i≤k

{wD(C1
i )} + 1. If D(a) = ∅, and thus k = 0, then wD(A1

j ) = wD(A1) = 0 for all
j (1 ≤ j ≤ n) and wD(a1) = 1.

It is important to notice that the weight increases not only at the application
of (D�)cf , but also at the application of (�D). However, the crucial point is that
only the formula a introduced by (�D) or (D�)cf is affected by the increase of
weight, not the parametric context formulas. Putting it another way, wemay consider
theD-rank to be a measure of a sequent within a derivation, namely theD-rank of the
subderivation with this sequent as its end-sequent. In contradistinction to that, the
D-weight is a measure of a formula occurrence within a sequent, namely the D-
weight of this formula occurrence within the subderivation that has this sequent as
its end-sequent.

Now cut can be eliminated even though contraction is admissible. More precisely,
we can show weight-preserving cut elimination in the following sense.

Theorem 1 ConsiderLI◦(D) extended with the cut rule (Cut). Suppose a derivation
D in this system is given that ends with an application

A1
1, . . . , A

1
n�A1 A2

1, . . . , A
2
n, A

2�C1

A3
1, . . . , A

3
n�C2

of cut such that the derivations of its premisses are cut-free. Then we can construct
a cut-free derivation of A4

1, . . . , A
4
n�C3 such that wD(A4

i ) ≤ wD(A3
i ) for all i (1 ≤

i ≤ n) and wD(C3) ≤ wD(C2).
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Proof by induction on the triple 〈wD(A), deg(A), h(D)〉, where wD(A) = max(wD

(A1), wD(A2)), and, as before, deg(A) is the logical complexity of A and h(D) is
the height of D. The value wD(A) is also called the weight of the cut formula. The
reduction steps are as usual in cut elimination. We just indicate where theD-rules are
involved, and where the definition of weight comes into play. The main reduction of
the D-rules reduces

D1

Γ �B ( �D)
Γ � a

{
DC

Γ, C �A
: C ∈ D(a)

}

Γ, a�A
(D� )cf

Γ �A
B ∈ D(a)

to

D1

Γ �B

DB

Γ, B �A

Γ �A

by reducing a cut with cut-formula a to a cut with cut-formula B of lower weight.
An example of a permutation of cut with an application of a D-rule is the reduc-

tion of

D1

Γ �A

D2

Γ, A�C
( �D)

Γ, A� a
C ∈ D(a)

Γ � a

to

D1

Γ �A

D2

Γ, A�C

Γ �C ( �D)
Γ � a

Here it is crucial that even though the weight of the cut formula Amight not decrease,
the weight of a is not increased, as it is solely dependent on the weight of C , which
is untouched by the transformation. A measure such as the rank rD that applies to
sequents in a proof rather than formula occurrences in a sequent could not deliver
this behaviour.

The restriction of initial sequents to uratoms becomes significant, when we con-
sider the situation

psh@uni-tuebingen.de
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��a1 �, a2�a3
��a4

which is reduced to

� � a1

As the right premiss of the cut is an initial sequent,wD(a2) = wD(a3) = wD(a4) = 0.
According to our restriction on initial sequents, a is an uratom. It is easy to see that
the weight of any occurrence of an uratom is 0, which means that wD(a1) = 0.
Thus wD(a1) = wD(a4) = 0. The latter equation would not necessarily hold if we
admitted initial sequents with defined atoms. If a is not an uratom, then it is possible
that wD(a1) > 0 and thus wD(a1) > wD(a4), contrary to what is claimed in the
theorem. �

The admissibility of contraction and cut in LI◦(D) implies that the unrestricted
rule (I ) is not derivable1 in LI◦(D). For if it were derivable, then using the definition
Dr and applying cut to the derivations (2), we could derive � ⊥.

6 The Trade-Off Between Identity and Contraction/Cut

We have shown that by restricting initial sequents to the case where a is an uratom,
we obtain a system in which both contraction and cut are admissible. If we do not
restrict initial sequents, contraction is still admissible, but cut ceases to be admissible.
This means that, in a sense, we have traded identity against contraction and cut.2

Result 2 If identity as expressed by initial sequents is restricted to uratoms, then
the rules of contraction and cut are admissible. If identity is admitted for any atom,
whether defined or not, then the admission of cut makes the system inconsistent.

It should be noted that, in the presence of unrestricted identity, a restriction on cut
is an option which should not be excluded. A way of restricting cut to cases where it
continues to be admissible, consists, for example, in using certain term assignments
and corresponding provisos for the application of cut, as sketched in [17]. Here we
do not want to enter a philosophical discussion on which one of unrestricted identity,
unrestricted contraction or unrestricted cut is the preferential rule, but just point to
the trade-offs between these principles in the presence of definitional reflection.

As the counterexample given in (1) or (2) is from the domain of paradoxes, this
shows that restrictions on any of the principles of identity, contraction and cut can
block paradoxes (see [16]).

1As the rule (I ) is an axiom, derivability and admissibility mean the same.
2In the system with unseparated contexts chosen here, unrestricted identity plus cut implies con-
traction, so that cut and contraction cannot be separated. This was pointed out to the author by Roy
Dyckhoff.
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7 Restricted Initial Sequents in Logic Programming

Within logic, and in particularwithin the discussionof the paradoxes, the restrictionof
initial sequents, and thus of identity, has never been properly considered, in contrast,
for example, to the issue of contraction, which is a strong topic in this debate. How-
ever, in the realmof logic programming, this issue has always been present. In fact, the
idea of definitional reflection has been developed in close parallel with related issues
in logic programming (see [8]). The restriction of initial sequents considered here
was first proposed by Kreuger [10]. He motivated it by considerations concerning
the operational interpretation of definitional reflection in the programming language
GCLA, which implemented definitional reflection. Instead of formally specifying a
domain dom(D), he adds the clause a ⇐ a to D to trivialize the application of (D�)

for every a which in our terminology is an uratom.
In their proof-theoretic framework for logic programming, Jäger and Stärk [9]

use a classical one-sided Schütte-Tait-style sequent calculus, which contains rules
for the evaluation of atoms that correspond to our rules of definitional closure and
reflection. They develop a three-valued semantics for this system and explicitly con-
sider identity-free derivations to be the proof-theoretic approach most faithful to
this semantics. For identity-free derivations they prove a cut elimination theorem by
translating proofs into a system with ramified D-rules, for which the cut elimination
proof is completely standard, and then retranslate cut-free proofs. This translation
and retranslation crucially depends on the fact that identity in the unrestricted form
(I ) is lacking. Thismethod can easily be carried over to the situation considered here.
Thus Jäger and Stärk implicitly point to the trade-off between unrestricted identity
and the availability of cut, which was the main topic of this paper.
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