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Abstract. In proof-theoretic semantics of intuitionistic logic it is well known that elimination
rules can be generated from introduction rules in a uniform way. If introduction rules discharge
assumptions, the corresponding elimination rule is a rule of higher level, which allows one to dis-
charge rules occurring as assumptions. In some cases, these uniformly generated elimination rules
can be equivalently replaced with elimination rules that only discharge formulas or do not discharge
any assumption at all—they can be flattened in a terminology proposed by Read. We show by
an example from propositional logic that not all introduction rules have flat elimination rules. We
translate the general form of flat elimination rules into a formula of second-order propositional logic
and demonstrate that our example is not equivalent to any such formula. The proof uses elementary
techniques from propositional logic and Kripke semantics.

§1. The flattening problem for elimination rules. If a sentence ϕ is defined from
conditions �1, . . . ,�n by the introduction rules

(ϕ I) �1
ϕ

. . .
�m
ϕ ,

then the inversion principle as first proposed by Lorenzen (1955) says that everything that
follows from each defining condition �i of ϕ follows from ϕ itself. In a natural deduction
framework, this idea gives rise to an elimination rule of the form

(ϕ E)
ϕ

[�1]
r

. . .
[�m]

r
r ,

where the square brackets indicate that the �i can be discharged as assumptions in the
respective subderivations. This is a general schema which applies to inductive definitions
of atoms, (generalized) logic programs and proof-theoretic characterizations of logical con-
stants likewise (see Schroeder-Heister, 2012). Here, we concentrate on logical constants.
For the point we want to make we can confine ourselves to propositional logic. Then these
rules become rules for an arbitrary n-ary propositional operator c:
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(c I)
�1(p1, . . . , pn)

c(p1, . . . , pn)
. . .

�m(p1, . . . , pn)

c(p1, . . . , pn)

(c E)
c(p1, . . . , pn)

[�1(p1, . . . , pn)]
r

. . .
[�m(p1, . . . , pn)]

r
r .

Specializing the general schema (c I)/(c E) to disjunction, we obtain the common intro-
duction and elimination rules for it:

(∨I)
p

p ∨ q
q

p ∨ q (∨E)
p∨q

[p]
r

[q]
r

r .

Conjunction receives its general elimination rule:

(∧I)
p q

p ∧ q (∧EGEN)
p∧q

[p, q]
r

r ,

and for absurdity ⊥ we obtain ex falso quodlibet as an elimination rule without minor
premisses

[no I rule] (⊥E) ⊥
r .

In the case of implication, the general schema (c I)/(c E) forces us to extend our structural
means of expression. Since the introduction rule for implication has the form

[p]
q

(→I) p → q ,

the elimination rule according to the schema (c E) would have to take a form which might
be depicted as follows:

p → q

[
[p]
q

]

r
r .

To capture this idea formally, in Schroeder-Heister (1984) a system was proposed in which
not only formulas, but also rules can be introduced as assumptions and discharged at the
application of other rules. The elimination rule for implication then takes the form

p → q
[p ⇒ q]

r
(→E) r .

A rule which may discharge rules as assumptions is called a higher-level rule. In our
context it is not relevant how exactly the formalism for rules of higher levels is specified.
A rule that only discharges formulas as assumptions or no assumption at all is called a
standard-level rule. Apparently, if (c I) contains at least one standard-level rule discharging
an assumption, then (c E) becomes a higher-level rule. This procedure can be iterated by
assigning different finite levels to higher-level rules. Using higher-level rules gives one a
great deal of uniformity, for example in the proof of normalization for the general system
based on (c I)/(c E), or the proof that introduction and elimination rules uniquely determine
a connective.
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In the case of implication, the use of higher-level rules can be avoided. The general
implication elimination rule in the sense of Dyckhoff (1988), Tennant (1992), López-
Escobar (1999) and Plato (2001)

p → q p
[q]
r

(→EGEN) r ,

which is a natural-deduction analogue of the implication-left rule in the sequent calculus,
discharges only the formula q; therefore it is a standard-level elimination rule (for a dis-
cussion of this type of rules in relation to higher-level rules, see Schroeder-Heister, 2013).
Modus ponens and the projection-style conjunction elimination rules

(→EMP)
p → q p

q (∧EP)
p ∧ q

p
p ∧ q

q

even avoid any discharge of assumptions. Using a terminology proposed by Read (2014),
we say that an elimination rule is flat, if it is a standard-level rule, and that an elimination
rule according to the uniform schema (c E) can be flattened, if there is a flat elimination
rule equivalent to it. Thus the higher-level form of implication elimination (→E) can
be flattened both to (→EGEN) and to (→EMP). The price for flattening is the loss of
uniformity, because it means that rules of special forms have to be considered rather than
just the general schema (c E), unless there is a uniform schema for flat elimination rules.

If we just have a single introduction rule for c:

(c IS)

[�1]
q1

. . .
[�m]
qm

c(p1, . . . , pn) ,

where q1, . . . , qm are propositional variables and �1, . . . ,�m are lists of propositional
variables, where all these propositional variables are taken from {p1, . . . , pn}, then a uni-
form schema for flat elimination rules can be given as follows:

(c ES) c(p1, . . . , pn) �1
q1

. . .
c(p1, . . . , pn) �m

qm .

In the formalism with higher-level rules it can be easily shown that these rules are together
equivalent to the higher-level elimination rule according to schema (c E):

c(p1, . . . , pn)
[(�1 ⇒ q1), . . . , (�m ⇒ qm)]

r
r .

Consider, for example, the 5-place connective c′ with the single introduction rule

[p1, p2]
p3

[p4]
p5

(c′I)
c′(p1, p2, p3, p4, p5) .

Its uniform elimination rule

c′(p1, p2, p3, p4, p5)
[((p1, p2) ⇒ p3) , (p4 ⇒ p5)]

r
r
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can be replaced with the following two flat elimination rules

(c′ES) c′(p1, p2, p3, p4, p5) p1 p2
p3

c′(p1, p2, p3, p4, p5) p4
p5 .

Alternatively, one or both of them could be formulated along the lines of (→EGEN):

c′(p1, p2, p3, p4, p5) p1 p2

[p3]
r

(c′EGEN) r
c′(p1, p2, p3, p4, p5) p4

[p5]
r

r .

However, this method cannot be applied if we have more than one introduction rule.
Consider the ternary connective � with the following introduction and elimination rules:

[p1]
p2(� I)

�(p1, p2, p3)

p3

�(p1, p2, p3)

�(p1, p2, p3)
[p1 ⇒ p2]

r
[p3]

r
(� E) r .

Flattening (� E) according to the pattern of the (→EGEN) leads to the following elimination
rule:

�(p1, p2, p3) p1

[p2]
r

[p3]
r

r .
However, this elimination rule is not appropriate for �. This can already be seen from the
fact that the same elimination rule would be generated from the pair of introduction rules

[p1]
p3(�� I)

�� (p1, p2, p3)

p2

�� (p1, p2, p3) .

Whereas (� I) defines a connective with the meaning (p1 → p2) ∨ p3, (�� I) defines a
connective with the meaning (p1 → p3) ∨ p2. These formulas are only classically, but
not intuitionistically equivalent. Other schemata for flat elimination rules according to the
pattern of (→EGEN) that have been proposed (e.g., by Francez & Dyckhoff, 2012) are
likewise not appropriate.

This example shows that in the case of multiple introduction rules certain attempts
at flattening elimination rules fail. In what follows we formally show that flattening is
actually impossible in this case, more precisely, that the connective � cannot be given a
flat elimination rule. From the point of view of Schroeder-Heister (1984), this result can be
seen as a defence of the idea of higher-level rules.

§2. Coding introduction and elimination rules by formulas. As shown by
von Kutschera (1968), Prawitz (1979) and Schroeder-Heister (1984) (and extended to
more advanced systems by Wansing, 1993), the set of standard connectives of intuition-
istic propositional logic is complete, that is, every connective, for which introduction and
elimination rules according to the schema (c I)/(c E) are given, can be expressed by means
of ∧, ∨, → and ⊥. In order to prove this fact, the introduction rules (c I) are translated
into {∧,∨, → ,⊥}-formulas in a straightforward way. For example, the connective c′ has
the meaning ((p1∧p2) → p3) ∧ (p4 → p5), and � has the meaning (p1 → p2) ∨ p3. More
precisely, consider the following introduction rule for c:

(c I)

[�1]
s1

. . .
[��]
s�

c(p1, . . . , pn) ,
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in which s1, . . . , s�, s are propositional variables and �1, . . . , �� are (possibly empty) lists
of propositional variables. As a limiting case we allow for � = 0 (which covers the case
of the truth constant 	). All propositional variables must occur among p1, . . . , pn . Let∧

� denote the conjunction of all elements of �. Then we express the content of (c I)
propositionally as follows:

(
∧

�1 → s1) ∧ . . . ∧ (
∧

�� → s�)

c(p1, . . . , pn)
, in short λ

c(p1, . . . , pn) .

If we have k introduction rules (c I)1, . . . , (c I)k , then we can express their content propo-
sitionally by means of the single introduction rule

(c IPROP)
λ1 ∨ . . . ∨ λk

c(p1, . . . , pn)

where each λi is of the form specified for λ. The formula

(cI ) λ1 ∨ . . . ∨ λk (k ≥ 1)

is called the introduction meaning of c, denoted by cI . We can then prove in intuitionistic
propositional logic that the rules (c I)1, . . . , (c I)k and (c IPROP) are equivalent, that is,
by using (c I)1, . . . , (c I)k we can derive (c IPROP), and by using (c IPROP) we can derive
(c I)1, . . . , (c I)k .

Analogously, we can define the elimination meaning of c by coding the elimination rule
for c. For that we have first to fix what we consider to be the general form of an elimination
rule. We have discussed the uniformly generated elimination rule (c E), but also alternative
elimination rules, in particular flat ones, for example (→EGEN) or (∧EGEN). Here we are
interested in flat elimination rules. As the most general schema of a flat elimination rule
for c(p1, . . . , pn) we consider the following:

(c EFLAT)
c(p1, . . . , pn)

[�1]
s1

. . .
[��]
s�

s ,

where s1, . . . , s�, s are propositional variables and �1, . . . , �� are (possibly empty) lists of
propositional variables. As a limiting case we allow for � = 0 (which covers rules such as
(∧EP) or (⊥E)). We do not impose any restrictions on the propositional variables occurring
in (c EFLAT). They may (and will normally) comprise p1, . . . , pn , but any number of
propositional variables beyond p1, . . . , pn may be present. This generalizes the fact that
in many elimination rules considered, we have used r as such an additional propositional
variable. (c EFLAT) is a plausible candidate for elimination rules, as it has c(p1, . . . , pn)
as its major premiss which is eliminated by the rule, and arbitrarily many side premisses
which may or may not discharge assumptions. As the �i can only contain propositional
variables, the rule is flat.

We suppose that for a constant c finitely many elimination rules of this form are given.
We express the content of (c EFLAT) propositionally as follows:

c(p1, . . . , pn)

((
∧

�1 → s1) ∧ . . . ∧ (
∧

�� → s�)) → s
, in short c(p1, . . . , pn)

κ .

If we have k elimination rules (c EFLAT)1, . . . , (c EFLAT)k , then we can express their total
content by means of

c(p1, . . . , pn)
κ1 ∧ . . . ∧ κk
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where each κi is of the form specified for κ . When applying an elimination inference, the
propositional variables beyond p1, . . . , pn can be instantiated with any formula without
affecting the meaning of the eliminated premiss c(p1, . . . , pn), so they are understood
universally quantified. To express this fact, we use second-order propositional logic, that is
intuitionistic propositional logic with propositional quantifiers. This system is called PL2.
Let

(cE
FLAT) ∀(κ1 ∧ . . . ∧ κk) (k ≥ 1)

be the prenex formula starting with a prefix of universal quantifiers which bind all proposi-
tional variables except p1, . . . , pn . That is, ∀ stands for ∀q1 . . . ∀q j , where {q1, . . . , q j } is
the set of those variables occurring in κ1 ∧ . . . ∧ κk , which are different from any variable
in {p1, . . . , pn}. We denote this formula by cE

FLAT and call it the elimination meaning of
c with respect to the elimination rules (c EFLAT)1, . . . , (c EFLAT)k . Then we can prove in
PL2 that the rules (c EFLAT)1, . . . , (c EFLAT)k and

(c EPROP)
c(p1, . . . , pn)

cE
FLAT

are equivalent, that is, using (c EFLAT)1, . . . , (c EFLAT)k we can derive (c EPROP), and using
(c EPROP) we can derive(c EFLAT)1, . . . , (c EFLAT)k . In an analogous way we can define the
elimination meaning cE for elimination rules for c, which are not necessarily flat, that is, in
which �i may contain rules rather than only propositional variables. This can be achieved
by translating any rule q1, . . . , qr ⇒ q by the formula (q1∧ . . . ∧qr ) → q. Then cE

FLAT
becomes a special case of cE . For the purpose of this paper, we need not further elaborate
on the handling of rules as assumptions.

We say that introduction and elimination rules proposed for c are in harmony with one
another, if in PL2 we can prove that introduction meaning and elimination meaning (with
respect to these rules) are equivalent: cI � cE . If certain introduction rules for c are
given, we call a set of elimination rules appropriate for c, if they are in harmony with the
introduction rules. Note that, in order to establish this harmony, the equivalence between
cI and cE needs to be demonstrated in PL2 alone, without introduction and elimination
rules for the c in question. For example, the general rules (∧EGEN) are appropriate for
conjunction, since in PL2 we can show that

p1∧p2 � ∀r(((p1∧p2) → r) → r) .

Similarly, the general elimination rule (→EGEN) is appropriate for implication, since we
can show in PL2 that

p1 → p2 � ∀r((p1∧(p2 → r)) → r) .

For our connective c′ with the introduction rule (c′I), the elimination rules (c′EGEN) are
appropriate, since in PL2 we have

((p1 ∧ p2) → p3) ∧ (p4 → p5) � ∀r(((p1∧p2∧(p3 → r)) → r) ∧ ((p4∧(p5 → r)) → r)) .

For the same connective with the same introduction rule, the elimination rules (c′ES)
are appropriate as well, since in this case both the introduction and elimination meaning
are identical and have the form ((p1∧p2) → p3) ∧ (p4 → p5), without any propositional
quantification.
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Our uniform elimination rules (c E) are appropriate for c, if c is given by our introduction
rules (c I). This is not surprising, as they have been designed to achieve harmony. Therefore,
the nonflat elimination rule (�E) is appropriate for �, which can be directly seen from the
following equivalence which is provable in PL2:

(p1 → p2) ∨ p3 � ∀r((((p1 → p2) → r)∧(p3 → r)) → r) .

The fact that (�E) is not flat is reflected by the fact that on the right-hand side of this
equivalence, implication is iterated (nested) twice to the left. For flat elimination rules,
implication can be iterated to the left maximally once.

In the third part of this paper we show that there are no flat elimination rules which are
appropriate for �. In other words: no formula of the form cE

FLAT is equivalent in PL2 to
(p1 → p2) ∨ p3.

It should be emphasized that we have not presented a foundational approach to harmony
based on some basic equilibrium between introduction and elimination rules independent
of any given connectives. We are rather adopting a reductive approach by expressing
harmony in terms of PL2, a system we here take for granted (see Schroeder-Heister,
2014b). This way of proceeding is fully sufficient to establish our non-flattening result; in
fact, PL2 provides the technical framework to prove it1. A more foundational perspective
on harmony corresponding to the view normally taken in the literature (see, e.g., Tennant,
1978; Dummett, 1991; Read, 2010, 2014; Francez & Dyckhoff, 2012) is developed in
Schroeder-Heister (2014a).

§3. There are no flat elimination rules for �. In this part we are no longer dealing
with n-ary propositional connectives but with the special case of the ternary connective �.
Therefore it is more convenient to use the variables p, q, r rather than p1, p2, p3. The
introduction meaning of � is then given by the formula (p → q) ∨ r . We define so-called
γ -formulas, which represent the elimination meaning of ternary connectives with respect
to flat elimination rules. That is, γ -formulas correspond for the ternary case to what in
the previous section was called cE

FLAT. Our main theorem then says that no γ -formula is
intuitionistically equivalent to (p → q) ∨ r .

We work in a language with a countable set V ar of propositional variables which
includes p, q and r , connectives → and ∧ and the universal propositional quantifier ∀.
A formula is called elementary if it is of the form K → s where s is a propositional
variable and K is a conjunction of propositional variables (we admit the case when K is
empty and equivalent to 	). A formula is called simple if it is of the form K → s where s
is a propositional variable and K is a conjunction of elementary formulas (again, we admit
the case when K is empty and equivalent to 	). A formula is called a quantified simple
formula if it is of the form ∀s1 . . . sn B, where B is a simple formula and s1 . . . sn is the list
of all variables of B except for possibly p, q and r . We call a formula a γ -formula if it is
of the form ∀s1 . . . sn A, where A is a conjunction of simple formulas and s1 . . . sn is the
list of all variables of A except for possibly p, q and r . It is obvious that every γ -formula
is intuitionistically equivalent to a conjunction of quantified simple formulas.

1 PL2 has the advantage that rules have a faithful translation into formulas of PL2, as the definiton
of cI and cE shows, which is lost, when we use the translation of PL2 into PL discovered by
Pitts (1992).
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For a conjunction K of elementary formulas we define S(K ) ⊆ V ar as follows:

S0(K ) = {s ∈ V ar | s or 	 → s is a conjunct in K };

Sk+1(K ) = Sk(K ) ∪ {t | s1 . . . sn ∈ Sk(K ), (s1 ∧ . . . ∧ sn) → t is a conjunct in K };

S(K ) =
⋃

k

Sk(K ).

We write |� A to express that formula A is intuitionistically valid, and B |� A to express
that formula A follows intuitionistically from formula B.

Now we can state a simple syntactic criterion for the intuitionistic validity of a simple
formula:

LEMMA 3.1. A simple formula K → s is intuitionistically valid iff s ∈ S(K ). This
means that S(K ) = {s ∈ V ar | K |� s}.

Proof. The right-to-left direction of the lemma is obvious. For the other direction, if
s /∈ S(K ), then consider a Kripke model with a single world w accessible from itself, such
that w � p iff p ∈ S(K ). Then of course w �� s. On the other hand, if (s1 ∧ . . . ∧ sn) → t
is a conjunct in K , then either t ∈ S(K ) or t plus at least one of s1 . . . sn are not in S(K ).
In both cases, we will have w � (s1 ∧ . . . ∧ sn) → t and therefore w �� K → s. �

In a Kripke model for intuitionistic logic, we call w an end-world, iff w is the only world
accessible from w in this model. The following three lemmas are necessary stepping stones
to the main result.

LEMMA 3.2. If w is an end-world of a Kripke model M, K → s is a simple formula,
then M, w � K → s iff either M, w �� K or M, w � s.

Proof. Immediate from semantic definitions. �
LEMMA 3.3. If w is a world of a Kripke model M, K → s is a simple formula,

M, w �� S(K ), and

∀v((wRv ∧ w �= v) ⇒ M, v � K → s), (1)

then M, w � K → s.

Proof. Since M, w �� S(K ), then, by Lemma 3.1, we have that M, w �� K . The rest
follows from semantic definitions, given our assumption (1). �

LEMMA 3.4. Let t , u be propositional variables and let (K ∧(t → u)) → s be a simple
formula. If |� (K ∧ (t → u)) → s and t /∈ S(K ), then |� K → s.

Proof. By Lemma 3.1, we know that s ∈ S(K ∧ (t → u)), and we need to show that
s ∈ S(K ). It will suffice to show that for all natural i , Si (K ∧ (t → u)) ⊆ Si (K ) by
induction on i .

Basis. It is clear that

{s ∈ V ar | s is a conjunct in K } = {s ∈ V ar | s is a conjunct in K ∧ (t → u)}.
Induction step. Let i = k + 1. If s′ ∈ Sk+1(K ∧ (t → u)) ∩ Sk(K ∧ (t → u)), then use
induction hypothesis. If s ∈ Sk+1(K ∧(t → u))�Sk(K ∧(t → u)), then there is a conjunct
(s1 ∧ . . . ∧ sn) → s′ in K ∧ (t → u) such that s1 . . . sn ∈ Sk(K ∧ (t → u)). We know that
t /∈ S(K ), therefore t /∈ Sk(K ) whence, by induction hypothesis, t /∈ Sk(K ∧ (t → u)).
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Therefore, (s1 ∧ . . . ∧ sn) → s′ �= t → u and so (s1 ∧ . . . ∧ sn) → s′ is a conjunct in K .
Also by induction hypothesis, s1 . . . sn ∈ Sk(K ) and finally s′ ∈ Sk+1(K ). �

Now we can prove our main theorem:

THEOREM 3.5. No γ -formula is intuitionistically equivalent to (p → q) ∨ r .

Proof. Assume that a γ -formula F intuitionistically follows from (p → q)∨ r . We will
show that in this case �|� F → ((p → q) ∨ r).

If F intuitionistically follows from (p → q) ∨ r , then both

|� (p → q) → F (2)

and

|� r → F. (3)

Assume that F is intuitionistically equivalent to the following conjunction of quantified
simple formulas:

F |�|� ∀(K1 → s1) ∧ . . . ∧ ∀(Kn → sn)2 . (4)

We may assume that F is not intuitionistically valid, for otherwise our conclusion would
follow immediately. This means that at least one conjunct in (4) is not intuitionistically
valid. Moreover, we may even assume that none of the above conjuncts are intuitionistically
valid, for, as we already know that some of them are not valid, we can simply omit the other
conjuncts from the formula.

Now, consider the Kripke model M = 〈W, R, V 〉 (see Figure 1), where

W = {w, v},
R = {〈w, v〉, 〈w,w〉, 〈v, v〉},
V (q) = ∅,

V (p) = V (r) = {v}.
We define M only for p, q, and r because these are the only free variables in the formulas
under consideration.

We will show that M, w � F , but M, w �� (p → q) ∨ r . The latter claim is immediate.
To show the former claim, assume that t1 . . . tm is the list of variables occurring in F which
are distinct from p, q, and r . Fix arbitrary valuations for these variables in M and choose
any natural i such that 1 ≤ i ≤ n. It will suffice to show that M, w � Ki → si under this
valuation of t1 . . . tm .

Fig. 1. Structure of M .

2 We assume that ∀ binds all variables except for possibly p, q and r .
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It follows from (2)–(4) that

|� (Ki ∧ r) → si (5)

|� (Ki ∧ (p → q)) → si . (6)

Since both r and p → q are elementary, this means that our criterion of validity from
Lemma 3.1 applies, and we have si ∈ S(Ki ∧ r) ∩ S(Ki ∧ (p → q)) for every 1 ≤ i ≤ n .
Also, since we know that �|� Ki → si , it follows from (6) and Lemma 3.4 that

p ∈ S(Ki ) . (7)

We will show the following
Claim. M, v � Ki → si .
Once this claim is established, the rest is easy; we observe that by (7) and M, w �� p

we have M, w �� S(Ki ), and then apply Lemma 3.3 to this fact and our claim to obtain
M, w � Ki → si .
In order to prove the claim, we must consider two cases.

Case 1. Under the fixed valuations of t1 . . . tm we have M, v � S(Ki ∧ r). Then, by (5)
and Lemma 3.1, we know that si is in S(Ki ∧ r) and so is true in M, v , and since v is an
end-world, we also have M, v � Ki → si by Lemma 3.2.

Case 2. Under the fixed valuations of t1 . . . tm we have M, v �� S(Ki ∧ r). We take the
least j such that there is a variable u j such that M, v �� u j and u j ∈ S j (Ki ∧ r) and
proceed by induction on j .

Basis. If j = 0, then u j must be a conjunct in Ki ∧r , but since M, v �� u j but M, v � r ,
we have u j �= r , and so u j must be a conjunct in K . Therefore, we have M, v �� Ki , and
since v is an end-world, we get M, v � Ki → si by Lemma 3.2.

Induction step. If j = k + 1, then for some m > 0 there must be a conjunct
(s′

1 ∧ . . . ∧ s′
m) → u j in Ki , such that (due to the minimality of j) M, v � s′

1 . . . s′
m ,

but not in M, v �� u j . This means that M, v �� (s′
1 ∧ . . . ∧ s′

m) → u j , and therefore
M, v �� Ki . So, since v is an end-world, we, again by Lemma 3.2, get M, v � Ki → si . �

§4. On flattening introduction rules. Using the example � we have shown that not
every connective characterized by flat introduction rules has harmonious flat elimination
rules. As a dual question one might ask whether every connective characterized by flat
elimination rules has harmonious flat introduction rules. The answer is again negative.
Consider the ternary connective ◦ with the single elimination rule

(◦ E) ◦(p, q, r)
[p]
q

r .

This connective has

(◦ I)

[p ⇒ q]
r

◦(p, q, r)

as a higher-level introduction rule. However, there is no flat introduction rule for ◦, which
is in harmony with (◦ E). In order to establish this result, we show that the formula
(p → q) → r , which is the elimination meaning of ◦, is not equivalent to any formula of the
form K1∨ . . . ∨Kn , which would be the introduction meaning of ◦ for n flat introduction
rules for ◦.
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THEOREM 4.1. Formula (p → q) → r is not intuitionistically equivalent to any formula
of the form

K1 ∨ . . . ∨ Kn,

where for every 1 ≤ i ≤ n, Ki is a conjunction of elementary formulas.

Proof. Assuming that

|� (K1 ∨ . . . ∨ Kn) → ((p → q) → r), (8)

we will show that

�|� ((p → q) → r) → (K1 ∨ . . . ∨ Kn).

By (8) we must have

|� (Ki ∧ (p → q)) → r

for every 1 ≤ i ≤ n. Since Ki ∧ (p → q) is a conjunction of elementary formulas,
(Ki ∧ (p → q)) → r is a simple formula. Now suppose p /∈ S(Ki ). Then by Lemma 3.4
we have that |� Ki → r , and therefore, by Lemma 3.1, that r ∈ S(Ki ). Thus for every
1 ≤ i ≤ n we have either p ∈ S(Ki ) or r ∈ S(Ki ).

Then consider the model M consisting of two worlds w and v , where v is accessible
from w, but not vice versa. As for the evaluation of variables, assume that V (w) = ∅
and V (v) = {p}. It is straightforward that M, w |� (p → q) → r , but we have neither
M, w |� p, nor M, w |� r , which means that we must have M, w �|� S(Ki ) for every
1 ≤ i ≤ n. Therefore, by Lemma 3.1 we have M, w �|� Ki for every 1 ≤ i ≤ n and so we
are done. �

§5. Concluding remarks. The fact that elimination rules cannot always be flattened
given certain introduction rules, and, conversely, that introduction rules cannot always be
flattened given certain elimination rules, can be generalized to higher levels. Consider an
(n + 2)-place connective �n with a higher-level introduction rule giving it the introduction
meaning p1 ∨ (((. . . (p2 → p3) . . . → pn) → pn+1) → pn+2). Then any appropriate set of
(harmonious) elimination rules must exceed the level of the introduction rules. That is, the
elimination meaning of �n cannot be described by a formula using lower or equal nesting
of implications to the left. The proof of this fact, which is more involved than the one given
here for �, is presented in Olkhovikov & Schroeder-Heister (2014). This paper also contains
a proof of the dual result that an (n+2)-place connective ◦n with a higher-level elimination
rule giving it the elimination meaning ((. . . (p1 → p2) . . . → pn) → pn+1) → pn+2 cannot
be given harmonious introduction rules of equal or lower level than the elimination rules.
That is, its introduction meaning cannot be described by using equal or lower nesting of
implications to the left. Thus, as a general result, we have that, when moving either from
introductions to eliminations or from eliminations to introductions in a general setting, one
needs to increase the level of rules. This supports the idea of rules of higher levels as pro-
posed in Schroeder-Heister (1984), at least as long as a general schema for introductions
and eliminations is concerned. It speaks against general eliminations rules following the
pattern of (→EGEN) as the basis of a general schema.

It is clear that our results depend on the syntactic forms which introduction and elim-
ination rules are allowed to take. Our schemata for introductions and eliminations are
well motivated as long as we are dealing with connectives, which are characterized in
the context of natural deduction with the standard structural assumptions presupposed and
without additional means of expression. When this background is changed, for example by
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admitting a classically behaved denial operator or by switching to a multiple-conclusion
framework we will obtain different results. In a classical context, � would have flat elim-
ination rules, as pointed out by Read (2014) (he uses the connective with the meaning
(p1 → p2)∨(p2 → p1) as discussed by Dyckhoff—see below). A modal context would
change the situation as well. Thus our result applies first and foremost to intuitionistically
inspired proof-theoretic semantics based on standard natural deduction consequence, even
though it can be extended to other fields such as relevant logic.

Historically, a connective similar to � was already discussed as early as 1968 by von
Kutschera (1968, p. 15) as a counterexample to flat elimination rules (von Kutschera
used the ternary connective with the meaning (p1 → p2)∨(p3 → p2)), and by Zucker &
Tragesser (1978). More recently, similar connectives have been investigated by Dyckhoff
(2009) (he uses the binary connective with the meaning (p1 → p2)∨(p2 → p1)), Read
(2014) and Schroeder-Heister (2013). However, no attempt has been made in the literature
to make the strong intuition that �-like connectives cannot be captured by flat elimination
rules formally precise and to prove that this intuition is correct.

In this paper we have focussed on the nonflattening result. The approach to consider
independent schemata for introduction and elimination rules and to use second-order propo-
sitional logic to describe the introduction and elimination meaning of connectives is sig-
nificant beyond the results presented here, in particular, as it provides a formal account
of proof-theoretic harmony and of notions such as conservativeness and uniqueness. This
issue is discussed in Schroeder-Heister (2014b).
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