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Abstract Humans show admirable capabilities in move-
ment planning and execution. They can perform complex
tasks in various contexts, using the available sensory informa-
tion very effectively. Body models and continuous body state
estimations appear necessary to realize such capabilities. We
introduce the Modular Modality Frame (MMF) model, which
maintains a highly distributed, modularized body model con-
tinuously updating, modularized probabilistic body state esti-
mations over time. Modularization is realized with respect
to modality frames, that is, sensory modalities in particular
frames of reference and with respect to particular body parts.
We evaluate MMF performance on a simulated, nine degree
of freedom arm in 3D space. The results show that MMF is
able to maintain accurate body state estimations despite high
sensor and motor noise. Moreover, by comparing the sensory
information available in different modality frames, MMF can
identify faulty sensory measurements on the fly. In the near
future, applications to lightweight robot control should be
pursued. Moreover, MMF may be enhanced with neural en-
codings by introducing neural population codes and learning
techniques. Finally, more dexterous goal-directed behavior
should be realized by exploiting the available redundant state
representations.
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1 Introduction

Although humans face many challenges when interacting
with the environment, they master them with great skill. This
dexterous control capability (Latash and Turvey 1996) can in
part be accounted for solely by the body and hardwired reac-
tive control architectures. Examples are embodied robots pre-
sentedbyBraitenberg,Brooks,orSchmitz,whichcanproduce
astonishingly versatile behavior (Braitenberg 1986; Brooks
1990; Schmitz et al. 2008). However, these embodied systems
are limited to stereotypic behavior. They cannot generate the
full dexterity humans demonstrate.

Instead, a body model is necessary for the realization of
highly flexible behavior. The notion that humans develop
various internal body models is commonly accepted. Vari-
ous researchers have suggested that these body models are
based on forward and inverse representations of sensorimo-
tor correlations and also include estimations of the own body
metric (Bernier et al. 2007; Denève et al. 2007; Hoffmann
et al. 2010; Longo and Haggard 2010; Streri et al. 1993;
Wolpert and Kawato 1998). Humans appear to selectively
exploit these representations to predict, plan, and control
movements. Thus, suitably modularized bodily representa-
tions are crucial for the dexterity apparent in human motor
planning and control (Bernier et al. 2007; Latash and Tur-
vey 1996; Latash et al. 2007; Rosenbaum 2010; Wolpert and
Kawato 1998).

Nikolai A. Bernstein pointed out that the dexterous control
capabilityofhumansmustbedue toahighlyflexibleandmod-
ular neural representation and control system, which effec-
tively deals with many redundant degrees of freedom of the
human body (Latash and Turvey 1996). A key to human dex-
terity thus lies in the architecture of neurally encoded body
models. In the following, we further elaborate on this con-
jecture. In particular, we propose that a suitable body model
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should represent its internal state estimations probabilisti-
cally, it should be capable of flexibly integrating multisen-
sory information, and it should maintain redundant state esti-
mations in multiple body-part and sensory-motor respective
modules.

1.1 Probabilistic state estimations

Uncertainty arises not only during motor execution and due
to sensor noise, but also due to uncertainty about the internal
body model, the body state, the task, and the state of the envi-
ronment. Examples are unpredictable changes in the environ-
ment caused by other agents and physical influences. Also
the body schema, bodily kinematics, and dynamics change
during growth (Wells et al. 2002), injury, bodily exercise, or
food intake (Shadmehr and Wise 2005). All these sources of
uncertainty give rise to a complicated challenge, as the rep-
resentations of body, goals, and constraints depend—either
directly or indirectly—on the sensory system, which cannot
generate noiseless, absolutely precise information. Humans
address this uncertainty by means of probabilistic body state
estimations (Körding and Wolpert 2004; Doya et al. 2007).

1.2 Multisensory integration

Humans gather state information with a wide variety of sen-
sors in different modalities (like vision and proprioception)
and integrate it in their perception of their own body (e.g.,
Beauchamp 2005; Makin et al. 2008; Maravita et al. 2003).
Thus, redundant sources of information interact in the human
brain in various ways (Calvert et al. 2004; Tononi et al.
1998). These interactions can lead to peculiar effects, such
as the rubber hand illusion (Botvinick et al. 1998; Makin
et al. 2008), where a representation in one modality frame
is strongly modified by information stemming from other
modalities and frames of reference. Sensory information
from different modalities is thus flexibly combined selec-
tively and probabilistically, dependent on current accuracy
and plausibility estimates.

1.3 Modularized representations

Seeing that different sources of information are available in
different brain areas, body and environment are selectively
and redundantly represented in many state estimation mod-
ules. In addition, the brain modularizes its state estimations
body-part respectively. For example, bodily self-perception
is clearly separated into body segments (de Vignemont et al.
2009). Also, not only primary motor cortex and somatosen-
sory cortex show bodily homunculi, but also many parie-
tal cortical areas and premotor areas exhibit body part dis-
tinctions and selective, multimodal, sensory, and reafferent
information source integration (Andersen et al. 1997; Shad-

mehr and Krakauer 2008). With respect to behavior, different
parts of the body and bodily components can be moved by
selectively activating motor synergies (Gentner and Classen
2006; Latash et al. 2007). With respect to particular move-
ment tasks, a modularized redundant representation allows
immediate selective access to the most relevant information
amongst the redundant alternatives. Thus, highly modular-
ized, redundant state estimations of body and environment
are relevant both, for a robust and flexible representation of
state estimations and for dexterous behavioral decision mak-
ing and control.

Inspired by these characteristics, we propose the Modular
ModalityFrame(MMF)model.MMFisahighlymodularized
architecture, which maintains a probabilistic body state esti-
mation over time in redundant modules. Forward and inverse
kinematic mappings link these modules and allow for a flex-
ible flow of information, resulting in sensor fusion and local
interaction of multiple state estimations. The benefits of our
model include high noise robustness, low dimensional repre-
sentations, and the ability to estimate sensory reliability on the
fly.

In Sect. 2, we describe the general architecture of the
proposed model: its modality frames and the cooperation
of different steps in maintaining the body state representa-
tion. These steps are described in more detail in Sect. 3.
They include movement prediction, sensor fusion using plau-
sibilities, sensor integration, and crosstalk between modules.
The calculation of sensor plausibilities is defined in Sect. 4.
The necessary local forward and inverse kinematic mappings
are detailed in Sect. 5. In Sect. 6 the experimental setup is
described, and results are presented and discussed. The work
is concluded with a short summary and a discussion of inter-
esting potential system extensions and applications.

2 MMF model overview

MMF is inspired by the knowledge about the architecture of
the human brain and human behavioral control capabilities, as
sketched-out above. In particular, MMF represents an internal
body model with modularized, locally interactive representa-
tions. Each module maintains a particular, probabilistic body
state estimation over time by integrating the available multi-
sensory information by means of Bayesian principles.

The body model comprises a full forward kinematics
model (used for prediction) and a full inverse kinematics
model (used for planning and control), providing high accu-
racy in simple goal-directed movements. For extensive over-
views over other body models in robotics cf. Hoffmann
et al. (2010), Nguyen-Tuong and Peters (2011), Sigaud et al.
(2011). MMF’s modules differ from each other with respect
to (I) the arm limb, (II) the sensory modality, which can
be a perceived location, direction, or joint angle, and (III)
the frame of reference, which can be “global” (i.e., head-
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Fig. 1 Schematic of the modules with different modality frames for
Limb 1 (black), Limb 2 (dark gray), and Limb 3 (light gray). Joint loca-
tions (dotted arrows) and limb orientations (dashed arrows at origin)
are represented shoulder-centered. Moreover, limb orientations are also
represented relative to the upper limb (solid arrows on arm). Finally,
joint angles are encoded (curved arrows)

centered) or “local” (i.e., respective the previous limb). We
term the combination of (II) and (III) a modality frame. In
particular, the utilized modality frames are termed global
location1 (GL), global orientation2 (GO), local orientation
(LO), and local (joint) angles (LA). Other modalities could
be used, such as a local location, or also other combinations of
modalities and frames of reference. The implemented mod-
ules as well as their interactions are illustrated in Figs. 1 and
3. Together, the modules form a redundant estimation of the
overall body state.

In each of MMF’s modules, the arm state is approximated.
In addition, a sensor may exist in each module. Both the
approximate arm state and the sensory measurement (if appli-
cable) are assumed to be Gaussian and are each represented
with a mean-vector and a Covariance-matrix. The approxi-
mate arm state is maintained over time in three steps per itera-
tion(A–C,cf.Fig.2).Werefer to thismaintenanceover timeas
filtering. For a comparison to similar approaches cf. Sect. 7.1.

The prediction step (A) derives the a priori arm state from
the motor command and the forward model. The update-
step (B) derives the a posteriori arm state by integrating the
combined information from all sensors. This combined infor-
mation is built by fusing all accessible sensors, weighted by
the sensors’ covariance-matrices and their plausibilities (22).
A plausibility measures the trust the system puts in a specific
sensor (cf. Sect. 4). MMF assigns these plausibilities autono-
mously to each sensor, by comparing its readings with other
redundant sensory measurements. The third step (C) intro-
duces crosstalk between all filters, ensuring that a consistent

1 The location is a vector from the global origin to the end-point of a
limb.
2 The orientation consists of one unit vector parallel (cf. Fig. 2, “Direc-
tion”) to a limb and a second unit vector perpendicular to it.
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Fig. 2 Data flow: First, the forward model predicts the state estimate
after the movement (A). Second, the measurements are transformed
from all modality frames to all other frames. Comparing the redundant
measurements, their respective plausibilities are calculated (cf. Sect. 4)
and they are fused, weighted with their plausibility and variance (dashed
lines). These fused measurements are then integrated in their respective
modality frame (B). Third, the crosstalk shifts all filter states towards
all other filter states, synchronizing them (C)
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Fig. 3 Dependencies for transforming between different spaces. The
gray arrows display the transformation from angles to location (forward
kinematics), the black ones vice versa (inverse kinematics). Vertical
axis: frames of reference, horizontal axis: limbs, circles: modules

body state estimation is maintained over time. In this way,
the individual state estimates synchronize, resulting in a body
state estimate that is highly accurate and consistent across all
modality frames. All three steps (A)–(C) are applied succes-
sively in the kinematic arm chain starting with the most upper
arm limb.

In summary, the redundant and interactive nature of MMF,
together with rigorous Bayesian information processing prin-
ciples allows to fully exploit the available sensory informa-
tion. MMF explicitly provides state estimations as well as
accuracy estimations. Goal-directed motion control is possi-
ble despite high sensor and motor noise. Finally, even sen-
sor failures are detectable on the fly, enabling MMF to han-
dle sensory information with randomly changing information
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contents. In the following, the three steps and the module
interactions within each step are detailed.

3 Body state maintenance

Before we define the prediction (A), update (B), and cross-
talk (C) steps in detail, a short overview of transformations
between different modality frames is provided below. All
three steps A–C (cf. Fig. 2) require mappings that transform
states between different modality frames. In classical robot-
ics, the forward (instantaneous) kinematics that map angles
q to a global position ξ is

ξ = f (q) , (1)

ξ̇ = J (q) q̇, (2)

where f describes the forward-mapping function and J its
Jacobian. Equation (1) maps mean-values, while (2) maps
the movement of this mean, and also a standard-deviation-
vector (i.e., the square roots of the main diagonal entries of
a covariance-matrix). If full covariance-matrices are consid-
ered, (2) becomes

Cov (ξ) = J (q) Cov (q) JT (q) , (3)

with Cov(x) denoting the covariance matrix of vector x.
As we split the kinematics representation into four modal-

ity frames, we introduce a more general notation denot-
ing the mean and covariance matrix of a particular modal-
ity frame by xi and Pi , respectively, where the superscript
i ∈ {GL, GO, LO, LA} specifies the modality frame. Thus,
xGL := ξ , PGL := Cov(ξ), xLA := q, and PLA := Cov(q).
Additionally, we split the arm representation limb-respec-
tively, denoting a modality frame for a specific limb j by an
additional subscript, where necessary. Together, both mean
and covariance specify the state si

j estimation in a particular
modality frame i and for a particular limb j . For example,
the state of the global orientation of the lower arm limb is
referred to by sGO

2 . These modularized modality frames and
the local mappings between the modules are displayed in
Fig. 3.

The mappings show that any local mapping f j→i from a
source modality frame j to a target modality frame i depends
on the state s j (of the same limb as the target state) and possi-
bly also on the state of the next upper arm limb sk

u , where the
subscript u is used to refer to the corresponding next upper
arm limb. Thus, any local mapping can be denoted by

xi = f j→i
x

(
x j , xk

u

)
(4)

Pi = f j→i
P

(
P j , Pk

u

)

=
(

∂xi

∂x j

)
P j

(
∂xi

∂x j

)T

+
(

∂xi

∂xk
u

)
Pk

u

(
∂xi

∂xk
u

)T

, (5)

where i, j, k ∈ {GL, GO, LO, LA}. Note that technically the

actual values of the Jacobians
(

∂xi

∂x j

)
and

(
∂xi

∂xk
u

)
still depend

on the current state estimates x j and xk
u of the involved modal-

ity frames. For reading convenience, this dependency is not
denoted.

3.1 Prediction step

In the prediction step (cf. Fig. 2 step A), the motor com-
mand is used to predict the resulting change in the modality
state estimations. As a motor command is typically available
only in the angular modality frames LA, the reactions of all
other frames i need to be calculated using (4–5). Seeing that
(4–5) depend on both the current limb and the upper limb,
the movements of both limbs need to be incorporated in the
forward model.

The consequences of the current limb movement on a state
si are incorporated by a transformation f i→LA of si to the
angular frame LA, an addition of the movement in the frame
LA, and a back-transformation fLA→i of the moved state to
the initial frame i . The consequences of the upper limb are
integrated by basing the transformation f i→LA on the upper
limb state at the previous time step xu,t−1|t−1 and basing the
back-transformation fLA→i on the upper limb state of the
current time step xu,t |t . Together, this yields

xi
t |t−1 = fLA→i

x (f i→LA
x (xi

t−1|t−1, xu,t−1|t−1) + �xLA
t , xu,t |t )

(6)

Pi
t |t−1 = fLA→i

P (f i→LA
P (Pi

t−1|t−1, Pu,t−1|t−1)+�PLA
t , Pu,t |t ).

(7)

On the left hand side, xt |t−1 specifies the state at time t , given
the sensory information at times 0, . . . , t −1, i.e., the a priori
state estimates after the movement. On the right hand side,
xt−1|t−1 is the a posteriori estimate from the last time step
(after the crosstalk step C) and �xLA

t the motor command in
the angular frame. We showed in Ehrenfeld and Butz (2011)
that the back-forth transformation yields more accurate state
estimates than commonly used linear approximation methods
via Jacobians. Note that the state estimate of the upper arm
limb after Steps (A)–(C), that is, xu,t |t , is available because
the steps are computed successively for each limb in the kine-
matic chain.

3.2 Update step

In the update step (cf. Fig. 2 step B), the sensory information
is integrated into the modular state estimates of the MMF.
This integration can compensate for the loss of knowledge,
which occurs in the prediction step. In order to improve the
state estimates, it is desirable to integrate all sensor informa-
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tion into each individual filter. To achieve this, all sensors are
first fused.

3.2.1 Multi-sensor fusion

This fusion (cf. Fig. 2, the dots where four dashed arrows
end) is done with a weighted mean. The fused means and
variances are

xnew =
∑

i

Wi xi (8)

Pnew =
∑

i

WT
i Pi Wi . (9)

Because the sensor fusion should integrate information opti-
mally (with Bayesian principles), the weights must be equal
to the (normalized) information content P−1

i .3 Thus, the
weights yield

Wi = P−1
i

⎛
⎝∑

j

P−1
j

⎞
⎠

−1

. (10)

3.2.2 Sensor-filter fusion

These fused sensor measurements are then integrated (cf.
Fig. 2) into the modular body state estimations. Mathemati-
cally, this is again a fusion of two noisy sources of informa-
tion: the fused measurement state snew and the a priori state
estimate from the prediction step st |t−1 are combined yield-
ing st |t . Thus, to accomplish this second information fusion,
the same Eqs. (8–10) are used.

3.3 Crosstalk step

In order to provide a coherent estimate over all modality
frames, i.e., to ensure that they do not diverge, the filter
estimates are synchronized. This is done with crosstalk (cf.
Fig. 2 step C), which shifts the state estimates in the different
modality frames towards each other. The crosstalk is realized
similarly to the sensor fusion described in 3.2.1, i.e., the fil-
ter states are transformed to other modality frames and fused
(cf. also Fig. 2). All sensor information has already been
integrated in 3.2.2, however, the variance must not be further
decreased. Instead, a simple shift of both means and variances
in the direction of the other modules’ states is required. As a
consequence, (8) and (10) remain the same, but as with the
means, the variances are also weighted with only the first
power of the weights. This replaces (9) with

Pnew =
∑

i

Wi Pi , (11)

3 In the rare case when a matrix is non-invertible, off-diagonal elements
may be set to zero.

which models a weighted mean without any information gain
(cf. Fig. 2). In sum, both sensor fusion and sensor integration
use (8–10), while crosstalk uses (8, 10 and 11).

4 Plausibility of sensor measurements

If a sensor failure occurs, MMF unsupervisedly mistrusts
this specific sensor. To do so, MMF computes a sensor plau-
sibility measure in each module by comparing the redundant
sensory information available. The plausibility measure is
derived from probability theory, as detailed below.

We characterize the failure of a sensor Si in a particular
modality frame i by a systematic sensor offset error dzi or an
increase dRi in the sensor’s variance. The underlying prob-
ability density p of the measurement random variable Zi at
value zi given that the real arm state random variable Yi takes
on the value yi , is

p
(

Zi=zi |Yi=yi
)

= N
(

yi + dzi , Ri + dRi
) (

zi
)

, (12)

assuming a Gaussian distribution N with specified mean and
variance. The measurement variance Ri is assumed to be
known to the system. All other components except for the
actually observed measurement zi are unknown to MMF.
Thus, (12) is simply the underlying 3D-Gaussian, unknown
to the system, around the shifted arm state and with a shape
defined by the increased covariance-matrix.

This probability distribution takes on its maximum when
Zi = yi , given the sensor is not currently failing (i.e., dzi =
0). By normalizing the probability distribution by this maxi-
mum, it describes the plausibility pl (i.e., the likelihood) that
the measurement value zi is in agreement with the real arm
value yi . We thus define the plausibility as

pl
(

Zi =zi , Yi =yi
)

:= p
(
Zi =zi |Yi =yi

)

p
(
Zi =yi |Yi =yi

) . (13)

Thus, the plausibility is equal to 1, if the measurement
returns exactly the real arm state, and otherwise a value
< 1 but ≥ 0. The plausibility measure is commutative,
i.e., pl

(
Zi =zi , Yi =yi

) = pl
(
Yi =yi , Zi =zi

)
for Gauss-

ian type probability densities. For reading convenience, we
drop the random variable notations Z and Y in the following.

Since the real arm state yi is not known to MMF, yi has to
be substituted with an estimate. A good choice for a substitute

is the reading from a different sensor S j
2

(
z j

2, P j
2

)
in a differ-

ent modality frame j �= i , which is used for comparison with
the sensor in question Si

1

(
zi

1, Pi
1

)
. After the transformation

from modality frame j to i , the plausibility is

pl
(

zi
1, z j→i

2

)
=

p
(

zi
1|z j→i

2

)

p
(

z j→i
2 |z j→i

2

) . (14)
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Considering the indirect dependence of z1 on z2 via the
(unknown) real arm state y, the numerator can be expressed
as

p
(

zi
1|z j→i

2

)
=

∫
dyi p

(
zi

1|yi
)

p
(

yi |z j→i
2

)
. (15)

Both probability distributions on the right hand side are
known. This yields

p
(

zi
1|z j→i

2

)
=

∫
dyi N

(
yi , Pi

1

) (
zi

1

)

·N
(

z j→i
2 , P j→i

2

) (
yi

)
. (16)

With N (y, P) (z) = N (0, P) (z − y), a substitution yi �→
ỹi = zi

1 −yi and the definition �z j,i = zi
1 −z j→i

2 this yields

p
(

zi
1|z j→i

2

)
=

∫
dỹi N

(
0, Pi

1

) (
ỹi

)

·N
(

0, Pi
2

) (
�z j,i − ỹi

)
, (17)

which is the convolution ∗
p

(
zi

1|z j→i
2

)
=

(
N

(
0, Pi

1

)
∗ N

(
0, Pi

2

)) (
�z j,i

)
(18)

= N
(

0, Pi
1 + Pi

2

) (
�z j,i

)
. (19)

With (14) the plausibility yields

pl
(

zi
1|z j→i

2

)
=exp

(
− 1

2

(
�z j,i

)T
(

Pi
1 + P j→i

2

)−1
�z j,i

)

(20)

This plausibility measures to which extent the measurements
zi

1 and z j
2 of two sensors Si

1 and S j
2 (which both measure the

same arm) are in agreement, given the transformations (4–5)
and their respective variances.

As mentioned above, this is still only a substitute for the
plausibility defined in (13). To improve this substitute, a sen-
sor Sk is compared not only to one sensor but to all avail-
able redundant sensors Sl (l �= k). For each comparison, a
plausibility is calculated and the arithmetic mean over all
plausibilities yields the total plausibility of sensor Sk

plk =
n∑

l=1,l �=k

1

n − 1
pl

(
zi(k)

k |z j (l)→i(k)
l

)
, (21)

where i(k), j (l) are the modality frames, in which the sensors
Sk , Sl return their measurements.

A total of n ≥ 2 sensors is required to detect that a sensor
error occurred, and a total of n ≥ 3 sensors is required to
also assign the error to the faulty sensor. The proposed sys-
tem uses n = 4, which are the simulated sensors in the four
modality frames (GL, GO, LO, LA).

After a plausibility plk has been assigned to each sensor
Sk , an extension of 3.2 incorporates the plausibilities in the

sensor fusion: Instead of choosing the weighting Wi propor-
tional to the inverse variance as was done in (10), the plau-
sibility now serves as another factor, i.e., Wk ∝ plk P−1

k . To
satisfy the constraint

∑
k Wk = 1, the weightings have to be

normalized anew

Wk = plk P−1
k

(
n∑

l=1

pll P−1
l

)−1

. (22)

Thus, apart from the exact derivations of the local kine-
matic mappings (4–5), the model has been specified. The
mappings are derived in the following section.

5 Transformations

To execute the transformations between modality frames, the
mapping functions in (4–5) have to be specified. In this sec-
tion, the derivation of these local forward and inverse kine-
matics mapping functions is presented. Before doing so, how-
ever, we specify the forward and inverse kinematic chains
that need to be defined for the four modality frames in MMF
and when which particular forward and inverse kinematic
mapping is applied.

5.1 Local kinematic mappings

The local kinematic mappings for one limb and the respec-
tive joint are illustrated in Fig. 4. The forward mapping is
the chain of transformation steps LA → LO → GO → GL
and the inverse mapping is the inverse chain GL → GO →
LO → LA. With those chains, an input state s j can be trans-
formed to any output state si .

In the above Sects. 3.1, 3.2.1, 3.3 and 4, such chains had to
be calculated for four input and up to four output spaces. The
chains are implemented in two different ways. In the first
approach, all input spaces are transformed separately into
each output space. For the inverse kinematics, these trans-
formations can be written as

f GL→LA = f LO→LA
(

f GO→LO
(

f GL→GO
(

sGL
)))

(23)

f GO→LA = f LO→LA
(

f GO→LO
(

sGO
))

(24)

f LO→LA = f LO→LA
(

sLO
)

(25)

f GL→LO = f GO→LO
(

f GL→GO
(

sGL
))

(26)

f GO→LO = f GO→LO
(

sGO
)

(27)

f GL→GO = f GL→GO
(

sGL
)

(28)

(cf. Fig. 5, left, black).
In the second approach, any step of the forward and inverse

chains is done only once for all inputs at the same time. For
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Global
Location

Global
Orientation

Local
Angles

Local
Orientation

jointi-1 jointi

jointi

limbi-1 limbi

Direction Perpendicular

Fig. 4 Local mappings between modality frames for one limb: forward
kinematic mappings (gray) and inverse kinematic mappings (black).
The orientation spaces consist of two vectors, the first one parallel to
the respective arm limb, the second one perpendicular to it. As perpen-
dicular vector, the third rotation axis is chosen, as defined in Sect. A.3,
especially Fig. 19. The dashed arrow mapping is defined only for some
setups (cf. Sect. A.1)

Global
Location

Global
Orientation

Local
Angles

Local
Orientation

(a) Separate Transformation (b) Stepwise Transformation

Fig. 5 The two types of transformations used. Black: inverse chain,
gray: forward chain. a Each input space is transformed to each output
space, where each transformation may consist of several steps. b When
transforming stepwise, in the inverse chain, for example, the first state
(sGL) is transformed one step to frame GO where the result is fused
with the second state (sGO) and the fused state is transformed one step
further, etc. Dots mark fusion points

example, for the mapping GL → LA, this can be written as
follows:

f LO→LA
(

fuse
(

xLO, f GO→LO (

fuse
(

xGO, f GL→GO
(

sGL
)))))

(29)

(cf. Fig. 5, right, black), where the fusion is accomplished by
a weighted mean as described in (8–10).

Table 1 Transformation type chosen for the respective model steps

Separate Stepwise

Prediction step (Sect. 3.1) Sensor fusion (Sect. 3.2.1)

Plausibility calculation (Sect. 4) Crosstalk step (Sect. 3.3)

The stepwise transformation with fusion approach has
two advantages: first, fewer transformations need to be com-
puted, and second, only parts of a state can be included (this
becomes important in Sect. 5.2.1). However, the transforma-
tion is intermixed with fusion steps. When no intermediate
fusion is desired, the first approach has to be chosen. Table 1
specifies which approach is applied in which stage of the
MMF body state maintenance process.

5.2 Modality frame transformation steps

We now detail how each modality frame is represented in our
implementation of the MMF model. We then detail the local
forward and inverse kinematic mappings between neighbor-
ing modality frames (cf. Fig. 4), including their derivatives.
While some of the mappings are rather standard, others had
to be adjusted or newly derived due to the locality and the
chosen modality frame encodings. For the sake of replicabil-
ity and completeness, we detail all mappings.

The two orientation spaces (GO and LO) each consist of
two 3D-spaces. The first encodes the direction (GD or LD,
which are parallel to the arm limb) and the second encodes
a perpendicular (GP or LP, which are perpendicular to the
arm limb). Thus, six state vectors and covariance matrices s
are maintained over time for each limb/joint: sLA, sLD, sLP,
sGD, sGP and sGL. In our simulation, each of these states is
represented by a 3D-vector and a 3 × 3 covariance-matrix.
Note that because the MMF model continuously updates the
respective state and variance estimates stochastically depen-
dent on the current noisy measurements, and also because
of the interactions in the crosstalk step, the unit vector con-
straint cannot be guaranteed. Thus, our applied mappings
need to be applicable when the orientation vectors are also
only approximate unit vectors, which makes the derivations
and resulting mappings noticeably more complex.

To derive the transformation equations, we denote the
unit vector by u (V), the gradient by grad (U ) = ∇U of
a scalar field U , the vector gradient (i.e., Jacobi-matrix)
by grad (V) = ∇V of a vector field V, the divergence by
div (V) = ∇ · V and the rotation by rot (V) = ∇ × V.
Moreover, we base our derivations on the derivation facts
and equations (cf. Bronstein et al (2001))

grad(V1 · V2) = (gradV1) · V2 + (gradV2) · V1

+V1 × rotV2 + V2 × rotV1 (30)
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∇ 1

|V| = − 1

2 |V|3 ∇
(

V2
)

= − (∇V) · V+V × rotV

|V|3 (31)

∇u (V) = ∇V
|V| + V ⊗ ∇ 1

|V| (32)

= ∇V
|V| − eV ⊗ (∇V) · eV + eV × rotV

|V| (33)

where ⊗ is the dyadic product. Of particular interest is the
vector-gradient of the unit-vector u (V) with respect to V:

∇Vu (V) = I − eV ⊗ eV
|V| (34)

For the three steps in the transformation chain, i.e., GL ↔
GO, GO ↔ LO and LO ↔ LA, we first derive the inverse
kinematic transformations of the means and the Jacobians,
followed by the forward kinematic transformations of the
means and Jacobians. Together, these transformations form
the mappings (4–5).

5.2.1 Global location ↔ global orientation

We start with the first mapping in the inverse chain. The map-
ping specifies, for example, how the elbow location respec-
tive the shoulder can be used to determine the direction of the
upper arm limb in a global frame of reference. This global
direction state xGD is simply the unit vector of the difference
of two succeeding limb end points (cf. Fig. 1)

xGD = u
(

xGL − xGL
u

)
(35)

where u specifies the upper arm limb.
The Jacobians of xGD are given by

∂xGD

∂xGL = I − u
(
xGL − xGL

u

) ⊗ u
(
xGL − xGL

u

)
∣∣xGL − xGL

u

∣∣ (36)

∂xGD

∂xGL
u

= − I − u
(
xGL − xGL

u

) ⊗ u
(
xGL − xGL

u

)
∣∣xGL − xGL

u

∣∣ (37)

(cf. 34).
The Jacobian (36) can serve as an example for the afore-

mentioned necessity to include the unit-vector constraint in
the transformation. Choosing e.g., xGL − xGL

u ≡ (1, 0, 0)T

leads to

∂xGD

∂xGL =
⎛
⎝

0 0 0
0 1 0
0 0 1

⎞
⎠ (38)

�xGD =
(

0,�xGL
2 ,�xGL

3

)T
(39)

with �xGD
1 = 0, correctly as the direction vector can change

only perpendicular to its current direction. 4

The analogous part of the forward kinematics mapping
is

xGL = xGL
u + l u

(
xGD

)
. (40)

where l is the length of the specified arm limb. The Jacobian
with respect to xGL

u is

∂xGL

∂xGL
u

= I (41)

and with respect to xGD:

∂xGL

∂xGD = l1|xGD|
(
I − u

(
xGD

) ⊗ u
(
xGD

))
(42)

(analogous to (36) with xGL
u = 0).

Above, for the inverse direction, only the direction part
xGL → xGD is defined. In general, the perpendicular part
xGL → xGP is undefined. If stepwise transformations are
used (cf. Fig. 5, right), this does not pose a problem: in the
subsequent step GO → LO the perpendicular part is sim-
ply defined by the GO-source alone. However, if separate
transformations are used, the perpendicular part has to be
copied from the global orientation state xGO, and it is thus
included twice: first in the chain GL → LA (23) and sec-
ond in the chain GO → LA (24). This may introduce small
but undesired interactions in the prediction step and may
also slightly distort the plausibility calculation, which are
computed based on the separate transformation approach (cf.
Fig. 5 and Table 1).

5.2.2 Global orientation ↔ local orientation

The second step in the inverse chain is to transform a
global orientation into a body-relative orientation. This is a
change of coordinate systems, where the new coordinate sys-
tem is spanned by the unit vectors u

(
xGD

u

)
, u

(
xGP

u × xGD
u

)
and u

(
xGP

u

)
. We start with the direction part, i.e. xGD →

xLD
(
xGD

)

xLD
(

xGD
)

=
⎛
⎜⎝

u
(
xGD

u

)T

u
(
xGP

u × xGD
u

)T

u
(
xGP

u

)T

⎞
⎟⎠ · xGD (43)

(cf. Fig. 6)
As both the specified limb’s state xGD and the vectors

spanning the local coordinate system are noisy, the Jacobi-
ans with respect to xGD, xGD

u and xGP
u are required. Again,

4 Note that, if the unit vector constraint was not included in the transfor-
mation (i.e., if (35) was replaced with xGD = xGL − xGL

u ), this would

lead to ∂xGD

∂xGL = I and thus generally �xGD
1 �= 0, resulting in wrong

variance estimates (ultimately also for e.g., angles).
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Fig. 6 Transformation from a global to a body relative coordinate sys-
tem. The new coordinate system is spanned by the unit vectors u

(
xGD

u

)
,

u
(
xGP

u × xGD
u

)
and u

(
xGP

u

)

as discussed above, derivatives with respect to unit vectors
do not suffice. The Jacobian with respect to xGD yields

∂xLD

∂xGD =
⎛
⎜⎝

u
(
xGD

u

)T

u
(
xGP

u × xGD
u

)T

u
(
xGP

u

)T

⎞
⎟⎠ . (44)

The Jacobian with respect to xGD
u is derived starting from

(A.4) to (A.19) and yields

∂xLD

∂xGD
u

=
⎛
⎜⎝

1|xGD
u |

(
xGD − u

(
xGD

u

) (
u

(
xGD

u

) · xGD
))T

−1
|a|

(
xGP

u × (
xGD − u (a)

(
u (a) · xGD

)))T

0

⎞
⎟⎠ .

(45)

For reasons of symmetry, the Jacobian with respect to xGP
u

can be derived from (45) and yields

∂xLD

∂xGP
u

=
⎛
⎜⎝

0
1
|a|

(
xGD

u × (
xGD − u (a)

(
u (a) · xGD

)))T

1|xGP
u |

(
xGD − u

(
xGP

u

) (
u

(
xGP

u

) · xGD
))T

⎞
⎟⎠ (46)

Note that this transformation can be applied to any vector,
so that the same transformation also holds for global perpen-
dicular xGP to local perpendicular xLP.

The forward mapping is given by

xGD =
(

xLD
)

1
u

(
xGD

u

)
+

(
xLD

)
2

u
(

xGP
u × xGD

u

)

+
(

xLD
)

3
u

(
xGP

u

)
, (47)

the Jacobian with respect to xLD yields

∂xGD

∂xLD = (
u

(
xGD

u

)
u

(
xGP

u × xGD
u

)
u

(
xGP

u

) )
, (48)

the Jacobian with respect to xGD
u

∂xGD

∂xGD
u

= I − u
(
xGD

u

) ⊗ u
(
xGD

u

)
∣∣xGD

u

∣∣
(

xLD
)

1

+
(

−ε · xGP
u∣∣xGD

u × xGP
u

∣∣ + u
(

xGD
u × xGP

u

)

⊗xGP
u × u

(
xGD

u × xGP
u

)
∣∣xGD

u × xGP
u

∣∣
) (

xLD
)

2
(49)

(cf. (A.21)) and the Jacobian with respect to xGP
u

∂xGD

∂xGP
u

= I − u
(
xGP

u

) ⊗ u
(
xGP

u

)
∣∣xGP

u

∣∣
(

xLD
)

3

−
(

−ε · xGD
u∣∣xGD

u × xGP
u

∣∣ + u
(

xGP
u × xGD

u

)

⊗xGD
u × u

(
xGP

u × xGD
u

)
∣∣xGD

u × xGP
u

∣∣
) (

xLD
)

2
(50)

(cf. (A.22)). Again, the transformation from a local orienta-
tion state to a global orientation state is the same.

5.2.3 Local orientation ↔ local angles

The mapping from a local orientation state to a local angle
state and vice versa is a one-to-one mapping: it does not
include another limb. It is, however, not trivial, especially
as Jacobians and broken constraints of unit vectors are con-
sidered. Appendix A.3 describes our implementation of this
one-to-one mapping.

5.3 Computational cost

In order to estimate the computational cost c of our model, we
consider the number of state transformations necessary dur-
ing the MMF processing stages of each iteration. Each trans-
formation consists of a varying number of steps (cf. (23–28)).
We assume, that the longest inverse transformation GL →
LA and forward transformation have approximately the same
cost. They thus provide an upper bound for all transforma-
tions, and we derive the following in units of the cost c(GL →
LA).5

5 Note that the order of the cost c(GL → LA) is generally the same for
one through three DOFs per limb. For example, if a planar arm moves
in a plane, which is not perpendicular to any of the coordinate axes,
then full 3D-vectors would still be required for xGL, xGO, xGP, xLD

and xLP. Only the transformation step LO → LA would need fewer
computations, but not its inverse LA → LO or the other transformation
steps.
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With n the number of modality frames and k the number
of limbs, the costs for the different steps are

c (Sensor Fusion) = 2k

c (Filter Crosstalk) = 2k

c (Prediction Step) = 2nk

c (Plausibility Calculation) = n2k

(cf. Fig. 5; Table 1). In the Prediction Step, the transforma-
tions need only be done to the output space (LA) and back.
In the Plausibility Calculation, separate forward and inverse
transformations must be done for all modality frames sep-
arately. Thus, this is the most costly computation stage in
MMF. However, the quadratic dependence on the modal-
ity frames, which are typically bounded to a small number
should not result in a significant processing bottleneck.

When pursuing a goal-directed control task, the state esti-
mate in a task space (typically a location space) will need
to be transformed once per time step to the angular space to
infer the currently desired motor command. For one limb,
the cost is 1; for k limbs, it is approximately

c(Non modular) = k

Comparing both, we get the computational overhead,
which is due to the usage of multiple modality frames and
due to interactions. The effects of the sensor fusion and filter
crosstalk are small, the prediction step increases the order of
complexity with respect to the number of modality frames by
one, and the plausibility calculation again by one. Thus, the
addition of further redundant frames of reference has a qua-
dratic scaling effect, as long as full plausibility computations
are done. With respect to the number of limbs, the whole
model scales linearly so that, for example, the addition of a
neck or torso increases the complexity only linearly.

5.3.1 Parallelization

We did not use parallel computation but it can be done with
respect to modality frames and limbs. With respect to modal-
ity frames, each arrow (Fig. 5, left) of the costly separate
transformations can be computed in parallel (cf. also Fig. 2),
thus reducing the costs above for all steps to k per parallel
unit. In addition, the update step (Sect. 3.2) and the crosstalk
step (Sect. 3.3) can be computed in parallel for all limbs if
the transformations are based on the previous time step.

6 Experiments

The following experiments investigate whether the sensor
information is integrated correctly and how well sensor fail-
ure and its effects on the state estimation are captured by our
plausibility measure. All results are obtained from a simu-
lation with a kinematic arm that has three limbs and three

Table 2 GENERAL settings for sensor standard deviations in all modal-
ity frames

LA LO GO GL

0.05rad 0.05 0.05 0.05 · l

The sensor standard deviations are equal and independent on
different dimensions (i.e., the covariance-matrices are diagonal).
The diagonal elements are chosen to be approximately equal in their
magnitude (accounting for the transformations (4–5)).

degrees of freedom in each joint. Thus, an arm with a total
of nine degrees of freedom is tested in 3D space. The MMF
model thus maintains three dimensional state estimation vec-
tors in each modality frame. In the presented results, only
the diagonal components of the modality frame-respective
covariance matrices were considered.

The lengths of all arm limbs are set to 0.5. An ensemble of
150 runs from random start configurations to random angu-
lar goal constellations, both given in the angular modality
frame LA for all limbs, was generated for each setting. The
nine dimensional desired movement is the vector from the
estimated arm posture (state estimates in xLA) to the given
angular goal

�xLA
des = goalLA − xLA. (51)

For each limb m, the respective 3D-part �xLA
des,m of the

desired movement is capped by a maximum velocity, such

that
∣∣∣�xLA

des,m

∣∣∣ ≤ √
3 · 0.1rad. Onto this scaled desired

movement-vector, a velocity dependent motor noise equal

to 0.5 ·
∣∣∣�xLA

des,m

∣∣∣ 1√
3

per dimension and an absolute motor

noise equal to 0.005rad per dimension is added. Thus, for
big distances between the arm and the goal—where the arm
is moving quickly—the velocity-dependent part dominates.

Sensory noise is added to each modular modality frame.
We study a setup with approximately equal sensory infor-
mation available to each modality frame. Thus, we account
for the modality frame transformations starting with angu-
lar noise of 0.05 rad in the angular modality frame. Table 2
specifies the exact standard deviations applied to the sen-
sors of the respective modality frames. Appendix B details
the derivation of these approximately corresponding noise
magnitudes.

All results are shown in the global location modality frame
(GL) for the second joint.

6.1 Sensor failure detection

In Sect. 4, a convolution of a target and a reference sensor
was introduced as the plausibility that both states are in accor-
dance, and an arithmetic mean of plausibilities over multiple
references was proposed to be used as the final plausibility of
the target modality frame, resulting in (21). Here, we show
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Table 3 Modified sensor noise settings for the GL modality frame

Setup a Sensor distribution in units of limb length

Mean SD

1a yGL
i + 0.5rect (t) 0.005 + 0

1b yGL
i + 0.5sine (t) 0.005 + 0

1c yGL
i + 0 0.005 + 0.5rect (t)

1d yGL
i + 0 0.005 + 0.5sine (t)

The known sensor noise in GL is lowered to 0.005. In the second
dimension of the GL-modality frame, an additional noise component
or an offset component is added. This additional disruptive component
is unknown to MMF. As specified in (12), the sensor distribution for
the second dimension is a normal distribution
aSetup 1a: rectangular offset, 1b: sinusoidal offset, 1c: rectangular
increase in variance, 1d: sinusoidal increase in variance. The time-
dependent functions rect (t) and sine (t) are displayed in Fig. 7.
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Fig. 7 Time dependency: A rectangular or sinusoidal function is used
as either an offset on the Global Location Sensor or as an increase in
the Global Location Sensor’s standard deviation. In all four settings (cf.
also Table 3), this change was unknown to the system, that is, MMF
expected an unbiased sensor in GL with a standard deviation of 0.005

that this plausibility can be used to reliably detect sudden
sensor offsets or increases in variance. Of particular inter-
est is the scenario where a highly accurate sensor (i.e., with
low noise) suddenly returns erroneous measurements. In this
case, the system has to switch from strongly relying on this
sensor to strongly disregarding it. To model this, a setup is
presented in which the Global Location-Sensor has errors but
at the same time a lower variance than all other sensors (cf.
Table 3).

In Setup 1a, a rectangular offset to this low-noise sensor
is introduced at time step 10 and switched off again at time
step 30 (cf. Fig. 7, black, left ordinate axis).

Figure 8 shows how the plausibility of the Global Loca-
tion-Sensor decreases during the application of the offset.

Although the variance is very low, which has an enhancing
effect on the weight (cf. P−1

k in (22)), the low variance has a
reducing effect on the plausibility (cf. (20) and Fig. 8), which
in turn has a reducing effect on the weight (22). Overall, the

0 10 20 30 40 50 60
0.0

0.5

1.0

1.5

time

with plausability, no offset

with plausability, with offset

Fig. 8 Setup 1a: The plausibility of the Global Location-Sensor is dis-
played over time. For the solid line, an offset is introduced at time step
10 and is switched off again at time step 30. In this interval, the plausi-
bility reduces strongly as opposed to a system with a non-failing sensor
(dashed line)
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Fig. 9 Setup 1a: The inner filter variance is displayed. An increase is
apparent during the application of the offset, which shows an overall
loss of information. This is due to a loss of information in the Global
Location modality frame, whose sensor is discarded
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Fig. 10 Setup 1a: The error in the state estimate (i.e., the Euclidean
difference of the estimate x from the real arm state y) is displayed. The
introduction of the plausibility helps to minimize this estimation-error:
The solid black graph is close to the dashed ones, while there is a large
difference between the solid gray graph and the dashed ones
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Fig. 11 Setup 1a: The ability to reach goals (i.e., the Euclidean dis-
tance of the real arm state from the goal) is displayed. The introduction
of plausibility enables the system to reach goals in a setup with a sen-
sor offset nearly as good as in a setup without a sensor offset. If no
plausibility is used, the system fails to reach the goal while an offset is
present

weight WGL for merging the Global Location-Sensor in (8–
10) decreases, and the Global Location-Sensor is discarded
while the offset is present. The disregard of the Global Loca-
tion-Sensor leads to a higher filter variance. This variance
serves as a measure of how good the state estimate of the com-
plete system is. Thus, the system “knows” that its estimate is
less accurate during this phase, as apparent in Fig. 9. As the
influence of the faulty Global Location-Sensor is suppressed
and the influence of all other sensors is increased, errors in
the state estimate are minimized (c.f. Fig. 10). Finally, Fig. 11
shows how the minimization of the errors in the state esti-
mate enables the system to reach the goal effectively, even
under the influence of a strong offset.

To study continuous increases of the sensor offset as well
as increases in the sensor variance, setups 1b–1d (cf. Table 3)
were simulated. The estimation error |y − x| is a good indica-
tor of the system’s estimation capabilities, thus only |y − x|
is shown for these setups. The estimation error for the sinu-
soidal offset (setup 1b, cf. Fig. 7, gray, left ordinate axis)
is shown in Fig. 12. The comparison to Fig. 10 shows that
the estimation error is approximately equal for equal ampli-
tudes (at the peak of the sinus) and no “memory effects” are
apparent.

Our plausibility measure (20) suggests that offsets which
are lower than the standard deviation can barely be detected.
The standard deviation of non-location-frames transformed
to the location frame is σ �=GL→GL = 0.025 (cf. Table 3
with l = 0.5). This is approximately the range where the
sensor-failure-detection does not work, i.e., where there is
no difference between the black solid and gray solid lines
(Fig. 12).

Comparing sensor offsets (setups 1a and 1b, Fig. 10 and
12) to increases in the sensor standard deviation (setups 1c
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Fig. 12 Setup 1b (sinusoidal sensor offset): The error in the state esti-
mate (i.e., the Euclidean difference of the estimate x from the real arm
state y) is displayed. The introduction of the plausibility helps to mini-
mize this estimation-error: The solid black graph is close to the dashed
ones while there is a large difference between the solid gray graph
and the dashed ones. For low offsets, the system cannot differentiate
between a sensor failure or deviations which occur due to known Gauss-
ian noise
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Fig. 13 Setup 1c (rectangular additional noise): The error in the state
estimate (i.e., the Euclidean difference of the estimate x from the real
arm state y) is displayed. The introduction of the plausibility helps to
minimize this estimation-error: The solid black graph is close to the
dashed ones while there is a large difference between the solid gray
graph and the dashed ones

and 1d, Fig. 13 and 14) yields the same conclusions: The sys-
tem can detect and avoid both sudden and continuous sensor
failure as long as the magnitude of the error exceeds the “nor-
mal” standard deviation. MMF is highly noise robust, espe-
cially when multiple sensors are integrated. This has been
confirmed in an earlier study (Ehrenfeld and Butz 2011).

6.2 Importance of independence

The MMF system evaluated so far may be described as han-
dling interactive filters (Fig. 15, solid lines). This interactivity
is realized by first fusing all sensors (cf. Sect. 3.2.1) and then
integrating them in the body state estimates (cf. Sect. 3.2.2).
Thus, information is gained by fusing independent informa-
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arm state y) is displayed. The introduction of the plausibility helps to
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graph and the dashed ones. Small exceedance of the known Gaussian
noise is not detected by the system
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lines) integrate a weighted mean of sensor measurements and interact
in the crosstalk step. The separate filters (dashed lines) are each inde-
pendent on all other filters and integrate only one sensor

tion sources, while in 3.3, a modified weighted mean using
(8, 10 and 11) “shifts” the filter states towards each other.

To show the importance of accounting for the fusion of
independent sources, the proposed setup is compared to a
second setup. In the second setup, a set of separate filters is
used as shown in Fig. 15 with dashed lines. Each sensor is
integrated independently into its respective modality frame
module but in the crosstalk step the weighted mean is used
for the variance estimates as well (8–10). In this way, the
information from the other sensors is integrated indirectly
via the other filter states.

To compare the performance of these two setups, the
estimated variances are displayed in Fig. 16 for all four
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Fig. 16 The variance estimates are lower when dependent sources are
fused (gray) as opposed to independent sources (black). Also the ratio

Pseparate
Pinteractive

is too large for dependent sources. This ratio, which describes
the gain of information, is overestimated in the gray setup, i.e., the gray
interactive filter variance is underestimated

experiments (with no sensor failure and the parameters from
Table 2). The separate systems serve as a reference and
use the same trajectories as the respective interactive sys-

tem. The ratio of information
P−1

interactive

P−1
separate

= Pseparate
Pinteractive

is a fac-

tor of how much information is gained through interaction.
Even for the most extreme case of equal variances in all
modality frames, it should be

Pseparate
Pinteractive

≤ 4. However, for

most of the runtime, the gray factor is
Pseparate

Pinteractive
≈ 10, as

shown in Fig. 16. Thus, Setup 2 (gray) overestimates the
sensory information. That is, it underestimates the remain-
ing variance.

This overestimation has severe consequences: first, beca-
use the system believes too strong in its estimate, this estimate
converges too early and disregards sensor measurements,
which could otherwise improve the estimate. Thus, the accu-
racy of the estimate decreases dramatically, which is shown
as the Euclidean distance of the state estimate x from the real
arm state y half-logarithmic in Fig. 17. Because the move-
ment plan is based on the mean-estimate x, the arm stops
moving as soon as x reaches and stays at the goal. The low
variance P (c.f. Fig. 16) prevents x from being corrected by
the measurement and the mainly velocity-dependent motor
noise prevents P from increasing again. Thus, x stays at the
goal and the arm is locked in place, even if the real arm state y
has not yet reached the goal. Figure 18 shows this difference
of the real arm state y from the goal.

These results show that Setup 2 performs worse than the
actually proposed MMF setup. This is due to the fact that
the “shift” of the filter states in our proposed setup accepts
dependent sources, while the “normal” weighted mean of
filter states in Setup 2 requires independent sources. How-
ever, because the filter states depend on each other due to
the coupling in the crosstalk step, Setup 2 copies informa-
tion and re-integrates it in successive time steps. Thus, the
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Fig. 17 The Euclidean distance of the real arm state from the esti-
mated state shows that a worse performance is apparent when dependent
sources are merged (gray)
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Fig. 18 The Euclidean distance of the goal from the real arm state is
larger for the gray setup. Thus, even the control performance is affected
negatively

state variance is underestimated. By providing quantitative
results for these errors, we showed that it is imperative to
not increase information by fusing dependent sources (such
as state estimates from different Kalman Filters as done in
Setup 2), but rather to fuse independent sources only (e.g.,
different redundant sensors).

7 Related work

The MMF model combines ideas from several related robotic
and neurally inspired architectures. To position MMF in the
robotics context, we first classify MMF in a framework of
standard approaches. Next, we address several related mod-
ular and sensor-related robotics architectures.

7.1 MMF classifications

The MMF model can be classified in a framework of stan-
dard approaches. MMF essentially encodes a serial chain

(Scheinmann and McCarthy 2008) of a generally arbitrary
number of limbs, where each joint can have up to 3DOFs
(rotations). Translations could be added by additional “trans-
lation” limbs. For realizing an extendable limb, the length l in
(40) could be changed to an additional modality frame, which
would estimate limb length and which would also be updated
and maintained over time. The body state is represented prob-
abilistically with means and covariances, as Gaussian noise
is assumed. To cope with noise, multiple sensors are fused
and integrated into the body state estimate. According to
Durrant-Whyte and Henderson (2008), the data fusion can
be classified as follows: We use two types of probabilistic
data fusion, hierarchical and heterarchical, while the inter-
actions between the components are local and modular for
both types.

The fused measurements are integrated over discretized
time with Bayesian filtering similar to Kalman filters (Chris-
tensen and Hager 2008; Durrant-Whyte and Henderson
2008). The difference between our model and Kalman Filters
is with respect to the prediction step. We do not use a lin-
earized movement prediction but instead a prediction based
on transformations of body states, which exploits the mod-
ularity of the MMF architecture. These transformations are
part of an explicit, full body schema (as termed in Hoffmann
et al. (2010)). This body schema covers a postural schema and
is also close to covering a surface schema. Both short-term
and long-term dynamics are covered, and as far as the body
image is concerned, a structural or topological representation
(Hoffmann et al. 2010) is covered.

Apart from Kalman Filters, other Bayesian approaches
such as Particle Filters have been used. In e.g., Gadeyne et al.
(2005), the limits of Kalman Filters and advantages of Parti-
cle Filters with respect to a state and contact-estimation task
are shown. Particle filters may very well be used to approxi-
mate the potential distributions in the respective modules of
MMF.

7.2 Related models

Many related modular and multi-sensor fusion models have
been developed. One example is a recurrent neural network
(RNN) based on the MMC principle as applied to forward
and inverse kinematics by Cruse and Steinkühler (1993) and
Schilling (2011). The MMC network is a self-organizing
map where geometrical constraints (which define accessi-
ble states) make these accessible states become attractors
for the dynamic network. As states in different modalities
and frames of reference can be represented in the same net-
work, these dynamics can ensure consistency between them.
This can be used, for example, if the state in one modal-
ity and frame of reference is externally forced to take on a
new (desired) value. The attractor landscape then ensures that
(after a transition) all other states match the new value. Thus,
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the RNN can be used as an inverse model, a forward model,
and for sensory integration.

An elegant example of a modular integration of two map-
pings applied to a robot is provided in Chinellato et al. (2011).
A robot is able to execute eye and arm movements. For both
movement types, a separate implicit map is learned unsuper-
visedly via coordinated looking and reaching movements.
Both learned maps can be combined to “form a unique, shared
visuomotor map of the peripersonal space.” Thus, the three
underlying representations or modules (i.e., visual, oculomo-
tor, and arm joint space) are connected.

Another example where two learned implicit maps are
connected is the SURE_REACH model (Herbort et al.
2010). SURE_REACH unsupervisedly learns the forward
and inverse kinematics mapping (bidirectionally) and enco-
des the full state and potential motion trajectory redundantly.
With excitatory and inhibitory activations continuously prop-
agating through the network, SURE_REACH can adaptively
execute goal-directed movements and avoid obstacles. The
representations underlying SURE_REACH (target space and
joint space) are close to the representations proposed by our
model, but they are less modular and thus require a much
higher computational cost.

More sensor-related, multimodal cues of the same stim-
uli have been integrated in a robot to improve the estimation
capabilities (Chinellato et al. 2012). Visual measurements
were also compared to an internal visual model to improve
robot arm state estimation and thus visual servoing (Gratal
et al. 2011).

Thus computational approaches exist that are modular
with respect to different modalities or different limbs, mod-
els that exchange information adaptively, that fuse and inte-
grate sensors with rigorous Bayesian integration principles,
or models that are able to autonomously detect sensor failure.
However, we are not aware of any model that comprises all
these characteristics at once in a biologically plausible way.

8 Discussion

Inspired by the current knowledge about the human brain
and human behavioral control, this paper has proposed a
modular modality frame (MMF) architecture. MMF encodes
an internal body model in a highly distributed, probabilistic
fashion. It maintains an internal state estimate of the sensed
and controlled body in the form of local Gaussian distri-
bution estimations. Locality is enforced by separating the
standard robotics state representation of end-effector location
space (“task space”) and joint angle space into four modal-
ity frames (shoulder-centered locations, shoulder-respective
orientations, orientations respective the next upper limb, and
joint angles), each with separate state estimation modules
for each arm limb. Local forward and inverse kinematic

mappings realize the exchange of sensory and predictive
state information sources between the correlated modules via
Kalman filtering and probabilistic plausibility estimations.
Essentially, each module maintains redundant, complemen-
tary body state representations over time (cf. Sect. 3.1), and
fuses and integrates multisensory information (cf. Sect. 3.2).
Moreover, due to the continuous forward and inverse state
estimate exchanges (cf. Sect. 3.3), the modules strive for con-
sistency. Plausibilities of sensor measurements are autono-
mously calculated and used to adaptively integrate only trust-
worthy information.

We showed that MMF is able to process the available sen-
sory information highly effectively. Comparisons with non-
interactive Kalman-Filters showed that the noisy sensors are
well-integrated, and comparisons with a previous version of
MMF with a different local information exchange approach
showed that the reliabilities of the unfolding state estima-
tions are not overestimated. Scenarios in which the reliabil-
ity of sensory information changes unknowingly to the MMF
have shown that the system is able to identify sensor failures,
accounting for their expected (decreased) information con-
tents accordingly. Thus, the system forms and maintains an
accurate and consistent body state representation over time,
including mean and covariance estimates. The currently still
simple control tasks showed that available sensory informa-
tion can be easily integrated and thus guide the controlled
arm to a desired goal state reliably.

Due to these features, we propose that this model should
be considered for applications in soft robotics, where sen-
sory information is prone to be noisy and motor commands
yield noisy behavior effects. Moreover, similar architectures
may be applied for the maintenance of other distributed body
state estimations in other bodily simulations, potentially also
facing other types of sensors with non-Gaussian noise dis-
tributions. Due to the modular structure of our model, the
chain of limbs can easily be extended to more limbs, such as
a torso or head. The model’s computational cost is of the first
order with respect to the number of limbs (cf. Sect. 5.3). If the
model is applied to a whole humanoid—with two arms, two
limbs, and a head attached to the torso, these could be mod-
eled as different chains. As these chains inevitably have at
least one limb in common, a crosstalk, such as the one in Sect.
3.3, could ensure synchronization between these chains.

In addition to such straight-forward application potentials,
we also believe there is much room for enhancing this work
in several respects. The MMF model exchanges information
effectively, but further probabilistic information processing
may be incorporated in the future. The similarities of MMF
with several models and principles of human motor control
and the modular neural encodings found in the human brain
should be explored further. Moreover, no learning is currently
applied in the MMF, which could further enhance the ver-
satility and also the flexible applicability of the architecture.
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Finally, MMF offers its modular architecture to distributed
planning techniques, in which various goals and constraints
may be combined continuously online. In the following, we
discuss MMF’s relations and potentials in respect to these
aspects.

8.1 Further information processing

At the moment, the local forward and inverse kinematics in
MMF, which are calculated based on (4) and (5), are assumed
to be fully accurate. However, bodies change over time and
thus these mappings can never be fully reliable. In future
work, we plan to also consider noise or systematic errors
in the local forward and inverse kinematics transformations.
This will give rise to a challenge, which we intend to meet
by adapting the transformations over time.

Currently, MMF only includes influences between differ-
ent modality frames and between limbs down the kinematic
chain. For example, the upper arm state influences the lower
arm and hand states. The inverse direction is equally impor-
tant—if, for example, the hand is perceived at a position
incompatible with the upper and lower arm, then all limb
states should be adjusted. This seemingly difficult problem
may be elegantly addressed with principles from the men-
tioned MMC system (Cruse and Steinkühler 1993; Schilling
2011). Alternatively, neural population codes may be used,
as detailed below.

In Sect. 6.2 and Fig. 15 (dashed lines), a set consisting of
filters that act separately in each module was introduced. It
served only to generate reference data, but an integration of
this second set into MMF could allow MMF to profit from
the redundancy even more. Each module would have two fil-
ters, one individual sensor-based filter, and one interactive
state-estimation filter, where only the interactive filter uses
the mappings (4) and (5). Both types of filters may deviate
noticeably from each other. Such deviations may yield good
signals for detecting kinematic mapping errors, that is, errors
in the forward and inverse mappings (4) and (5) across the
modules. Adaptation processes of the body model may apply
consequently to error detection. The estimation of the actual
reliability of the respective mappings may also be inferred.
Furthermore, to pre-filter the incoming sensory information,
sensory plausibilities may be based on the estimates in the
individual sensor-based filters in addition to the actual sen-
sory information.

Finally, at the moment the plausibility determination com-
pares only the redundant sensor readings. These readings
could also be compared with the internally predicted state
estimates. The current method should be contrasted with one
that also considers the internal filtered states in the plausibil-
ity determination.

8.2 Neural encodings and human motor control

Clearly, the neo-cortex of the brain processes sensory infor-
mation from different modalities initially separately. Soon,
however, this sensory information is strongly influenced by
top-down processes and it is combined in “multisensory”
brain regions. The most prominent multisensory region is
the parietal cortex. In this respect, Shadmehr and Krakauer
have suggested that

“A function of the parietal cortex is state estima-
tion: to integrate the predicted proprioceptive and
visual outcomes with sensory feedback to form a
belief about how the commands affected the states
of the body and the environment.” (Shadmehr and
Krakauer 2008, p. 359)

The MMF is essentially a body state estimation system that
integrates “proprioceptive” (angles and local limb orienta-
tions) and “visual” (location and global, head- or in our
simulation shoulder-centered orientations) sensory feedback
with the respective predicted outcomes. State estimations in
the parietal cortex also exhibit different frames of reference,
distinguishing, for example, near- from far-space, or peri-
personal spaces that surround particular limbs or the face
(Andersen et al. 1997). Thus, limb-respective spatial dif-
ferentiations have been identified. In the anterior part, the
somatosensory cortex clearly distinguishes body parts, pro-
cessing the respectively available sensory information in a
body homunculus-like distribution. These neuro-scientific
evidences support the neural validity of our highly modular-
ized architecture, although the brain is likely to process the
information more synergistically dependent on motor syner-
gies, which are determined by the body morphology (Latash
2008).

At the moment, though, the MMF model does not imple-
ment any neural codes but approximates the likely exis-
tence of probabilistic state estimations with Gaussian distri-
butions. The brain appears to approximate probabilistic state
estimates with neural population codes (Doya et al. 2007;
Pouget et al. 2003). A previous model of human arm reach-
ing has used population codes in the form of rather simple
grids to approximate joint and task space (Butz et al. 2007;
Herbort et al. 2010). This so-called SURE_REACH model
showed many similarities to human arm reaching behavior
and yielded particularly highly dexterous arm control capa-
bilities. However, the employed neural encoding does not
scale to a humanoid arm with nine degrees of freedom. The
modularizations in the MMF architecture circumvent the sca-
lability problem by separating the state representations of the
individual limbs and joints. Each modality frame in MMF
encodes maximally three degrees of freedom. Thus, neural
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population codes can be embedded in these spaces with a
reasonable fine granularity.

Once neural population codes are realized and bidirec-
tional, mappings between the population codes of neighbor-
ing modality frames are available, information exchange in
the inverse direction (from the hand to lower and upper arm
limb) will be possible. As discussed above, since the inverse
direction is usually not unique, it is very hard to implement
it rigorously mathematically. Interestingly, the information
exchange up the kinematic chain will allow to account for
bodily illusions, such as the rubber hand illusion. Seeing that
the MMF model strives for consistency while incorporat-
ing sensors with varying sensory reliabilities and respective
plausibility estimates, the MMF actually predicts that the
illusion will not only affect the stimulated body parts but
also those other body parts that need to change their orien-
tation, etc., to maintain an overall consistent body model.
To the best of our knowledge, this hypothesis still has to be
verified.

8.3 Planning and motor control

Another feature of the SURE_REACH model was its flex-
ible capability of applying a general planning mecha-
nism via model-based reinforcement learning, while flexi-
bly inducing goals and various constraints (including obsta-
cles and movement priorities). Consequently, highly dex-
terous, goal-oriented behavior was generated on the fly.
The recent neuro-scientific literature points out that reach
planning is likely to occur concurrently in multiple frames
of reference (McGuire and Sabes 2009). Once MMF is
implemented with population encoded state representa-
tions in each modality frame and neural mappings between
the modality frames, we believe that distributed plan-
ning similar to the one applied in SURE_REACH will
be possible. It will be possible to flexibly take task con-
straints and behavioral priorities into account. Due to the
interactions between the modules, goal-directed behav-
ior should unfold even when goals and constraints are
only partially defined and are distributed over various
modules. Comparisons with human behavioral data as
well as neural behavior data, such as the comparison
presented in McGuire and Sabes (2009), will then be
imminent.

Due to the expected behavioral dexterity achievable with
the resulting neural MMF, the application of the system to
control soft robots will then need to be investigated even fur-
ther. If a dynamic representation is desired that provides sta-
ble states, local reinforcement, or inhibition between nodes,
the population codes may also be implemented by dynamic
neural fields (Erlhagen and Schöner 2002). Recently, goal-
directed, redundancy-resolving control has been realized

with these techniques (Reimann et al. 2010, 2011). The MMF
architecture is even more modularized.

8.4 Learning

The proposed neural population codes may be pre-structured
by hand or they may be learned. Due to the potential versa-
tility in the resulting system when the structures are learned
from scratch, we are currently implementing neural popula-
tion codes and neural regression techniques for learning the
MMF spatial modules and their respective mappings. Vari-
ous types of self-organizing maps (Butz et al. 2010; Kohonen
2001; Ritter et al 1992; Toussaint 2006) and neural regression
techniques (Schaal and Atkeson 1998; Stalph and Butz 2011;
Vijayakumar et al. 2005) may be used for this purpose. As
mentioned before, the redundancy of the system can provide
measures for the accuracies of the respective mappings. The
plausibilities can then be used to adapt the learning rates or to
weigh the interactions between the modules during sensory
fusion and crosstalk online.

Beyond the learning of the current MMF architecture,
additional environmental aspects may also be learned and
represented in MMF. The parietal cortex was shown to also
represent relative locations and orientations of things in the
surrounding environment. These codes are usually particu-
larly relevant for determining expected action consequences
in consideration of the environmental context (Shadmehr and
Krakauer 2008). As proposed already in the reafference prin-
ciple (von Holst and Mittelstaedt 1950), a comparison of the
predicted effector’s reaction (6–7) to the actual sensory con-
sequences of the movement can provide further information
about the accuracy of the movement and about other envi-
ronmental influences (such as external forces). It may even
be used to estimate sensor variance online. Thus, as a next
step, the system may detect external forces that act upon the
system by contrasting the predicted sensory states with the
actual experienced ones.

8.5 Conclusion

In conclusion, we believe that the MMF architecture consti-
tutes only the beginning of modeling the brain’s approach to
human arm control. At the moment, the flexible incorporation
of sensory information based on internally generated proba-
bilistic estimates of their plausibilities models the apparent
flexible Bayesian integration of redundant sources of infor-
mation in the human brain. Furthermore, the Bayesian-based
information exchange offers itself for the modeling of bod-
ily illusions, such as the rubber hand illusion. Moreover,
MMF is applicable for controlling and estimating the state of
robots—particularly of robots with potentially partially and
temporarily unreliable sensors and actuators. For potential
future work, further information processing should be incor-
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porated; the comparison with human behavioral data and neu-
ral data should be pursued; the modularity of MMF should be
exploited to generate even more flexible, goal-directed plan-
ning and motor control mechanisms; and finally, the chal-
lenge of learning neural representations of the state estima-
tion modules and the mappings between them will enable
the even more general applicability of the MMF model—
even to body morphologies for which the actual architecture
is unknown beforehand.
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A Kinematic transformation derivation details

A.1 Location ↔ global orientation

To the global orientation state xGP, the Inverse mapping can
only provide complete information if the joint has maximally
two DOFs and and the first rotation axis is parallel to the arm
limb. This case will be considered here exemplarily. The local
perpendicular xLP can be chosen along the rotation axis of the
second DOF, e.g., Z if angles α and γ are flexible. For β ≡ 0,
Fig. 19 illustrates the following dependency: The local per-
pendicular xLP = p is perpendicular to the local direction
xLD and to the upper limb’s local direction xLD

u ≡ xLD
old . The

same holds true for the global states yielding:

xGP = ±u
(

xGD × xGD
u

)
(A.1)

With (A.20), the Jacobians with respect to xGD
u and xGD are:

∂xGP

∂xGD = ± ε · xGD
u∣∣xGD × xGD
u

∣∣

±u
(

xGD × xGD
u

)
⊗ u

(
xGD × xGD

u

) × xGD
u∣∣xGD × xGD

u

∣∣
(A.2)

∂xGP

∂xGD
u

= ∓ ε · xGD
∣∣xGD × xGD

u

∣∣

∓u
(

xGD × xGD
u

)
⊗ u

(
xGD × xGD

u

) × xGD
∣∣xGD × xGD

u

∣∣
(A.3)

This transformation is displayed as the dashed arrows in
Fig. 4.

A.2 Global orientation ↔ local orientation

The first row of the Jacobian of xLD with respect to xGD
u is

given by

∂
((

xLD
)

1

)

∂xGD
u

=
(
∇xGD

u

(
u

(
xGD

u

)
· xGD

))T
. (A.4)

Equations (30), (34) and

rot(UV) = U rotV + gradU × V (A.5)

lead to

∇V1 (u (V1) · V2) = (grad u (V1)) · V2 + V2 × rot u (V1)

= 1

|V1| (I − u (V1) ⊗ u (V1)) · V2

= V2 − (u (V1) · V2) · u (V1)

|V1| (A.6)

and this yields:

∂
((

xLD
)

1

)

∂xGD
u

=
(

xGD − (
u

(
xGD

u

) · xGD
) · u

(
xGD

u

)
∣∣xGD

u

∣∣
)T

(A.7)

The second row is

∂
((

xLD
)

2

)

∂xGD
u

= 0 (A.8)

To further readability, we introduce a = xGD
u ×xGP

u and with
Eq. (30) the third row of the Jacobian is

∂
((

xLD
)

3

)

∂xGD
u

=
(
(∇u (a)) · xGD + xGD × rot u (a)

)T
(A.9)

The fist term can be rearranged with (32) and the second term
with (A.5)

∂
((

xLD
)

3

)

∂xGD
u

=
(∇a

|a| · xGD + a
(
∇ 1

|a| · xGD
)

+xGD ×
(

rot a
|a| + ∇ 1

|a| × a
))T

(A.10)

With Lagrange’s formula for the vector triple product

xGD ×
(

∇ 1

|a| × (a)

)
=

(
∇ 1

|a|
) (

xGD · a
) − a(xGD · ∇ 1

|a| )

(A.11)

the third row of the Jacobian yields:

∂
((

xLD
)

3

)

∂xGD
u

=
(∇a

|a| · xGD + xGD × rot a
|a|

+
(

∇ 1

|a|
) (

xGD · a
))T

(A.12)

We introduce ε as the Levi-Civita-Tensor with rank 3, i.e.
(ε · V)i, j = εi jk Vk with εi jk as the Levi-Civita-Symbol.
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Given

rot (V1 × V2) = (∇V1) · V2 − (∇V2) · V1

+V1 divV2 − V2 divV1 (A.13)

we get

rotV1 (V1 × V2) = I · V2 − 3V2 = −2V2 (A.14)

and with the identities

∇V1 (V1 × V2) = ε · V2 (A.15)

(ε · V) · V3 = V3 × V (A.16)

and (31) and (32), the following simplification holds true:

∇V1

1

|V1 × V2| = (V1×V2)×V2
|(V1×V2)|3 (A.17)

and with (A.14)–(A.17), the third row of the Jacobian in
(A.12) can be further simplified:

∂
((

xLD
)

3

)

∂xGD
u

=
(

xGD × xGP
u

|a|

+xGD × −2xGP
u

|a| + a × xGP
u

|a|3
(

xGD · a
))T

=
(

xGP
u

|a| ×
(

xGD − u (a)
(

u (a) · xGD
)))T

(A.18)

Combining (A.7), (A.8) and (A.18), the complete Jacobian
with respect to xGD

u is

∂
(
xLD

)

∂xGD
u

=
⎛
⎜⎝

1|xGD
u |

(
xGD − u

(
xGD

u

) (
u

(
xGD

u

) · xGD
))T

0
1
|a|

(
xGP

u × (
xGD − u (a)

(
u (a) · xGD

)))T

⎞
⎟⎠

(A.19)

To calculate the Jacobians for the forward mapping, we
first derive the vector gradient of the unit vector of a cross-
product. With (32), (A.15) and (A.17) we get

∇V1 u (V1 × V2) = ε · V2

|V1 × V2| + u (V1 × V2)

⊗u (V1 × V2) × V2

|V1 × V2| (A.20)

With (34) and (A.20), the Jacobian with respect to xGD
u yields

∂xGD

∂xGD
u

= I − u
(
xGD

u

) ⊗ u
(
xGD

u

)
∣∣xGD

u

∣∣
(

xLD
)

1

+
(

ε · xGP
u∣∣xGD

u × xGP
u

∣∣ + u
(

xGD
u × xGP

u

)

⊗u
(
xGD

u × xGP
u

) × xGP
u∣∣xGD

u × xGP
u

∣∣
) (

xLD
)

3
(A.21)

and the Jacobian with respect to xGP
u :

∂xGD

∂xGP
u

= I − u
(
xGP

u

) ⊗ u
(
xGP

u

)
∣∣xGP

u

∣∣
(

xLD
)

1
−

(
ε · xGD

u∣∣xGD
u × xGP

u

∣∣

−u
(

xGD
u × xGP

u

)

⊗u
(
xGD

u × xGP
u

) × xGD
u∣∣xGD

u × xGP
u

∣∣
) (

xLD
)

3
(A.22)

A.3 Local orientation ↔ joint angles

We demonstrate the transformation between angles and a
body-relative Cartesian coordinate system exemplarily for
a 3D angular space. XY Z is introduced as the coordinate
system, related to the local orientation of the upper arm:
X ≡ xLD

u and Z ≡ xLP
u (cf. Fig. 19).

We define the angles xLA = (
α β γ

)T
as Tait-Bryan

angles using intrinsic XY ′Z ′′ notation. This means, the first
rotation is by the angle α around the x-axis X. As the rota-
tion axes are intrinsic (not static), they are rotated: the one
(twice, thrice) rotated coordinate system is denoted by one
(two, three) dashes. Thus the second rotation is by the angle
β around Y′ and the third rotation is by the angle γ around
Z′′.

Thus, any arbitrary vector v is rotated by a product of
rotation matrices

v′′′ = RZ′′ (γ ) RY′ (β) RX (α) v (A.23)

This series of rotations around intrinsic axes is equivalent to
the reversed order series of rotations around static axes

v′′′ = RX (α) RY (β) RZ (γ ) v (A.24)

v′′′ =
⎛
⎝

1 0 0
0 cos α − sin α

0 sin α cos α

⎞
⎠

⎛
⎝

cos β 0 sin β

0 cos α − sin α

− sin β 0 cos β

⎞
⎠

⎛
⎝

cos γ − sin γ 0
sin γ cos γ 0
0 0 1

⎞
⎠ v (A.25)

Rotating the
(

1 0 0
)T

-vector by this series of rotations
yields the local direction of the current arm xLD (cf. Fig.
19):

xLD
(

xLA
)

=
⎛
⎝

cos β cos γ

cos γ sin α sin β + cos α sin γ

− cos α cos γ sin β + sin α sin γ

⎞
⎠ (A.26)

Similarly, rotating
(

001
)T

yields the local perpendicular

xLP
(

xLA
)

=
⎛
⎝

sin β

− cos β sin α

cos α cos β

⎞
⎠ (A.27)
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Fig. 19 Transformation from local orientation to local angles and vice
versa. Euler angles are used, i.e. rotation axes are not fixed. The upper
limb (direction and perpendicular) defines X, Y, Z, i.e. the coordinate
system before any rotation. X, Y′, Z′′ serve as rotation axes and the
coordinate system after all three rotations is X′′′, Y′′′, Z′′′. p is the result
of the projection of xLP on the YZ-plane

The Jacobian for the local direction is

∂xLD

∂α
=

⎛
⎝

0
− sin (γ ) sin (α) + cos (α) sin (β) cos (γ )

cos (α) sin (γ ) + sin (α) sin (β) cos (γ )

⎞
⎠

∂xLD

∂β
=

⎛
⎝

− sin (β) cos (γ )

cos (β) sin (α) cos (γ )

− cos (α) cos (β) cos (γ )

⎞
⎠

∂xLD

∂γ
=

⎛
⎝

− cos (β) sin (γ )

− sin (γ ) sin (α) sin (β) + cos (α) cos (γ )

cos (α) sin (γ ) sin (β) + sin (α) cos (γ )

⎞
⎠

∂xLD

∂xLA =
(

∂xLD

∂α
∂xLD

∂β
∂xLD

∂γ

)
(A.28)

and the Jacobian for the local perpendicular

∂LP
x

∂LA
x

=
⎛
⎝

0 cos(β) 0
− cos(β) cos(α) sin(β) sin(α) 0
− cos(β) sin(α) − sin(β) cos(α) 0

⎞
⎠ . (A.29)

The following transition

(α, β, γ ) �→ (π + α, π − β, π + γ ) . (A.30)

changes neither the resulting local direction, nor the local
perpendicular, even if applied n times in succession. This
fact can also be inferred from Fig. 19. As a consequence,
the inverse mapping xLO → xLA has multiple solutions—if
no multiples of 2π are allowed, two solutions remain, i.e.
n ∈ {0, 1}.

For convenience, we introduce the result p of the pro-
jection of the local perpendicular xLP on the YZ-plane (cf.
Fig. 19)

p = |cos β|
⎛
⎝

0
− sin(α)

cos(α)

⎞
⎠ . (A.31)

Next, the inverse mapping is derived. To identify the first
angle α, the two-argument arctangent function as apparent
in Fig. 19 is used

α = nπ − atan2 (u1 (p) , u2 (p)) , (A.32)

where ui (p) is the i-th dimensional element of the unit vec-
tor of p and n denotes how often (A.30) is applied. To solve

for the second angle β, we multiply (A.27) by
(

1 0 0
)T

,
yielding

β = nπ + (−1)n arcsin
(

u1

(
xLP

))
. (A.33)

The summand nπ and factor (−1)n extend the range of arcsin
to the whole domain of sin and are in accordance with (A.30).

To solve for the third angle γ , we multiply (A.27) with X

cos γ = u1
(
xLD

)

cos β

and with

cos β = (−1)n |cos β| (A.34)

(cf. Fig. 19), the inverse mapping for γ yields

γ = nπ + sign
(
X′′′ · Y′′) arccos

u1
(
xLD

)

|cos β|
γ = nπ + sign

(
X′′′ · Y′′) arccos

u1
(
xLD

)
√

1 − (
u1

(
xLP

))2
(A.35)

(cf. Fig. 19). Note that Y′′ changes it’s sign for n �→ n + 1.
To obtain the Jacobian of the first angle α with respect

to the local direction xLD, (A.27) is multiplied by
(

0 0 1
)T

which yields an expression alternate to (A.32)

α = ± arccos
u3

(
xLP

)

cos β
(A.36)

The sign extends the range of arccos and can be specified (cf.
Fig. 19) yielding

α = (−1)n+1 sign (u2 (p)) arccos
u3

(
xLP

)

cos β
(A.37)

and with u3
(
xLP

) = p3 = u3 (p) |cos β| (cf. Fig. 19) and
(A.34), α can be expressed as

α = nπ − sign (u2 (p)) arccos (u3 (p)) , (A.38)
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which is in accordance with (A.30). With (34), the Jacobian
with respect to p can be derived, and because of ∇LP

x α =
∇pα, the resulting Jacobian with respect to xLP is the same

∇xLPα = nπ + sign (u2 (p)) · (Z − u3 (p) u (p))

|p|
√

1 − (u3 (p))2
. (A.39)

The equation for the second angle β (A.33) is similar to
(A.38). Thus, analogous to (A.39), the Jacobian of the sec-
ond angle β follows as:

∇xLPβ = (−1)n (
X − u1

(
xLD

)
u

(
xLD

))
∣∣xLP

∣∣
√

1 − (
u1

(
xLD

))2
, (A.40)

The third angle can not be rearranged to gain an expression
which solely depends on either the local direction or the local
perpendicular. Thus, the Jacobians of the third angle with
respect to both vectors have to be derived. The first is given
by

∂γ

∂xLD = −sign
(
X′′′ · Y′′)

⎛
⎝1 −

(
u
(
xLD

)·X√
1−(u(xLP)·X)

2

)2
⎞
⎠

− 1
2

·
(

1 − (
u

(
xLP

) · X
)2

)− 1
2 · (∇xLD

(
u

(
xLD

) · X
))T

and with (A.6) this yields

∂γ

∂xLD = −sign
(
X′′′ · Y′′) (

X − (
u

(
xLD

) · X
) · u

(
xLD

))T

∣∣xLD
∣∣
√

1 − (
u

(
xLP

) · X
)2 − (

u
(
xLD

) · X
)2

.(A.41)

The second Jacobian is given by

∂γ

∂xLP = −sign
(
X′′′ · Y′′)

⎛
⎝1 −

(
u
(
xLD

)·X√
1−(u(xLP)·X)

2

)2
⎞
⎠

− 1
2

(
u

(
xLD

) · X
) · (− 1

2

) (
1 − (

u
(
xLP

) · X
)2

)− 3
2

·
(
∇xLP

(
− (

u
(
xLP

) · X
)2

))T

and with (A.6) this yields

∂γ

∂xLP = −sign(X′′′·Y′′)·(X−(
u
(
xLP

)·X)·u(
xLP

))T

|xLP|
√

1−(u(xLP)·X)
2−(u(xLD)·X)

2

·
(
u
(
xLD

)·X)·(u
(
xLP

)·X)

1−(u(xLP)·X)
2 (A.42)

B Noise parameter derivation

In order to study a setup where all sensors carry approxi-
mately equal information, the sensors’ Gaussian noise stan-
dard deviations σ

j
Sensor were chosen to reflect the conse-

quences of the transformations (4–5) for all modality frames

j . For example, a standard deviation of the angular frame LA,
i.e., σLA

Sensor, results in the following corresponding standard
deviation in modality frame LO

σLO
Sensor = ∗

√(
∂xLO

∂xLA

)∗2 (
σLA

Sensor

)∗2
, (A.43)

(cf. (5)), where ∗2 is the element-wise square, and ∗√ the
element-wise square root.

As the sensor noise has to be independent of the arm posi-
tion, an average of σLO

Sensor over all arm positions xLA has to
be estimated. As, however, not all arm positions are reached
uniformly distributed, an accurate expression of the aver-
age cannot be derived. Instead, we simply set the “average”
slightly lower than the maximum. The maximum over all
dimensions i and arm states xLA is

max
i,xLA

((
σLO

Sensor

)
i

)
≤ √

2 · σLA
Sensor/rad, (A.44)

(obtained from (A.29), (A.28) and (A.43)). Using this maxi-
mum as a guideline, we approximated the estimated average
with(

σLO
Sensor

)
k

:≈
(
σLA

Sensor

)
k
/rad. (A.45)

Here, in all dimensions k, the dimensional elements (σ
j

Sensor)k

were assigned equal values.
Due to different trajectories from random start positions

to random goals, the approximation sometimes overestimates
and sometimes underestimates the respective standard devi-
ation. It is simply not possible to create even a fictional
setup with fixed sensor noise, where each modality frame
always contributes the same amount of information. Thus, the
modality frames can have stronger or weaker impact on the
overall state estimate. We chose the dependencies between all
different modality frames j displayed in Table 2 to provide
a good compromise.
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