
Eurographics Symposium on Geometry Processing 2018
T. Ju and A. Vaxman
(Guest Editors)

Volume 37 (2018), Number 5

Hierarchical Quad Meshing of 3D Scanned Surfaces

Dennis R. Bukenberger, Hendrik P. A. Lensch

Department of Computer Graphics, Eberhard Karls University, Tübingen, Germany

Figure 1: Snapshots of our quad meshing process - from left to right: Minerva 3D Scan Point Cloud [Bol09] / kd-tree with subsampled
vertices, interconnected tile maze / open edge path around the maze, the final quad mesh and a rendering of the reconstructed surface. The
initial point cloud may be sampled from an existing surface for remeshing or originate from a real 3D scan as demonstrated here.

Abstract
In this paper we present a novel method to reconstruct watertight quad meshes on scanned 3D geometry. There exist many
different approaches to acquire 3D information from real world objects and sceneries. Resulting point clouds depict scanned
surfaces as sparse sets of positional information. A common downside is the lack of normals, connectivity or topological
adjacency data which makes it difficult to actually recover a meaningful surface. The concept described in this paper is designed
to reconstruct a surface mesh despite all this missing information. Even when facing varying sample density, our algorithm
is still guaranteed to produce watertight manifold meshes featuring quad faces only. The topology can be set-up to follow
superimposed regular structures or align naturally to the point cloud’s shape. Our proposed approach is based on an initial
divide and conquer subsampling procedure: Surface samples are clustered in meaningful neighborhoods as leafs of a kd-tree.
A representative sample of the surface neighborhood is determined for each leaf using a spherical surface approximation. The
hierarchical structure of the binary tree is utilized to construct a basic set of loose tiles and to interconnect them. As a final
step, missing parts of the now coherent tile structure are filled up with an incremental algorithm for locally optimal gap closure.
Disfigured or concave faces in the resulting mesh can be removed with a constrained smoothing operator.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Hierarchy and geometric transformations, Modeling packages, Object hierarchies

1. Introduction

3D reconstruction is a well studied subject in computer graphics but
also gained great research interests in other fields as manufactur-
ing, robotics or the automotive industry. Many popular acquisition
techniques for 3D scans reproduce the scanned scenery as loose
sets of 3D points. However, many applications require surfaces or
meshes to make further use of an object. Many popular meshing
algorithms are based on surfaces or oriented point cloud samples
as in field-alignment or Poisson-based solutions. Our proposed ap-
proach can utilize the unoriented point cloud of an object’s surface
to directly reconstruct a watertight mesh. By construction, the out-
put of our algorithm is a pure quad mesh. Thus, it does not require

any additional remeshing for producing quads, while it is trivial to
generate triangular meshes from our output by inserting a diagonal
to each face. Our algorithm relies on a binary kd-tree for spatial 3D
clustering: This hierarchical data structure is utilized to generate
2n meaningful vertices on the point cloud. Furthermore, the kd-tree
captures valuable neighborhood affiliations during its construction,
which is then used in the meshing step.

1.1. Motivation

Most common 3D scanning techniques natively produce point
clouds as representation of the scanned surfaces. The scanning pro-
cedures either sample surfaces pointwise by construction or accu-

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

D. Bukenberger and H. Lensch / Quad Meshing

mulate correlations of multiple inputs in single points. Either way,
scanned surfaces will be represented with sparsely distributed sin-
gularities of three-dimensional position data. Some techniques are
able to recover color information or estimate normal directions per
sample. Rendering point clouds is challenging and not trivially pos-
sible with common ray-tracing or rasterization approaches, detect-
ing collisions or intersections is not directly possible and their ac-
tual shape is hard to grasp for humans and machines without ex-
plicit neighborhood information.

There exist many algorithms and mathematical approaches to re-
cover surfaces from point clouds by fitting primitives or solving
Poisson equations. However, often additional work is required to
cleanup and prepare meshes for downstream applications. The goal
of this approach is to produce clean and watertight quad-meshes.
We achieve that with a mesh structure that is adaptive to the input
as the result of kd-tree-based subsampling, exploiting the trade-off
between resolution and regularity. While common meshing tech-
niques produce triangulations or quad-dominant meshes [BLP∗13],
our algorithm is designed to produce quad-only meshes from point
clouds directly without further remeshing or subdivision steps.

1.2. Overview

The main strengths of our proposed meshing algorithm can be sum-
marized as: Points only: In contrast to other meshing algorithms,
ours does not require any further information as normals, faces,
color or motion. Quad mesh: Whereas other approaches may only
promise quad dominant meshes, ours is guaranteed to feature only
quads without remeshing. Arbitrary input: Point clouds can be
of any given size, the resulting mesh resolution can be chosen in-
dependently. Watertight: Results produced by our algorithm are
closed continuous manifold surfaces and do not need additional
care to close holes, e.g. as for 3D printing or volume rendering.
Adaptability: Tiles vary in size, adaptive to the point cloud reso-
lution instead of leaving holes as other procedures do. Alignment:
The mesh topology may follow superimposed axis-aligned regular-
ity for organic shapes or align adaptively to point cloud features.

kd-Tree &
Subsampling

Hierarchical
Interconnection

Incremental
Maze Fill-Up

Input:
Point Cloud

Output:
Quad Mesh

Figure 2: Schematic flowchart of the proposed procedure. Blue la-
bels are clickable links to the associated section in the paper. The
stages can be categorized as geometry acquisition and meshing.

The three main steps of our proposed procedure are described in
the following and are illustrated as schematic pipeline in Figure 2.

• kd-Tree & Subsampling: A balanced binary kd-tree is con-
structed by recursively subdividing the input point cloud with
axis-aligned splits. A sphere is fitted to all samples in a leaf and
a suitable proxy sample on the sphere’s surface is selected as
representative vertex. Based on the kd-tree, four vertices create a
basic quad tile. Section 3 elaborates on this in more detail.

• Hierarchical Interconnection: Dictated by the tree-node’s
relationships, special tiles are added to interconnect two related
parts of the tree on each level. As the algorithm progresses from
the leaf’s down to the root, all tiles will be interconnected. The
resulting structure is one coherent set of quad tiles, resembling
a maze. By construction it is guaranteed that after this step, all
connected quads are enclosed by one coherent path of open edges.
This algorithm is discussed in Section 4.1.

• Incremental Maze Fill-Up: All dead ends of the coherent maze-
like structure are closed in this last step. A priority queue is pro-
cessed incrementally until all open edges, and therefore, the mesh
is closed. The resulting surface is one watertight manifold, featur-
ing quad faces only. This algorithm is introduced in Section 4.2 and
by default converges to objects with genus 0. Higher genera are
possible but require manual intervention as shown in Section 6.3.

2. Related Work

Scans, Point Cloud Generation and Meshing: Many popular 3D
objects used in computer graphics (e.g. Stanford Bunny, Happy
Budda, Armadillo) originate from 3D scans [Sta14]. One of the
most ambitious scans is the digital Michelangelo project [LPC∗00]
which features a scan of the 5.17m tall David statue. A 3D model
of this statue was published in 2009, featuring about 1 billion poly-
gons. While there are many different forms and approaches of sur-
face reconstruction [BTS∗14], we will mainly keep the scope on
point cloud to mesh techniques. Algorithms for automated meshing
often optimize for some kind of mathematical regularity or global
parametization [LLZ∗11]. A popular approach to actually recover
surfaces from point clouds is the Poisson surface reconstruction
[KBH06] which, however, requires all points to be oriented. Con-
cepts to actually incorporate some form of mesh-topology feature
alignment are based on field-alignment [JTPSH15,STJ∗17]. These
concepts all create meshes based on point clouds, by exploiting ad-
ditional information as principal directions [LLZ∗11] or vertex nor-
mals [KBH06, JTPSH15, STJ∗17]. The reconstruction approaches
of Kalogerakis et al. [KNSS07] and Zhang et al. [ZLGH10] incor-
porate their own methods to determine normals in one framework.

Many concepts rely on the assumption of rather regularly sampled
point clouds, irregular input often requires specialized approaches
for surface reconstruction [HDD∗92]. For moving-least-squares
methods [LCOL07,SSW09] the sample density has great impact on
reconstruction accuracy. The technique proposed by Ohtake et al.
[OBA∗03] approaches the problem as a hiarachical fitting problem
and is therefore more robust to non-uniform sampling. Methods
that are specialized on the reconstruction from non-uniform point
clouds are so far able to generate resampled point sets [LCOLTE07]
or triangulated surfaces [HK06]. Our procedure is adaptive to sam-
ple density and always results in a watertight quad-only mesh. Re-
sults of the listed field-aligned and quad-dominant approaches tend
to be quite regular but may also feature holes or fail completely if
the sample density is varying too much (Figures 13, 19, 20).

Quad Remeshing: Once a surface is recovered from a 3D scan it
may not yet fulfill the requirements for further processing: Many al-
gorithms only produce triangulated meshes and further processing
steps are required to produce quads. Subdivision surfaces [CC78]

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

D. Bukenberger and H. Lensch / Quad Meshing

result in quad meshes but also artificially increase the mesh res-
olution which is not always tolerable. Another approach to pro-
duce quad meshes from given surfaces was formulated by Knupp
[Knu95] using a vector-field based parametrization. Further publi-
cations [KNP07,RLL∗06,BZK09] elaborate on more details of this
method. The approach for remeshing by Daniels et al. [DSC09] in-
troduced a novel hierarchical mapping method to reconstruct arbi-
trary polygonal meshes with quads from simplified base domains.
Mapping a grid of integer iso-lines from R2 to surfaces creating
quad meshes was later introduced as integer grid map by Bommes
et al. [BCE∗13]. In the technique for quad remeshing published by
Ebke et al. [ESCK16] the user has interactive control to modify
topology and mesh flow. However, all quad remeshing approaches
require a surface (parameterized or meshed) which is not given
when starting from a point cloud.

Relevant work on geometry: Mousa et al. [MCAG07] employ a
kd-tree in a similar way as we do, however theirs is aimed at effi-
cient spherical harmonics representations of 3D objects rather than
meshes. The process of deep points consolidation proposed by Wu
et al. [WHG∗15] associates each surface point with a deep point
which form a meso-skeleton. The reconstructed surface is an im-
provement to naive solutions but involves a Poisson solver nev-
ertheless. Resulting meshes of our procedure sometimes appear
faceted, cosmetic improvements, e.g., for rendering purposes can
be achieved with bilateral mesh denoising as proposed by Fleish-
man [FDCO03]. Needless to say, our results are also suitable to
smoothing algorithms as Taubin’s technique for surface smoothing
without shrinkage [Tau95], subdivision surfaces or quad mesh sim-
plification [TPC∗10].

3. kd-Tree: Divide and Conquer on arbitrary 3D Point Clouds

Point clouds of different sources bear challenges as varying sample-
count, -density or -distribution. We propose an algorithm to face
these challenges using abstraction: A specialized divide and con-
quer scheme allows us to subsample given information and recur-
sively construct a hierarchical data structure modeling spatial co-
herence. Sole assumption in our procedure is that input samples
originate from surfaces and not volumes. Nevertheless, the algo-
rithm is tolerant to noise and can handle (single) outliers.

Our reconstruction is based on a balanced kd-tree. Benefits of this
tree are that it is easy to construct and traverse and has low com-
putation and memory overhead. Furthermore, an important feature
for our followup meshing strategy is that the kd-tree can be con-
structed to be balanced, which is not very suitable for more general
binary-space-partitioning (BSP) approaches or non-binary Octrees.
The grouped samples contained in our tree’s leaf nodes are used to
construct a new representative vertex. Four of these new samples
will later be connected to one quadrilateral face, in the following
also called a tile. New tiles are added on each tree level to intercon-
nect two sets of tiles each, obeying the tree hierarchy. This is why
the tree’s internal structure is essential for the upcoming intercon-
nection and meshing operations in Section 4.

As listed in the introduction, the first step in our procedure is to es-
tablish a kd-tree. This section is dedicated to its construction. Sec-
tion 5.1 introduces a kd-tree extension for feature alignment where
splits are no longer axis-aligned but derived from input features.

3.1. Split Characteristics

Figure 3: Seen from above from left to right: Source mesh of a
torus; BSP-tree using mean split position and eigenvector split di-
rection; our balanced kd-tree with axis aligned splits at the median.

The construction of the tree has impact on the distribution of our
proxy vertices and therefore on the resulting mesh structure. Fig-
ure 3 compares results of two different split approaches: Recur-
sively splitting the point sets along the plane that is orthogonal to
the largest eigenvector creates a very far-flung and dispersed tree.
We achieved a more regular and therefore more suitable structure
with splits along the three world space axes x,y,z. The largest vari-
ance among these axes determines which dimension is used for the
split. If not stated otherwise, we used k = 100 as criteria to split
a node with more than k samples, which yields at least 50 sam-
ples per leaf node. Figure 15 in the results Section 6.1 compares
outcomes using four different ks on the same point cloud. The sub-
sampling technique in Section 3.2 approximates all leaf samples
with a least-squares-fitted sphere. Therefore, at least 4 samples per
leaf are advisable and 8≤ k should be satisfied.

base shape axis aligned bounding boxes kd-tree

Figure 4: 2D example of an asymmetric and not axis aligned shape
with rounded and sharp features. The spread of the kd-tree already
approximates the surfaces after only a few levels.

As illustrated in Figure 4, the impact of axis aligned splits is only
minor and the recursive decomposition is adaptive enough to ap-
proximate organic shapes and structures without axis aligned sym-
metry. Nevertheless, in Section 5.1 we demonstrate the possibility
to use split planes adaptively aligned to the point cloud. Further-
more, the example on the right in Figure 4 visualizes the importance
of the assumption that the point cloud samples model surfaces and
not volumes. Only the first few nodes close to the root actually pop-
ulate the interior of the sampled space. Nodes on or close to the leaf
level are already distributed over the sampled surface itself.

Balance: To ensure the binary tree is balanced and all leafs end up
on the same level, the median is employed as split position. Further-
more, a leaf count of 2i with 2 ≤ i is always divisible by 4 which
is crucial to construct quadrilateral faces. For the following, let the
root node be level 1 and leaf nodes on level n. Four leaf nodes are
required to construct at least one quadrilateral face, therefore all
leaf nodes must be on a level 3≤ n.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

D. Bukenberger and H. Lensch / Quad Meshing

3.2. Subsampling: Spherical Surface Fits

One representative vertex for all samples in a leaf is created by sub-
sampling the points inside a node. The synthetic vertices created in
this step are the sole geometric base for the generated surface mesh.
No further points are added in any other stage of our procedure.

C
r

P′

|s0|2
...
|sm|2

=

2s0 1
...

...
2sm 1

[Ct
]

(1)

r =
√
|C|2 + t (2)

P =
1

m+1 ∑
m
i=0 si (3)

P′ =C+ r
P−C
|P−C| (4)

Figure 5: Gray points visualize samples s ∈ S (with |S| = m+ 1)
of a single leaf node. The representative vertex P′ is found on the
surface of a least-squares fitted sphere with center C and radius r.

A leaf node may contain up to k samples of the point cloud. Due
to the spatial decomposition in the kd-tree, the samples s ∈ S in a
leaf are in some sense a nearest neighborhood. A single point P′

is determined to represent all samples in a leaf node. The arith-
metic mean P (Equation 3) of all samples’ 3D positions is not suit-
able to model bent or curved surfaces properly and is subject to
noise. Therefore, a sphere is fitted to the set of samples: The over-
determined system of Equations 1 is solved in a least-squares sense
and yields the sphere’s center C and radius r (Equation 2). The
mean of all samples P is then projected onto the sphere’s surface as
point P′ to better represent the properties of the actually sampled
surface. This is illustrated in Figure 5 and formulated in Equation 4.

3.3. From Leafs to Quad Tiles

All vertices of the final quad mesh are essentially the kd-tree’s leaf
node’s P′ points. To join vertices to become faces, one has to deter-
mine how to connect them: Our algorithm starts with nodes on level
n−2. Each of those nodes has two children on level n−1 which
again have two leaf nodes each. This makes four leaf nodes (each
has a vertex P′) for a node on level n−2 to form a tile. Besides their
affiliation, there is no information on how these vertices should be
arranged as a quad face. In a triangular case there is only one op-
tion but in a quad face there are three possibilities, as illustrated in
Figure 6. For our goal of a regular mesh, faces are favorably convex
and without twists. The best solution out of the three possibilities is
found as the one with the smallest perimeter. P′ points are usually
inside their leaf’s bounding box, otherwise they may be clipped.

A B

CD

A B

CD

A B

CD

Figure 6: Three possible constellations to form a quad face with
four vertices A,B,C,D. Our algorithm will select the solution on
the right, which has the smallest perimeter.

Since bounding boxes do not intersect each other and a tile is con-
structed from four nearest leaf nodes we can guarantee that created
tiles will also not intersect each other.

3.4. Subsequent Split Alignment

Figure 7: kd-Tree and tiles resulting from samples of a simple 2D
plane. Left: When nodes on level n−2 and n−1 split in the same
dimension. Right: Results with our split alignment correction.

It is possible that nodes on level n−2 and n−1 split along the
same dimension. As illustrated in red on the left in Figure 7, this
causes tiles to become very narrow. If only one level n−1 node has
the same split dimension as its parent, tiles become disfigured as
pointed out in orange. Either of these cases might be the best local
split according to the applied condition, however, there is no point
in keeping those tiles if their shape is counterproductive for further
use. Therefore, we extended our tree construction algorithm to de-
tect such constellations and make use of the second best option for
the split dimension. Improved results of realigned level n−1 nodes
are illustrated in green on the right in Figure 7.

4. Meshing

This section elaborates further details on our main meshing method
which proceeds in two steps: First, the basic set of loose quad tiles
from the kd-tree is interconnected to form one coherent set of tiles.
Second, dead ends of the resulting maze-like structure are filled up
incrementally to finalize the meshing.

4.1. Hierarchical Interconnection

Figure 8: A color coded example of geometry on the left with its
corresponding tree structure on the right. Levels n and n−1 are il-
lustrated in gray and white respectively, green nodes are level n−2.

The following algorithm is illustrated in Figure 8. As described in
Section 3.3, the initial set of tiles (�) is created from descendants
of level n−2 nodes (• •• •). By progressing through the tree from
leaf to root level, the algorithm determines which sets of tiles are
about to be connected next: A level n−3 node (•) specifies which
two tiles from level n−2 (�) should be connected by inserting a
new one (�). A level n−4 node (•) specifies which two sets of
three tiles (���) should be connected with a new one (�), and so
on. Although there are usually more possible ways, only one tile is
created per node which yields 2i−1−1 tiles per level 1≤ i.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

D. Bukenberger and H. Lensch / Quad Meshing

This constraint is crucial: The created structure will always feature
only one closed path of coherent open edges around the geome-
try. The yet unoccupied tile positions are resolved with the fill-up
algorithm detailed in Section 4.2.

Finding a Connection: Each node has two children and each child
comes with a coherent set of tiles, starting on level n−2 with only
one tile per node. It has to be determined for each node, how the
tile sets of its children can be connected by inserting one new tile.
Therefore, the algorithm has to select one edge of each child’s tile
set, create two new edges and add them as the connecting tile.

Figure 9: Only edges with their normals facing other geometry are
considered for new faces. Combined length of the dotted red lines
(edges to be created) indicates where to create a new face.

Similar to the situation illustrated in Figure 6, the algorithm has
to determine an order for four vertices in the new tile. Since two
edges are already given, say AD and BC, the center case in Figure 6
is not possible and there are only two options left. As one can easily
comprehend, one constellation of edge pairs is usually more suit-
able to be connected than the other. It has to be determined where
the connection can be established: We chose the combined length
of the two new edges as the objective. These are illustrated in red
in Figure 9. The tile, that requires the shortest two new edges will
be added. However, the number of possible edge pairs grows very
quickly: For a level n−2−i with 1 ≤ i ≤ n− 3 the number of pos-
sible edge pairs to chose from is 22+2i.

To keep this computation feasible we filter out the majority of edges
beforehand, based on the criteria that their edge normals have to
point in to the direction of connectable geometry. The four vertices
of a tile are not necessarily coplanar, so the tile normal is computed
as the cross product of the tile’s diagonals. An edge normal is per-
pendicular to the edge and computed as the cross product of edge
direction and tile normal. As illustrated in Figure 9, from 16 possi-
ble edge pairs there is now only one pair of edges left where both
edge normals point towards the other set of tiles. However, if the
number of edge pairs is still too large, we can more rigorously limit
the set of pairs to a fixed number k. Then only the first k edge pairs
with the smallest distance between their midpoints will be consid-
ered for the creation of a new tile. We also achieved great filter
results with a maximum threshold λm on the midpoint to midpoint
distance of an edge pair. We chose m as the mean length of all ex-
isting edges from the basic tile set and a scaling factor 1≤ λ≤ 10
dependent on the desired mesh regularity.

4.2. Fill-Up: A-Maze-ing Surface Reconstruction

The interconnected tiles from the tree traversal create a tile struc-
ture resembling a maze spanning through the whole point cloud. As
commonly known, the distinction between a maze and a labyrinth is
that a labyrinth has only one way through and no dead ends whereas

a maze can have multiple ways and also dead ends. In our mesh
there is actually only one path connecting two tiles but it still fea-
tures dead ends, and therefore, technically classifies as a maze.

The maze outline is one coherent path of all open edges, topologi-
cally equivalent to closed loop. By construction the number of open
edges is dividable by 4 so that it is always possible to close this cir-
cle in an iterative fashion with quads. The following algorithm only
considers the maze’s negative so that empty space is actually inter-
preted as closable. To fill the loop hole, the algorithm inserts one
quad at a time by closing the surface that is spanned by three con-
nected open edges. A priority queue ensures to process the most
well-formed quad candidate first. In general this will lead to the ef-
fect that the maze hole is filled up from the dead ends to the more
open space.

(A,B,C) (I,J,K)
(B,C,D) (J,K,L)
(C,D,E) (K,L,M)
(D,E,F) (L,M,N)
(E,F,G) (M,N,O)
(F,G,H) (N,O,P)
(G,H, I) (O,P,A)
(H, I,J) (P,A,B)

A
B C

D

EF
G

H I J
K

L

M
NOP

Figure 10: Adjacent open edges A, . . . ,P ordered in triples, inner
edges (dashed) are ignored. Only orange triples feature edges of
three distinct tiles, possible closing edges are drawn in on the right.
The green edge is the best, so (C,D,E) is closed up.

Three edges are considered as a dead end if they are all open
(only one face attached) and form one coherent edge path. There-
fore, all open edges are assigned to groups of three adjacent
edges each, as illustrated by the example in Figure 10. How-
ever, not all triples should be considered: Negative dead-ends
like (F,G,H), (P,A,B) and corner-cases like (A,B,C), (E,F,G),
(G,H, I), (I,J,K), (J,K,L), (L,M,N), (M,N,O) and (O,P,A)
should be discarded. We can filter out these cases with the addi-
tional constraint that all three edges in a triple must originate from
three distinct tiles. This is also illustrated in Figure 10. The remain-
ing six triples are highlighted in orange, their corresponding close-
up edges are drawn in on the right (blue, green).

Our algorithm maintains a priority queue featuring all considerable
triples sorted by the objective function f (. . .) in ascending order.
Objective f (eL,eC,eR,eN) measures the well-formedness of a po-
tential quad with new edge eN in context of a left-center-right edge
triple (eL,eC,eR). It is formulated in Equation 5, with 1 = λϕ +λθ.
Components ϕ(. . .) and θ(. . .) are illustrated in Figure 11.

f (eL,eC,eR,eN) = λϕ ·ϕ(eL,eC,eR,eN)+λθ ·θ(eL,eR) (5)

The first term of the objective function is expressed in Equation 6
and determines the ratio of the new edge compared to the perime-
ter of the whole face. In the worst case the new edge eN has the
same length as eL,eC and eR combined and the quad would have no
surface area at all.

ϕ(eL,eC,eR,eN) = 4

∣∣∣∣∣ |eN |
∑i∈[L,C,R,N] |ei|

− 1
4

∣∣∣∣∣ (6)

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

D. Bukenberger and H. Lensch / Quad Meshing

Equation 7 expresses the second part of the objective function,
which considers the angle between opposite edges eL and eR. Here
the worst case is defined as eL and eR pointing away from each
other. The most desirable scenario is that both are parallel and point
into the same direction.

θ(eL,eR) =

eL
|eL| ·

eR
|eR| −1

−2
(7)

The triple with the smallest value for f (. . .) is popped off the queue
and instantiated as new face. In Figure 10 the best possible edge
corresponds to the triple (C,D,E) and is marked in green. This
step is repeated incrementally on all open edges until the queue is
empty and therefore all dead ends are closed up. Figure 12 shows
exemplary progress of this algorithm based on the mesh from Fig-
ure 8. An animated progress of the whole procedure is featured in
our supplemental video.

|eN |

|eC||eL| |eR|

|eN |

|eC||eL|

|eR|
|eN |

|eC|

|eL| |eR|

~eL ~eR ~eL

~eR ~eL ~eR

bad good

Figure 11: Good and bad edge constellations according to Eq. 5.
Edge-length ratios in the upper row are evaluated by the ϕ-term
(Eq. 6), enclosed angles in the bottom row by the θ-term (Eq. 7).

Figure 12: Progress steps of filling up the maze structure with new
quad faces. From left to right after 0, 6, 12 and 18 iterations.

5. Extensions

This section introduces two techniques to advance the algorithms
described in Sections 3 and 4 with the ability to produce feature-
aligned and more regular mesh topology.

5.1. Feature Alignment with Robust Principal Axes

The orientation and layout of our final mesh is founded in the un-
derlying kd-tree and its axis-aligned splits. While organic shapes as
the busts in Figure 16 often benefit from this superimposed orien-
tation, an adaptive alignment is suitable in other scenarios e.g. as
shown for the finger in Figure 13.

Mesh flow alignment to the scanned object’s shape is an important
feature in many quad (re)meshing applications. Our default axis-
aligned setup is easily extendable to incorporate feature alignment

as well. Therefore, we introduce alignment layers in our kd-tree:
Instead of axis-aligned splits, each node determines a unique ori-
entation for its subset of the point cloud. Four nodes on level 3
are illustrated with their orientation axes in Figure 13e. We em-
ploy the method introduced by Liu et al. [LR09] for determining
robust principal axes along which the kd-tree splits are performed.
Decedents of alignment nodes may inherit the orientation of their
parent nodes for subsequent recursive splits along the same axes or
determine their own orientations if necessary.

Figure 13 compares reconstructions with different algorithms based
on the same point cloud. The field-alignment algorithms (a) and (b)
natively align mesh topology to principal directions of the oriented
point cloud samples. The official implementations of Jakob et al.
[JTPSH15] and Schertler et al. [STJ∗17] crashed if the input point
cloud did not feature faces or normals. Therefore, artificial normals
were created using Meshlab’s neighborhood-based algorithm with
default settings. For comparability, the algorithms were tuned to
produce a target resolution of 2k faces. Due to the low and varying
point cloud resolution the algorithms of Jakob et al. (13a) degraded
gracefully with a gap close to the finger tip and Schertler et al.
(13b) produced okay-ish results only around the knuckle joint. With
default settings, the application of Schertler et al. is able to recover
the finger but fails if tuned to match this mesh resolution.

Our default solution with axis-aligned splits (13c) is a watertight
quad mesh but the mesh flow is not yet aligned to the fingers struc-
ture. A feature aligned result of our method using the automatically
oriented nodes from (e) is shown in Figure 13d where our quad
mesh follows the fingers shape.

(a)

(b)

(c)

(d)

(e)

Figure 13: (a) Bones of a finger reconstructed with [JTPSH15],
(b) [STJ∗17], (c) Ours w/ axis-aligned splits, (d) Ours w/ adaptive
splits, (e) Point cloud and automatically aligned nodes used in (d).
Legend: � normal quad, � backfacing, � non-quad.

5.2. Additional Mesh Optimization

To improve mesh quality we apply optimizations in two stages: The
first step is a rectification operation applied locally on each quad

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

D. Bukenberger and H. Lensch / Quad Meshing

tile before the tile interconnection in Section 4.1. Therefore, ver-
tices of a tile are repositioned around its initial center of gravity
by leveling out the diagonals of the tile. With increasing number
of iterations, tiles more and more approximate a square shape. Due
to more regularly shaped tiles, this step has actual influence on the
interconnection result afterwards.

Figure 14: Our raw output mesh on the left and after regularization
and constrained smoothing on the right. Stanford Bunny [Sta14].

After the final step, when the mesh is filled up and watertight we
can apply a constrained smoothing operator. Vertices are moved
with respect to their mesh neighborhood but constrained by their
affiliated point samples. This relaxation has no impact on the mesh
topology. A comparison of a raw output mesh and an optimized
result is shown in Figure 14. Colored boxes point out improvements
due to the first regularization step, with improved mesh flow.

6. Discussion

In this section we discuss the performance and capabilities of our
proposed concept. Results on real and synthetic data are featured
in Section 6.1, comparisons to state-of-the-art quad-meshing pro-
cedures are documented in Section 6.2.

6.1. Results

Examples for meshing with different resolutions are illustrated in
Figure 15. With a fixed number of real 3D scan samples, the split
condition k was lowered from left to right. This has direct influence
on the number of tree levels and therefore the number of vertices
and tiles of the mesh. As one can observe, the rough shape and key
features are captured in all resolutions.

k=500, n=8 k=100, n=10 k=50, n=11 k=10, n=14

Figure 15: Lower split conditions k increase the tree depths n and
resulting mesh resolution. Minerva Scan [Bol09], 98.5k samples.

The images shown in Figure 16 illustrate results of simulated 3D
scan meshing. An arbitrary number of surface samples is dis-
tributed randomly over given 3D models. To approximate 3D scan
results with noise, all samples were perturbed with random jitter

vectors. Our resulting meshes form a complete watertight manifold
of genus zero. Although axis-aligned kd-tree splits were used, the
organic and rounded nature of the surfaces is captured nonetheless.
Insufficient sample density on fine details may cause mesh artifacts
as pointed out with the red box. The green box shows a flawless re-
construction of the same region when sampled with higher density.

Figure 16: Meshing results of the Igea Artifact, Max Planck
[DFRS03] and Nefertiti [NAB] busts. Sampling artifacts (red) on
fine structures are resolved with higher sample density (green).

Our results on a real 3D scan are shown in Figure 17 Since the
angel is captured only from the front, the point cloud’s resolution
decreases on surface regions which are close to parallel to the view
direction as on the side of the model. Our result mesh adapts this
varying resolution with quads of different size. The scan features
blind spots under the chin and arms without any samples. Despite
this depth discontinuity and lack of data, our algorithm recovers a
continuous surface. The object’s back-plane was removed manually
for illustration purposes.

Figure 17: Reconstruction of a 3D scan [GRL17] with 1.4M sam-
ples (only 10k visualized). Our mesh is adaptive to the scan’s reso-
lution and covers even the empty areas under the chin and arms.

The examples shown in Figure 18 demonstrate the impact of the
input’s orientation on our result meshes. Whereas a) was sampled
as-is from a given axis-aligned model, b) was rotated by 45◦ on
the vertical axis prior to the following axis-aligned kd-tree subdi-
vision. The resulting meshes differ, but neither drastically suffered
from the assumed axis-alignment. c) and d) show examples derived

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

D. Bukenberger and H. Lensch / Quad Meshing

from the same oriented input as a) and b) respectively but with an
alignment-node, as introduced in Section 5.1, on tree level 0. This
allows the subdivision to start on an approximately identically ori-
ented input and c)≈ d). Small differences may still occur due to the
RANSAC-based algorithm [LR09] for determining the orientation.

a) b) c) d)

Figure 18: Influence of orientation: a) Object sampled as-is, b)
rotated vertically by 45◦, c) same as a), d) same as b). But c) and d)
both include an alignment node (Section 5.1) on level 0. Therefore
our results become invariant to the input orientation and c) ≈ d).

Jakob et al. Jakob et al. (subdiv) Schertler et al. Schertler et al. (subdiv) Ours

Figure 19: Reconstructions on the same point cloud (with artificial normals for Jakob et al. and Schertler et al.) for a target resolution
of ∼8k faces. Backfacing tiles are shaded red to show holes, non-quads in orange. The bottom row shows color-coded curvature. subdiv
columns show results from coarser meshes, which were then subdivided to also feature quad faces only and to match the target resolution. As
pointed out in the bottom row, subdivision may introduce unwanted curvature artifacts. Table 1 lists a statistical comparison of these meshes.

6.2. Comparison to state-of-the-art quad-meshing procedures

A comparison of our work against the state-of-the-art for quad-
meshing from point clouds is illustrated in Figure 19. All algo-
rithms used the same input point cloud and were tuned to produce
the same output resolution. As required for the available imple-
mentations of Jakob et al. and Schertler et al., normals were again
estimated from the basic point cloud in a preceding step. Our proce-
dure is adaptive to the underlying point cloud density and therefore,
the resulting mesh might appear not as homogeneous as the com-
petitor’s. This can be observed in the neck region, where our result
features bigger tiles to compensate for lower sample density and
the others just produced holes. The same effect is illustrated in Fig-
ure 20 which explicitly compares behavior under varying sample
density. Zoom-in boxes on the meshes in Figure 19 point out re-
gions where sample density was insufficient for this level of detail
or high curvature. This results as holes in the mesh of Jakob et al.
and an increased number of non-quads in the mesh of Schertler et
al., whereas ours adapts to the input and returns a watertight quad-
only mesh. As the curvature comparison in the bottom rows show,
our result models coarse and fine details with comparable quality.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

D. Bukenberger and H. Lensch / Quad Meshing

The subdiv columns show results from coarser mesh results which
were subdivided. The result of Jakob et al. was subdivided us-
ing their official implementation, the result of Schertler et al. with
Blender. This additional step also yields quad-only meshes but on
the other hand introduces curvature artifacts, which do not occur in
results that natively meet the target resolution.

Vertices Valence Vertices per Face
≤ 3 4 5≤ ≤ 3 4 5≤

Jakob et al. 3.3% 95.1% 1.6% 1.3% 98% 0.7%
Schertler et al. 1.5% 91.5% 7% 7.2% 92.8%

Ours 8.2% 84.3% 7.5% 100%

Table 1: Statistical evaluation of result meshes shown in Figure 19,
accounting only native target-resolution meshes.

A quantitative comparison of the results from Figure 19 is listed
in Table 1. On one hand, the mesh of Jakob et al. counts the least
amount of singularities but on the other hand left some open regions
in the mesh. The mesh of Schertler et al. was able to cover such re-
gions but features an increased amount of non-quads in these areas.
Besides that our mesh natively features quad tiles only, it is also
the only actually closed manifold and therefore perfectly suitable
for 3D printing or volume rendering without further steps required.

Adaptivity: Two extreme examples with varying sample density
are illustrated in Figure 20: The input point cloud sphere for the
examples on the left features 90% of all samples on the upper and
10% on the lower hemisphere. Whereas field-aligned approaches
for quad-dominant meshes [JTPSH15, STJ∗17] failed to come up
with useable results in this case, our algorithm was able to handle
a density gradient even as steep as at this equator line. Our adap-
tive mesh tends to become a bit more inharmonious but recovers a
closed manifold nevertheless. Examples in Figure 13 show another
comparison focused on feature alignment where competing results
also contain holes due to the same reason.

Jakob et al. Schertler et al. Ours Ours

Figure 20: Meshing results under mixed sample density. Left: 100k
samples with 90% on the upper and 10% on the lower hemisphere.
Right: A unit plane with inverse quadratic decreasing density.

The 2D plane on the right of Figure 20 was sampled uniformly in
x and with inverse quadratic decreasing density in y. Nevertheless,
our mesh adapts to this change in sample density flawlessly.

6.3. Limitations

The first part of our procedure, which is the kd-tree decomposi-
tion, subsampling and hierarchical tile interconnection succeeds to
produce a coherent maze of quad tiles on any given input. How-
ever, the default reconstruction algorithm introduced in Section 4.2,

converges only on object structures of genus zero properly. Per def-
inition, the algorithm incrementally fills up dead ends of the maze
structure until the surface is closed. For objects with holes (genus
larger than zero) the mesh will eventually run out of dead ends to
fill up. In Figure 21 b) the dead ends are actually the cross sections
through the torus. The algorithm will start to close up these cross
sections with caps and converge to the c-shape of genus zero shown
in c). However, after insertion of the two quads pointed out in d),
the algorithm is able to finish the mesh with genus one.

a) b) c)

d) e)

outside

inside

inserted

Figure 21: With our default algorithm the torus in the upper row is
resolved with genus zero. After insertion of the two quads pointed
out in green, the torus is resolved with genus one.

A critical point in every signal reconstruction is the issue of sample
density versus highest feature frequency. As one can easily compre-
hend, samples that are placed too sparse can not contribute to re-
construct fine details. In our case, the sampling artifacts show up as
dents or wrinkles in the final mesh, e.g. at very small features. Ex-
amples of artifacts in meshes can be observed at the ears of the two
busts on the right in Figure 16. The thickness of the ears and there-
fore the distance of vertices on these surfaces is less than the regular
tile size. These unfavorably sampled tiles are interconnected never-
theless, causing the edgy outer ear shapes. Since these artifacts can
be justified as sampling issues, increasing the sample density and
therefore mesh resolution can resolve these situations. Other small
features as dents or bulges are captured and reconstructed with the
available resolution: See the small dent on the chin of Igea or the
characteristic applications on Nefertiti’s crown.

+5%

0%

-5%

0% 0.1% 1% 10% in
0.1522% 0.3292% 0.7197% 2.8108% out

Figure 22: Mesh results: 500k samples perturbed with different
magnitudes of input noise (in). Absolute mean errors of the recon-
struction compared against ground truth are listed in the out-row.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

D. Bukenberger and H. Lensch / Quad Meshing

Results under varying levels of input noise are illustrated in Fig-
ure 22. For this test, 500k samples from the Igea artifact (Figure 16)
are perturbed with random jitter noise vectors of varying amplitude.
The noise scale amplitudes are given below the plots in the in-row.
Values listed in the out-row are the means of absolute errors against
ground truth, compared to the object bounding box’s diagonal serv-
ing as 100%. With such heavy noise as in the rightmost example,
it becomes unclear if samples belong to the same surface and how
it can be subsampled. The fill-up algorithm will do its best on the
ill-placed tiles but can not guarantee to avoid self intersections.

6.4. Performance and Complexity

The algorithm for hierarchical interconnection in Section 4.1 de-
rives its complexity from the size of the binary kd-tree. However,
connectable edges are prefiltered and sorted based on normal direc-
tions and reasonable distance to each other. For filtering, the algo-
rithm once has to process possible edge pairs, but due to the simple
geometric nature of this operation, the theoretical O(n2) complex-
ity is neglectable, nevertheless. The main benefit is gained by lim-
iting computation time and memory consumption to a fixed max-
imum for the actual matching. The default fill-up approach from
Section 4.2 maintains a priority queue of edge triples. Each itera-
tion introduces one new edge by closing and removing three open
ones. Therefore, this algorithm operates in linear time by effec-
tively removing two edges each step. There is no overhead due to
global optimization, since the maze structure already provides a
global basis and further only locally optimal solutions are required.

The result shown in Figure 17 is one of our largest reconstructions
with more than 1.4 million surface samples. Nevertheless, the tree
decomposition, subsampling and tile interconnection was resolved
in less than one minute with unoptimized Python code on a single
CPU. With the same conditions, the fill-up routine consumed less
than 10 seconds to resolve 214 open edges.

6.5. Outlook

Results in this paper where our procedure is applied as remesh-
ing tool are based on samples randomly distributed over the sur-
face. However, the limitations in Section 6.3 caused by sampling
issues can be resolved very easily with a more sophisticated sam-
pling strategy as demonstrated in Figure 16. Samples placed in cor-
relation to surface curvature would cover small features with more
samples, so they could be recovered with appropriate mesh reso-
lution. Furthermore, in a remeshing application an input mesh is
given and can be used to further optimize our remeshed vertices.

Figure 21 illustrates a method to overcome the topology issue for
reconstruction of objects with a genus larger than zero. This could
be automated using our algorithm for hierarchical interconnec-
tion, introduced in Section 4.1. The algorithm determines reason-
able pairs of edges based on their normal orientation and distance
to each other. Our incremental fill-up algorithm from Section 4.2
could run interleaved with one of these steps every nth iteration in
order to handle objects of even higher genus.

Many strengths of our technique can be derived from features of the
underlying kd-tree. Our created maze structure acts as a very pow-
erful abstraction of a point cloud. It is one coherent mesh of 2i−1−1

quad tiles, guaranteed not to intersect itself and is surrounded by
one coherent path of 2i open edges. The kd-tree furthermore repre-
sents meaningful neighborhood affiliations and adjacency informa-
tion. This data could be valuable input for a diversity of machine
learning approaches featuring convolutional neural networks, e.g.,
for classification, mapping or segmentation.

7. Conclusion

This publication presents a novel and innovative way to deal with
the task of point cloud reconstruction. Our framework creates wa-
tertight quad meshed on noisy point clouds of a scanned surface
without any topology information or estimated normal orientations.
As demonstrated in exemplary scenarios with respect to varying
sample density, our method recovers watertight manifold quad-
only surfaces where state-of-the-art field-aligned approaches tend
to fail. However, when compared to these methods supplied with
sufficiently uniform samples, there is still potential to improve our
results in terms of mesh regularity and number of singularities. Ro-
bustness to noise, complex topology and minimizing approxima-
tion errors are important topics that lie beyond the scope of this
paper and have to be explored in future work. Nevertheless, since
our resulting meshes are natively free of holes, they are trivially
suitable for 3D printing or volume rendering where closed meshes
are crucial. Our novel approach to construct tile vertices is not only
suitable to approximate rounded organic structures but can also
robustly recover coplanar regions. Independent from the approxi-
mated mesh, axis-aligned kd-tree splits favor regularly distributed
vertices. However, special tree nodes also allow to automatically
determine the orientation of point cloud segments and adapt the
split direction for feature-aligned mesh topology.

References

[BCE∗13] BOMMES D., CAMPEN M., EBKE H.-C., ALLIEZ P.,
KOBBELT L.: Integer-grid maps for reliable quad meshing. ACM Trans.
Graph. 32, 4 (July 2013), 98:1–98:12. URL: http://doi.acm.
org/10.1145/2461912.2462014, doi:10.1145/2461912.
2462014. 3

[BLP∗13] BOMMES D., LÉVY B., PIETRONI N., PUPPO E., SILVA C.,
TARINI M., ZORIN D.: Quad-mesh generation and processing: A sur-
vey. Computer Graphics Forum 32, 6 (2013), 51–76. Article first pub-
lished online: 4 MAR 2013, DOI: 10.1111/cgf.12014. URL: http:
//vcg.isti.cnr.it/Publications/2013/BLPPSTZ13a. 2

[Bol09] Dept. of Math. Bologna University Scan Repository, 2009.
Online; accessed Oktober-2017, http://www.dm.unibo.it/
~morigi/homepage_file/research_file/scan_db/res_
scan.html. 1, 7

[BTS∗14] BERGER M., TAGLIASACCHI A., SEVERSKY L. M., ALLIEZ
P., LEVINE J. A., SHARF A., SILVA C. T.: State of the Art in Surface
Reconstruction from Point Clouds. In Eurographics 2014 - State of the
Art Reports (2014), Lefebvre S., Spagnuolo M., (Eds.), The Eurograph-
ics Association. doi:10.2312/egst.20141040. 2

[BZK09] BOMMES D., ZIMMER H., KOBBELT L.: Mixed-integer
quadrangulation. ACM Trans. Graph. 28, 3 (July 2009), 77:1–
77:10. URL: http://doi.acm.org/10.1145/1531326.
1531383, doi:10.1145/1531326.1531383. 3

[CC78] CATMULL E., CLARK J.: Recursively generated b-spline sur-
faces on arbitrary topological meshes. Computer-aided design 10, 6
(1978), 350–355. 2

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

http://doi.acm.org/10.1145/2461912.2462014
http://doi.acm.org/10.1145/2461912.2462014
http://dx.doi.org/10.1145/2461912.2462014
http://dx.doi.org/10.1145/2461912.2462014
http://vcg.isti.cnr.it/Publications/2013/BLPPSTZ13a
http://vcg.isti.cnr.it/Publications/2013/BLPPSTZ13a
http://www.dm.unibo.it/~morigi/homepage_file/research_file/scan_db/res_scan.html
http://www.dm.unibo.it/~morigi/homepage_file/research_file/scan_db/res_scan.html
http://www.dm.unibo.it/~morigi/homepage_file/research_file/scan_db/res_scan.html
http://dx.doi.org/10.2312/egst.20141040
http://doi.acm.org/10.1145/1531326.1531383
http://doi.acm.org/10.1145/1531326.1531383
http://dx.doi.org/10.1145/1531326.1531383

D. Bukenberger and H. Lensch / Quad Meshing

[DFRS03] DECARLO D., FINKELSTEIN A., RUSINKIEWICZ S., SAN-
TELLA A.: Suggestive Contour Gallery, 2003. URL: http://gfx.
cs.princeton.edu/proj/sugcon/models/. 7

[DSC09] DANIELS J., SILVA C. T., COHEN E.: Semi-regular
quadrilateral-only remeshing from simplified base domains. In Com-
puter Graphics Forum (2009), vol. 28/5, Wiley Online Library, pp. 1427–
1435. 3

[ESCK16] EBKE H.-C., SCHMIDT P., CAMPEN M., KOBBELT L.: In-
teractively controlled quad remeshing of high resolution 3d models.
ACM Trans. Graph. 35, 6 (Nov. 2016), 218:1–218:13. URL: http://
doi.acm.org/10.1145/2980179.2982413, doi:10.1145/
2980179.2982413. 3

[FDCO03] FLEISHMAN S., DRORI I., COHEN-OR D.: Bilat-
eral mesh denoising. In ACM SIGGRAPH 2003 Papers (New
York, NY, USA, 2003), SIGGRAPH ’03, ACM, pp. 950–953.
URL: http://doi.acm.org/10.1145/1201775.882368,
doi:10.1145/1201775.882368. 3

[GRL17] GROH F., RESCH B., LENSCH H. P. A.: Multi-
view Continuous Structured Light Scanning. Springer In-
ternational Publishing, Cham, 2017, pp. 377–388. URL:
https://doi.org/10.1007/978-3-319-66709-6_30,
doi:10.1007/978-3-319-66709-6_30. 7

[HDD∗92] HOPPE H., DEROSE T., DUCHAMP T., MCDONALD J.,
STUETZLE W.: Surface reconstruction from unorganized points. In
Proceedings of the 19th Annual Conference on Computer Graphics
and Interactive Techniques (New York, NY, USA, 1992), SIGGRAPH
’92, ACM, pp. 71–78. URL: http://doi.acm.org/10.1145/
133994.134011, doi:10.1145/133994.134011. 2

[HK06] HORNUNG A., KOBBELT L.: Robust Reconstruction of Water-
tight 3D Models from Non-uniformly Sampled Point Clouds Without
Normal Information. In Symposium on Geometry Processing (2006),
Sheffer A., Polthier K., (Eds.), The Eurographics Association. doi:
10.2312/SGP/SGP06/041-050. 2

[JTPSH15] JAKOB W., TARINI M., PANOZZO D., SORKINE-HORNUNG
O.: Instant field-aligned meshes. ACM Transactions on Graphics (Pro-
ceedings of SIGGRAPH ASIA) 34, 6 (Nov. 2015). doi:10.1145/
2816795.2818078. 2, 6, 9

[KBH06] KAZHDAN M., BOLITHO M., HOPPE H.: Poisson surface
reconstruction. In Proceedings of the Fourth Eurographics Sympo-
sium on Geometry Processing (Aire-la-Ville, Switzerland, Switzerland,
2006), SGP ’06, Eurographics Association, pp. 61–70. URL: http:
//dl.acm.org/citation.cfm?id=1281957.1281965. 2

[KNP07] KÆLBERER F., NIESER M., POLTHIER K.: Quadcover
- surface parameterization using branched coverings. Computer
Graphics Forum 26, 3 (2007), 375–384. URL: http://dx.
doi.org/10.1111/j.1467-8659.2007.01060.x, doi:10.
1111/j.1467-8659.2007.01060.x. 3

[KNSS07] KALOGERAKIS E., NOWROUZEZAHRAI D., SIMARI P.,
SINGH K.: Construction of curvature-aligned meshes from point clouds.
Technical Report CSRG-569 (2007). 2

[Knu95] KNUPP P.: Mesh generation using vector-fields. J. Com-
put. Phys. 119, 1 (June 1995), 142–148. URL: http://dx.
doi.org/10.1006/jcph.1995.1122, doi:10.1006/jcph.
1995.1122. 3

[LCOL07] LIPMAN Y., COHEN-OR D., LEVIN D.: Data-Dependent
MLS for Faithful Surface Approximation. In Geometry Processing
(2007), Belyaev A., Garland M., (Eds.), The Eurographics Association.
doi:10.2312/SGP/SGP07/059-067. 2

[LCOLTE07] LIPMAN Y., COHEN-OR D., LEVIN D., TAL-EZER H.:
Parameterization-free projection for geometry reconstruction. In ACM
SIGGRAPH 2007 Papers (New York, NY, USA, 2007), SIGGRAPH
’07, ACM. URL: http://doi.acm.org/10.1145/1275808.
1276405, doi:10.1145/1275808.1276405. 2

[LLZ∗11] LI E., LÉVY B., ZHANG X., CHE W., DONG W., PAUL J.-
C.: Meshless quadrangulation by global parameterization. Computers &

Graphics 35, 5 (2011), 992 – 1000. doi:https://doi.org/10.
1016/j.cag.2011.05.003. 2

[LPC∗00] LEVOY M., PULLI K., CURLESS B., RUSINKIEWICZ S.,
KOLLER D., PEREIRA L., GINZTON M., ANDERSON S., DAVIS J.,
GINSBERG J., SHADE J., FULK D.: The digital michelangelo project:
3d scanning of large statues. In Proceedings of the 27th Annual Con-
ference on Computer Graphics and Interactive Techniques (New York,
NY, USA, 2000), SIGGRAPH ’00, ACM Press/Addison-Wesley Pub-
lishing Co., pp. 131–144. URL: http://dx.doi.org/10.1145/
344779.344849, doi:10.1145/344779.344849. 2

[LR09] LIU Y.-S., RAMANI K.: Robust principal axes determina-
tion for point-based shapes using least median of squares. Comput.
Aided Des. 41, 4 (Apr. 2009), 293–305. URL: http://dx.doi.
org/10.1016/j.cad.2008.10.012, doi:10.1016/j.cad.
2008.10.012. 6, 8

[MCAG07] MOUSA M.-H., CHAINE R., AKKOUCHE S., GALIN E.: Ef-
ficient spherical harmonics representation of 3d objects. In Proceed-
ings of the 15th Pacific Conference on Computer Graphics and Applica-
tions (Washington, DC, USA, 2007), PG ’07, IEEE Computer Society,
pp. 248–255. URL: http://dx.doi.org/10.1109/PG.2007.
19, doi:10.1109/PG.2007.19. 3

[NAB] NELLES J. N., AL-BADRI N.: Nefertiti Head Model. URL:
http://nefertitihack.alloversky.com/. 7

[OBA∗03] OHTAKE Y., BELYAEV A., ALEXA M., TURK G., SEI-
DEL H.-P.: Multi-level partition of unity implicits. In ACM SIG-
GRAPH 2003 Papers (New York, NY, USA, 2003), SIGGRAPH ’03,
ACM, pp. 463–470. URL: http://doi.acm.org/10.1145/
1201775.882293, doi:10.1145/1201775.882293. 2

[RLL∗06] RAY N., LI W. C., LÉVY B., SHEFFER A., ALLIEZ P.: Pe-
riodic global parameterization. ACM Trans. Graph. 25, 4 (Oct. 2006),
1460–1485. URL: http://doi.acm.org/10.1145/1183287.
1183297, doi:10.1145/1183287.1183297. 3

[SSW09] SILVA C. T., SCHEIDEGGER C. E., WANG H.: Band-
width selection and reconstruction quality in point-based surfaces.
IEEE Transactions on Visualization & Computer Graphics 15 (2009),
572–582. doi:doi.ieeecomputersociety.org/10.1109/
TVCG.2009.13. 2

[Sta14] The Stanford 3D Scanning Repository, 2014. Online; accessed
Oktober-2017, http://graphics.stanford.edu/data/
3Dscanrep/. 2, 7

[STJ∗17] SCHERTLER N., TARINI M., JAKOB W., KAZHDAN M.,
GUMHOLD S., PANOZZO D.: Field-aligned online surface reconstruc-
tion. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 36,
4 (July 2017). doi:10.1145/3072959.3073635. 2, 6, 9

[Tau95] TAUBIN G.: Curve and surface smoothing without shrinkage. In
Computer Vision, 1995. Proceedings., Fifth International Conference on
(1995), IEEE, pp. 852–857. 3

[TPC∗10] TARINI M., PIETRONI N., CIGNONI P., PANOZZO D., PUPPO
E.: Practical quad mesh simplification. Computer Graphics Fo-
rum (Special Issue of Eurographics 2010 Conference) 29, 2 (2010),
407–418. URL: http://vcg.isti.cnr.it/Publications/
2010/TPCPP10. 3

[WHG∗15] WU S., HUANG H., GONG M., ZWICKER M., COHEN-
OR D.: Deep points consolidation. ACM Trans. Graph. 34, 6 (Oct.
2015), 176:1–176:13. URL: http://doi.acm.org/10.1145/
2816795.2818073, doi:10.1145/2816795.2818073. 3

[ZLGH10] ZHANG L., LIU L., GOTSMAN C., HUANG H.: Mesh re-
construction by meshless denoising and parameterization. Computers
& Graphics 34, 3 (2010), 198 – 208. Shape Modelling International
(SMI) Conference 2010. doi:https://doi.org/10.1016/j.
cag.2010.03.006. 2

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

http://gfx.cs.princeton.edu/proj/sugcon/models/
http://gfx.cs.princeton.edu/proj/sugcon/models/
http://doi.acm.org/10.1145/2980179.2982413
http://doi.acm.org/10.1145/2980179.2982413
http://dx.doi.org/10.1145/2980179.2982413
http://dx.doi.org/10.1145/2980179.2982413
http://doi.acm.org/10.1145/1201775.882368
http://dx.doi.org/10.1145/1201775.882368
https://doi.org/10.1007/978-3-319-66709-6_30
http://dx.doi.org/10.1007/978-3-319-66709-6_30
http://doi.acm.org/10.1145/133994.134011
http://doi.acm.org/10.1145/133994.134011
http://dx.doi.org/10.1145/133994.134011
http://dx.doi.org/10.2312/SGP/SGP06/041-050
http://dx.doi.org/10.2312/SGP/SGP06/041-050
http://dx.doi.org/10.1145/2816795.2818078
http://dx.doi.org/10.1145/2816795.2818078
http://dl.acm.org/citation.cfm?id=1281957.1281965
http://dl.acm.org/citation.cfm?id=1281957.1281965
http://dx.doi.org/10.1111/j.1467-8659.2007.01060.x
http://dx.doi.org/10.1111/j.1467-8659.2007.01060.x
http://dx.doi.org/10.1111/j.1467-8659.2007.01060.x
http://dx.doi.org/10.1111/j.1467-8659.2007.01060.x
http://dx.doi.org/10.1006/jcph.1995.1122
http://dx.doi.org/10.1006/jcph.1995.1122
http://dx.doi.org/10.1006/jcph.1995.1122
http://dx.doi.org/10.1006/jcph.1995.1122
http://dx.doi.org/10.2312/SGP/SGP07/059-067
http://doi.acm.org/10.1145/1275808.1276405
http://doi.acm.org/10.1145/1275808.1276405
http://dx.doi.org/10.1145/1275808.1276405
http://dx.doi.org/https://doi.org/10.1016/j.cag.2011.05.003
http://dx.doi.org/https://doi.org/10.1016/j.cag.2011.05.003
http://dx.doi.org/10.1145/344779.344849
http://dx.doi.org/10.1145/344779.344849
http://dx.doi.org/10.1145/344779.344849
http://dx.doi.org/10.1016/j.cad.2008.10.012
http://dx.doi.org/10.1016/j.cad.2008.10.012
http://dx.doi.org/10.1016/j.cad.2008.10.012
http://dx.doi.org/10.1016/j.cad.2008.10.012
http://dx.doi.org/10.1109/PG.2007.19
http://dx.doi.org/10.1109/PG.2007.19
http://dx.doi.org/10.1109/PG.2007.19
http://nefertitihack.alloversky.com/
http://doi.acm.org/10.1145/1201775.882293
http://doi.acm.org/10.1145/1201775.882293
http://dx.doi.org/10.1145/1201775.882293
http://doi.acm.org/10.1145/1183287.1183297
http://doi.acm.org/10.1145/1183287.1183297
http://dx.doi.org/10.1145/1183287.1183297
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/TVCG.2009.13
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/TVCG.2009.13
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
http://dx.doi.org/10.1145/3072959.3073635
http://vcg.isti.cnr.it/Publications/2010/TPCPP10
http://vcg.isti.cnr.it/Publications/2010/TPCPP10
http://doi.acm.org/10.1145/2816795.2818073
http://doi.acm.org/10.1145/2816795.2818073
http://dx.doi.org/10.1145/2816795.2818073
http://dx.doi.org/https://doi.org/10.1016/j.cag.2010.03.006
http://dx.doi.org/https://doi.org/10.1016/j.cag.2010.03.006

