| University of
 Tübingen
 IAAT | INTEGRAL | Doc: IN-IM-TUB-TD-01 |
| :--- | :---: | :--- | :--- |
| | HEPI BOARD QM Test
 description | Issue: $\mathbf{1 . 3}$
 Date: March 2000 |
| | IMAGER IBIS | Page: 1 of: 16 |

Title:
HEPI BOARD QM Test description
Document No: IN-IM-TUB-TD-01
Issue:
1.3

Date:
March 2000

Prepared by: R. Volkmer

Checked by:

Approved by:

| University of
 Tübingen
 IAAT | INTEGRAL | Doc: IN-IM-TUB-TD-01 |
| :--- | :---: | :--- | :--- |
| | HEPI BOARD QM Test
 description | Issue: $\mathbf{1 . 3}$
 Date: March 2000 |
| | IMAGER IBIS | Page: 2 of: 16 |

Document Change Record

Issue	Date	Sheet	Description of Change

| University of
 Tübingen
 IAAT | INTEGRAL | Doc: IN-IM-TUB-TD-01 |
| :--- | :---: | :--- | :--- |
| | HEPI BOARD QM Test
 description | Issue: $\mathbf{1 . 3}$
 Date: March 2000 |
| | IMAGER IBIS | Page: 3 of: 16 |

Table of Contents

1 Introduction 4
1.1 Scope 4
1.2 Acronyms 4
1.3 Applicable and reference documents 5
1.3.1 Applicable documents 5
1.3.2 Reference documents 5
1.4 HEPI Board description 6
2 General Conditions 6
2.1 Environment 6
2.2 Test equipment 6
2.2.1 Tests at IAAT 6
2.2.2 Test at CRISA 6
2.3 Test harness 7
2.3.1 IAAT 7
2.3.2 CRISA 7
2.4 Tests verification 7
2.4.1 Sinusoidal and Vibration 8
2.4.2 Shock 9
3 Harness 12
3.1 Harness between Detector Simulator and HEPI Board 12
3.2 Harness HEPI DPE 13

| University of
 Tübingen
 IAAT | INTEGRAL | Doc: IN-IM-TUB-TD-01 |
| :--- | :---: | :--- | :--- |
| | HEPI BOARD QM Test
 description | Issue: $\mathbf{1 . 3}$
 Date: March 2000 |
| | IMAGER IBIS | Page: 4 of: 16 |

1 Introduction

1.1 Scope

The document describes the HEPI QM Board qualification tests.
Parts of the tests will be applied at CRISA (Madrid) and parts at IAAT (Tübingen).

1.2 Acronyms

CSSW	Common Services Software
DC	Direct Current
DFEE	Digital Front End Electronics
DH	Data Handling
DPE	Data Processing Electronics
EGSE	Electrical Ground Support Equipment
EID	Experiment Interface Document
EM	Engineering Model
FEE	Front End Electronics FM Flight Model
FM	Flight model
FS	Flight Spare model
GRB	Gamma ray burst
HEPI	Hardware Event Pre-processor of IBIS
HK	House keeping
IASW	Integral Application Software
IBIS	Imager on Board of INTEGRAL Satellite
ICD	Interface Control Drawing
INTEGRAL	INTErnational Gamma-Ray Astrophysics Laboratory
ISDC	Integral Science Data Centre
ISGRI	CdTe layer
ISOC	Integral Science Operations Centre
ISSW	Instrument Specific Software
ISWT	Integral Science Working Team
MOC	Mission Operations Centre
MCE	Module Control Electronics
MER	Multiple event reconstruction
MGSE	Mechanical Ground Support Equipment
MPE	Module Power Electronics
OBDH	On-Board Data Handling
OBSW	On-Board Software
PCB	Printed Circuit Board
PICSIT	CsI layer
PDU	Power Distribution Unit
PLM	PayLoad Module
PTM	Packet TeleMetry
QM	Qualification Model
RBI	Remote Bus Interface

| University of
 Tübingen
 IAAT | INTEGRAL | Doc: IN-IM-TUB-TD-01 |
| :--- | :---: | :--- | :--- |
| | HEPI BOARD QM Test
 description | Issue: $\mathbf{1 . 3}$
 Date: March 2000 |
| | IMAGER IBIS | Page: 5 of: 16 |

SASW	Standard Application Software
S/C	Spacecraft
SIS	Spacecraft Interface Simulator
SM	Structural Model
SMCT	Service Module Central Tube
SOC	Science Operation Centre
SPU	Scientific Processor Unit
TBC	To Be Confirmed
TBD	To Be Defined
TC	TeleCommand
TM	TeleMetry
VEB	Veto electronic box
VS	Veto Shield

1.3 Applicable and reference documents
1.3.1 Applicable documents

AD.1: EID-A rev 5
AD.2: DPE HW Design Description, INT-DD-CRS-0001, Is. 1
AD 3: URD, Is. 3 draft, August 1999

1.3.2 Reference documents

RD 1: HEPI Interface Description, IN-IM-TUB-TN/EL-018, Is. 4.1
RD 2: HEPI Design Description, IN-IM-TUB-DES-001, Is 5.1
RD 3: IBIS FM Electrical ICD, TL 13282, Is. 5

HEPI Harness and detector description, IN-IM-TUB-TN/EL-017

RD : Software I/F Control Document, INT-IC-GMV-0001 Is. 3
RD : Integral Packet structure Definition, INT-RP-AI-0030, Is. 04
RD : IASW SDD, IN-IM-TUB-SDD-001, Is. 1
RD : IBIS UM, Is. 3
RD : The Onboard Compton selection, IN-IB-SAP-RP-045; 9/1998
RD : IBIS Communication Protocol Definition, IN-IM-TUB-ICD-01, Is. 1

| University of
 Tübingen
 IAAT | INTEGRAL | Doc: IN-IM-TUB-TD-01 |
| :--- | :---: | :--- | :--- |
| | HEPI BOARD QM Test
 description | Issue: $\mathbf{1 . 3}$
 Date: March 2000 |
| | IMAGER IBIS | Page: 6 of: 16 |

1.4 HEPI Board description

The HEPI board consists out of two PCB mounted on an frame. This frame is normally mounted within the DPE Spare slot.
A more detailed description is given in RD 1 and RD 2.

2 General Conditions

2.1 Environment

Thermal tests for verification of the electronic levels at different temperatures shall performed at IAAT on the clean bench.
Vibration tests and Thermal vacuum test shall performed at CRISA.

2.2 Test equipment

2.2.1 Tests at IAAT

Following test equipment is required for the tests at IAAT:

1. SIS
2. OBDH FE
3. DPE EM 6
4. Detector Simulator
5. Thermal Box

All tests at IAAT shall be performed with HEPI in the Thermal Box at low pressure (<2mbar) and within the required temperature range .

2.2.2 Test at CRISA

Following test equipment is required for the tests at CRISA:

1. SIS
2. OBDH
3. DPE EM 6
4. Detector simulator
5. Thermal vacuum chamber
6. vibration desk

| University of
 Tübingen
 IAAT | INTEGRAL | Doc: IN-IM-TUB-TD-01 |
| :--- | :---: | :--- | :--- |
| | HEPI BOARD QM Test
 description | Issue: $\mathbf{1 . 3}$
 Date: March 2000 |
| | IMAGER IBIS | Page: 7 of: 16 |

2.3 Test harness

Figure 1: Conncections of HEPI Board Test environment

2.3.1 IAAT

The harness outside the Thermal box is a standard EM one. Only the connection between OBDH and DPE (different rooms) is 5 meter.

2.3.2 CRISA

The harness during vibration tests shall be the standard EM harness from ALENIA.
For the T/V tests a modified detector simulator harness is required. The harness description is given in Chapter 3.

2.4 Tests verification

For testing the functionality of the board the test procedure QM_20 will be applied. This procedure is able to test the functionality of all HW of the HEPI board.
The verification of the test results could be either done on the SIS and OBDH or on an external workstation.

| University of
 Tübingen
 IAAT | INTEGRAL | Doc: IN-IM-TUB-TD-01 |
| :--- | :---: | :--- | :--- |
| | HEPI BOARD QM Test
 description | Issue: $\mathbf{1 . 3}$
 Date: March 2000 |
| | IMAGER IBIS | Page: 8 of: 16 |

The output of the SIS archive shall be processed by a program named „TM_ENC,,. This encoder separate the TM packets from the SIS archive file according their APID.
After each test run the output shall be compared with a reference output.

2.4.1 Sinusoidal and Vibration

2.4.1.1 Parameters

The equipment shall withstand sinusoidal and randam vibration due to the excitations of the launcher.

2.4.1.2 Specification

RD. 1

2.4.1.3 Qualification

1. Perform a visual inspection to check the appearance of the unit before vibration
2. Perform a reduced functional and electrical test
3. Perform a resonance search of the empty fixture, verifying that no resonance appear from 5 Hz to 2000 Hz .
4. Perform sinusoidal and random vibration to check that the levels are correct
5. Mount the equipment to a fixture through the normal mounting points of the equipment (Axis x).
6. Perform a resonance search of the test fixture and the test item, a low level sine vibration 0.5 g) shall be performed in this interval $5-2000 \mathrm{~Hz}$ at 2 octave per minute.
7. Performa a sinusoidal qualification test, sweep up and down at 2 octave per minute, according to the below described figure:

Frequency (Hz)	Level
$5-18$	$+/-11 \mathrm{~mm}$
$22,5-100$	$+/-22.5 \mathrm{~g}$

8. Perform another resonance search of the test fixture and the item as previously defined to verify that the equipment has withstood the vibration test.
9. Perform a random qualification test, with 2 minutes duration according to the below described figure:

Frequency (Hz)	Level
$20-100$	$+6 \mathrm{~dB} /$ Octave
$100-500$	$0.1 \mathrm{~g}^{2} / \mathrm{Hz}$
$500-2000$	$-6 \mathrm{~dB} /$ octave

10. Perform another resonance search of the test fixture and the item as previously defined to verify that the equipment has withstood the vibration test.

| University of
 Tübingen
 IAAT | INTEGRAL | Doc: IN-IM-TUB-TD-01 |
| :--- | :---: | :--- | :--- |
| | HEPI BOARD QM Test
 description | Issue: $\mathbf{1 . 3}$
 Date: March 2000 |
| | IMAGER IBIS | Page: 9 of: 16 |

11. Perform a reduced functional and electrical test to check that the equipment has survived the vibration test.
Repeat step 3, 4, 5, 6, 7, 8, 9, 10 and 11 with axis Y and Z .

2.4.2 Shock

2.4.2.1 Parameters

Capability of the equipment to withstand the separation level pyrotechnic shock induced by the separation of the payload from the launcher.

2.4.2.2 Specification

RD. 1

2.4.2.3 Method

1. Perform a visual inspection to check the appearance of the unit before vibration
2. The unit will be mounted to a fixture through its normal attachment points
3. Apply shock transient on axis X
(B. Vinai)

Frequency [Hz] SRS-Acceleration[g]
100
100-300
300
300-2000
2000-10000 25
rising slope
400
rising slope
1500
EID-A + DPE:

4. Perform a visual inspection, a reduced functional and electrical check to verify that the equipment has withstand the shock.

| University of
 Tübingen
 IAAT | INTEGRAL | Doc: IN-IM-TUB-TD-01 |
| :--- | :---: | :--- | :--- |
| | HEPI BOARD QM Test
 description | Issue: $\mathbf{1 . 3}$
 Date: March 2000 |
| | IMAGER IBIS | Page: 10 of: 16 |

2.4.2.4 Acceptance criteria

No damage has been occurred to the equipment after application of the transient shocks. Measured parameters during the reduced electrical and functional tests shall be within the tolerances.

2.4.2.5 Vacuum temperature cycling

2.4.2.5.1 Parameters

Ability of the equipment to perform in a thermal vacuum environment which simulates the acceptance temperature limits for the equipment increased or decreased by the qualification margin of $5^{\circ} \mathrm{C}$ and the test set-up tolerances.

2.4.2.5.2 Specification

RD. 1
Maximum non-operating temperature: 65
Maximum operating temperature: 50
Minimum non-operating temperature: -35
Minimum operating temperature: -30
Number of cycles: 8

2.4.2.5.3 Method

Qualification and acceptance thermal vacuum tests

- Complete functional and electrical tests prior to the vacuum temperature cycling
- The equipment shall be boltered to a representative mounting panel using the correct bolts and bolts torques
- The mounting panel shall be black painted (except the mounting contact area) and have the length and the width of the DPE with a thickness of a standard platform/sidewalls
- The control of the temperature of the unit will be performed in the temperature reference point defined in the Interface Control Drawing.
- Perform initial electrical and functional test at ambient temperature
- Qualification thermal vacuum cycling will be as described:
- The temperatue is increased first, up to the high non operating level (TNO-max). ($\mathrm{T}=60^{\circ}$ acceptance and $\mathrm{T}=65^{\circ} \mathrm{C}$ qualification). The pressure will be decreased up to 1.3 10^{-5}.
- After a dwell time T_{E} the temperature is decreased to the hot start-up level (TSU-high) to switch ON the equipment and the temperature is maintained at the high operating temperature (TQ-max=TSU-high) during a time t_{E}. After the time t_{E} the functional test is performed. ($\mathrm{T}=45^{\circ} \mathrm{C}$ acceptance, $50^{\circ} \mathrm{C}$ qualification).
- The equipment is switched off and the temperature is decreased and stabilised at the low non operating minimum temperature (TNO-min) during the time $\mathrm{t}_{\mathrm{E}} .\left(\mathrm{T}=-30^{\circ} \mathrm{C}\right.$ acceptance, $-35^{\circ} \mathrm{C}$ qualification). The temperature is increased at the low operating level

| University of
 Tübingen
 IAAT | INTEGRAL | Doc: IN-IM-TUB-TD-01 |
| :--- | :---: | :--- | :--- |
| | HEPI BOARD QM Test
 description | Issue: $\mathbf{1 . 3}$
 Date: March 2000 |
| | IMAGER IBIS | Page: 11 of: 16 |

(TQ-min). This temperature is maintained to switch the equipment on. After a time t_{E}, the functional test is performed.

- Next cycles consists in increasing temperature to the high operating level and after a time $\mathrm{t}_{\mathrm{E}}, \mathrm{a}$ (reduced) functional test, then decrease the temperature to the low operating temperature and after a time t_{E} perform (reduced) functional tests.
- The cycling is finished performing a final functional test at ambient temperature.

Fehler! Textm arke	University of Tübingen IAAT Astronomy	INTEGRAL	Doc: IN-IM-TUB-TD-01	
		HEPI BOARD QM Test description	Issue: 1.3 Date: March 2000	Fehler! Textmark
		IMAGER IBIS	Page: 12 of: 16	

Fehler! Textm arke	University of Tübingen IAAT Astronomy	INTEGRAL	Doc: IN-IM-TUB-TD-01	
		HEPI BOARD QM Test description	Issue: $\mathbf{1 . 3}$ Date: March 2000	Fehler! Textmark
		IMAGER IBIS	Page: 13 of: 16	

DCMA 378	Delector Bimulator	[ET_S ${ }_{\text {M }}$ ل 32		Nole ${ }^{\text {(4) }}$	Tupg
Pri. No.	Filerlace reame	Line descriplion	Livereame		
19	[pi. HBA IFF Cole	Code Data oul	CDTE [T+	TP 37,38	
20	Lel. HBA $\mathrm{VF}^{\text {Cod }}$	CoTE Data oud Reluri	CDTE_DT-		
21	Cmi. HBA I'F Ca	Csl FIFO Nol erpir	$\mathrm{CB}_{3} \mathrm{FIFO}_{-} \mathrm{NE}+$	TP 39,40	
22	Col. HBA I'F Cg	Cal FIFO Noi ertply Raturi	CSI_FIFO_NE-		
23	[Bd . HBA IFF CdTa	Cote FIFO Nolemph	CDTE_FIFO_NE+	TP 43,44	
24	Led. HBA 1 FFOT	CdTE FIFO Noi emphr Helurin	CDTE_FIFO_NE-		
25		CalData oud	Csl $\mathrm{CT}^{\text {+ }}$	TP 45,48	
25	CBI. HBA I'F Cal	Csl Cala oul FB Lum	Csl_DT-		
27	NG:				
23	NC:				
29	NG				
30	NC				
31	NC				
32	NG				
39	NC				
34	NG				
35	NC				
3	NC				
37	NC				

3.2 Harness HEPI DPE
Cornector HEPI HIGHSPEED Mand LINES [DPETTYYLIB]
Line descriplion

Fehler！ Textm arke	University of Tübingen IAAT Astronomy	INTEGRAL	Doc：IN－IM－TUB－TD－01		
		HEPI BOARD QM Test description	Issue：1．3	Date：March 2000	Fehler！ Textmark
	IMAGER IBIS	Page： 15 of： 16			

Corrector陮男	HEPI HGHSPEED LINES	HEPI＿LI 8 ［DPETCYYLIE］		Nole	Type	Towards：		
Pri．No	Inlerlace rame	Line descriplion	Line rame			Equipmeril	cornector	PriNo
23		NC．						

Corrector 	HEPI LOW SPEED LINE	HEPI＿JIT ［DPEXCYYulis］		Nole	Type	Towards：		
Pri．No	Irieriace rame	Line descripion	Line rame			Equipmeril	corrector	PriNo
1	Siow serial line	Clock	CLK＋	TP 1.10	LBH	DPE	102	5
10		Cleck［compl．］	CLK－		LBA	DPE	102	38
2		Data Forward	DTF＋	TP 2.11	LBA	DPE	102	1
11		Data Forw［［ommp］	DTF－		LBA	DPE	102	18
3		Data raturi	DTH＋	TP 3，12	LBA	DPE	102	2
12		Laala relumi（cormpl）	DTH－		LBH	DPE	102	19
18		Inil HEPI（［DPE Relay pube 7）	$\underline{N W}{ }^{+}$	$\begin{gathered} \text { TP } \\ 18,28 \\ \hline \end{gathered}$	Onioll	DPE	L04	9
23		hil HEPI（compl）．	｜N｜T－		Onioll	DPE	L04	25
19		Crassis		$\begin{gathered} \text { oximpon } \\ \text { siapld } \end{gathered}$				
20	［mRTU］	Aequesi line at［Relay Statu 垪	ROHA＋	$\begin{gathered} \mathrm{TP} \\ 20,21 \end{gathered}$	Cplo	DPE	L04	11
21		Hequesil line ${ }_{\text {d［compl，}}$ ］	FOHA－		Cpb	DPE	L04	27
22	［mPTU］	Hequesiline $\mathrm{B}+$ โRelay Status 1］	ROHB＋	$\begin{gathered} \mathrm{TP} \\ 22,23 \end{gathered}$	Cpo	DPE	L04	12
23		Request line B ［compl．］	FOHB－		Cpo	DPE	L04	28
24		HEPI Palus＋［Falay Sialus 2	B ${ }^{\text {＋}}$	$\begin{gathered} \mathrm{TP} \\ 24,25 \end{gathered}$	Cplo	DPE	L04	13

$\left.$| Fehler!
 Textm
 arke | University of
 Tübingen
 IAAT
 Astronomy | INTEGRAL | Doc: IN-IM-TUB-TD-01 | |
| :--- | :--- | :--- | :--- | :--- |
| | | HEPI BOARD QM Test
 description | Issue: 1.3 | Date: March 2000 |\quad| Fehler! |
| :--- |
| Textmark | \right\rvert\,

