
INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 1 of: 119

University of
Tübingen

IAAT
Astronomy

Title: Software Design Document

Document No: IN-IM-TUB-SDD-001

Issue: 7.0 draft

Date: June 2000

Prepared by: R. Volkmer
E. Göhler
M. Stuhlinger
P. Risse

Checked by:

Approved by:

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 2 of: 119

University of
Tübingen

IAAT
Astronomy

CHANGE - RECORD

Issue Date Sheet Description of change
1.0 June all First issue

4.0 October Timing, Table handling, Typos
4.3 October Chapter 6 and 7: TM and TC Updated

5.0 January 99 10 Automatism
17 TM handling
22 HEPI context saving
24 Mode diagram
26 Patch and Dump
30 Specification of Histograms
35 On event messages
37 ADA Tasks
39 Memory Mapping
43 Mode Dispatcher
44 Science Mode
87 HK
90 Additional HK

6.0 August 99 All SDD separated into SRD(chapter 1,2,6,7) and SDD
(chapter 3-5)

7.0 June 2000 All (new structure)
 File: sdd-ad.doc Last change: 02.06.2000 17:37

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 3 of: 119

University of
Tübingen

IAAT
Astronomy

TABLE OF CONTENTS

1 INTRODUCTION.. 11

1.1 Scope ... 11
1.2 CONTENT .. 11
1.3 Applicable and reference documents ... 11

1.3.1 Applicable documents.. 11
1.3.2 Reference documents.. 11

2 SOFTWARE ARCHITECTURE ... 12

2.1 Terms ... 12
2.1.1 Task 12
2.1.2 Types of Modules 12
2.1.3 Task entry points 12

2.2 General Requirements ... 12
2.2.1 Programming Language 12
2.2.2 Resource Requirements 12

2.3 Multitasking .. 13
2.3.1 IASW USES MULTITASKING 13
2.3.2 Type of MULTITASKING USED 13

2.3.2.1 Priority.. 13
2.3.2.2 Priority allocation 13
2.3.2.3 Cyclic tasks 13
2.3.2.4 Cyclic tasks exceeding period 13
2.3.2.5 Period of cyclic tasks 14
2.3.2.6 Dead-Lock Prevention.. 14

2.3.3 List of Tasks 14
2.3.4 DESCRIPTION OF IASW TASKS 14

2.3.4.1 Main Task.. 15
2.3.4.2 TC Task / processing of Telecommands 16
2.3.4.3 HBR A Task.. 19
2.3.4.4 Histogram Task 20
2.3.4.5 Read Histogram Task 21

2.4 Interface modules... 23
2.4.1 Considerations.. 23

2.4.1.1 Reentrability 23
2.4.1.2 Mutual exclusion 23

2.4.2 Types of Interfaces.. 24
2.4.2.1 Detector Interfaces.. 24
2.4.2.2 TM Interface 24
2.4.2.3 Status Informations.. 24
2.4.2.4 Tables 24
2.4.2.5 Algorithms 24

2.5 memory mapping .. 24
2.5.1 Overview.. 24

2.5.1.1 Data exchange between different address states 24
2.5.1.2 Allocation of modules in different address states 25

2.6 Error Handling ... 26
2.6.1 Exceptions.. 26

2.6.1.1 Task exception handler 26
2.6.1.2 Function exception handler 26
2.6.1.3 Reactions on exceptions: 26

2.6.2 Stack overflow.. 27

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 4 of: 119

University of
Tübingen

IAAT
Astronomy

2.6.2.1 Static stack check.. 27
2.6.2.2 Stack check at run time.. 27

2.6.3 task overrun 27

3 DETAILED DESIGN DESCRIPTION ...28

3.1 USED H/W-S/W interfacE .. 28
3.1.1 Access via CSSW only.. 28
3.1.2 Telecommands.. 28

3.1.2.1 TC Buffer size.. 28
3.1.2.2 Housekeeping.. 28
3.1.2.3 On-Event Messages.. 28
3.1.2.4 Interface Communication Buffer Status 28

3.1.3 Low speed serial line (LSSL) 28
3.1.3.1 Devices.. 29
3.1.3.2 initialising LSSL.. 29
3.1.3.3 Starting LSSL Transmission.. 29
3.1.3.4 Starting LSSL Reception.. 30
3.1.3.5 resetting LSSL 30

3.1.4 High Speed serial Line (HSSL) 30
3.1.4.1 Initialising HSSL 30
3.1.4.2 Starting Reception 30
3.1.4.3 Resetting HSSL 30
3.1.4.4 HSSL A 30
3.1.4.5 HSSL B 30

3.1.5 Analog Channel ACQUISITION 31
3.1.5.1 Bilevel Channel ACQUISITION 31
3.1.5.2 Analog channels 31

3.1.6 Relais Pulses.. 31
3.1.6.1 Sending relais pulses.. 31
3.1.6.2 Reading Relais status 31
3.1.6.3 Send/Receive Relais signals independend.. 31

3.1.7 On-Board time.. 32
3.1.7.1 BCP4.. 32

3.1.8 Hardware events (Interrupts) 32
3.1.8.1 Interrupt allocation 32

3.2 list of modules .. 32
3.2.1 LINE RESOURCE MANAGEMENT 35

3.2.1.1 Context tables.. 35

3.3 Description of the SW MODULES..36
3.3.1 MODULE ADD_HK.. 36

Description.. 37
3.3.1.1 Procedure GET_ADD_HK 37

3.3.2 Module AMPLITUDE_CORRECTION.. 38
3.3.2.1 Function RISETIME_CORRECTION return Amplitude_Correction.T_Risetime_range........... 40
3.3.2.2 Function GAIN_CORRECTION return Float 41
3.3.2.3 Function FIRST_STEP return Amplitude_Correction.T_Unsigned_4bit 42
3.3.2.4 Function SECOND_STEP return System.Unsigned.. 42
3.3.2.5 Function COMPTON_AMP_CORR return System.Unsigned... 43
3.3.2.6 Procedure ISGRI_AMP_CORR 44
3.3.2.7 Function READ_GAIN_OFFET_TABLE return Table_Handler.T_Block................................. 44
3.3.2.8 Procedure WRITE_GAIN_OFFSET_TABLE 45
3.3.2.9 Function READ_FINAL_TABLE return Table_Handler.T_Block... 46
3.3.2.10 Procedure WRITE_FINAL_TABLE.. 46

3.3.3 MODULE Analog_IF.. 47
3.3.3.1 Function FETCH_ANALOG_VAL 47
3.3.3.2 Function FETCH_BILEVEL_VAL.. 47

3.3.4 MODULE BCP4_Handler.. 48
3.3.4.1 Procedures INITIALISE.. 48
3.3.4.2 Procedure Enable 49

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 5 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.4.3 Procedure Disable 49
3.3.5 Module bcpk_handler 49

3.3.5.1 Global Variables 50
3.3.5.2 Exceptions.. 51
3.3.5.3 Procedure SET_BCPK 51
3.3.5.4 Procedure UPDATE_BCPK.. 52
3.3.5.5 Procedure SET_POINTING................................ 52
3.3.5.6 Procedure POINTING 52
3.3.5.7 Procedure ON_TARGET.. 53
3.3.5.8 Procedure HAND_OVER.. 53
3.3.5.9 Procedure SAVE_CONTEXT.. 53
3.3.5.10 Procedure VETO_OFF 54
3.3.5.11 Procedure ISGRI_BIAS_OFF-when 54
3.3.5.12 Procedure SLEW_TIME 54
3.3.5.13 Procedure GET_LAST_POINTING_START 54
3.3.5.14 Procedure GET_LAST_SLEW_START.. 55
3.3.5.15 Procedure GET_POINTING_ID 55
3.3.5.16 Procedure WRITE_IREM_TABLE.. 55
3.3.5.17 Procedure READ_IREM_TABLE.. 56
3.3.5.18 Procedure PROCEDURE.. 56

3.3.6 Module compute_checksum 56
3.3.6.1 Global Variables 56
3.3.6.2 Exceptions.. 56

3.3.7 Module detector_interface 56
3.3.7.1 Global Variables 56
3.3.7.2 Exceptions.. 56
3.3.7.3 Procedure SEND_CMD.. 56
3.3.7.4 Procedure READ 57
3.3.7.5 Procedure GET_LAST_SUB_I_ADDR.. 58

3.3.8 Module ecr 58
3.3.8.1 Global Variables 58
3.3.8.2 Exceptions.. 58

3.3.9 Module handle_pixel_noisy.. 58
3.3.9.1 Global Variables 58
3.3.9.2 Exceptions.. 58

3.3.10 Module hbr_a_if.. 58
3.3.10.1 Global Variables.. 58
3.3.10.2 Exceptions 59
3.3.10.3 Procedure BUFFER_AVAILABE 59
3.3.10.4 Procedure INITIALISE 59
3.3.10.5 Procedure GET_BUFFER_RANGE.. 59
3.3.10.6 Procedure RESET.. 60

3.3.11 Module hbr_b_if.. 60
3.3.11.1 Global Variables.. 60
3.3.11.2 Exceptions 60

3.3.12 Module hepi.. 60
3.3.12.1 Global Variables.. 60
3.3.12.2 Procedure HBR_A_DATA_AVAILABLE.. 60
3.3.12.3 Procedure HBR_B_DATA_AVAILABLE.. 60
3.3.12.4 Procedure COMMAND_HEPI 61
3.3.12.5 Procedure READ_HEPI 61
3.3.12.6 Procedure HEPI_STATUS_SHADOWRETURNS: Contents of HEPI status register which is
last sent to HEPI. 62
3.3.12.7 Procedure INITIALISE 62
3.3.12.8 Procedure SYNCHRONIZE 62
3.3.12.9 Procedure GET_LAST_SYNC_OBT 62
3.3.12.10 Procedure GET_SEQ_COUNT.. 63

3.3.13 Module hepi_context_table 63
3.3.14 Module histogram_config.. 63

3.3.14.1 Global Variables.. 63
3.3.14.2 Exceptions 63

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 6 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.15 Module histogram_op 63
3.3.15.1 Global Variables.. 63
3.3.15.2 Exceptions 63
3.3.15.3 Procedure FIRST_READ_ADDRESS.. 63
3.3.15.4 Procedure NEXT_READ_ADDRESS.. 64
3.3.15.5 Procedure SWITCH_INTEGRATION 64
3.3.15.6 Procedure CLEAR_INTEGRATION_BUFFER.. .. 64
3.3.15.7 Procedure BUFFER2BLOCKS.. 65
3.3.15.8 Procedure ORDER_HISTOGRAM_BLOCK.. 65
3.3.15.9 Procedure READ_HISTOGRAM_BLOCK- 66

3.3.16 Module hk.. 66
3.3.16.1 Global Variables.. 66
3.3.16.2 the maximal evwent rate of invalid events which might occur in science mode before
HEPIwill be resynchronized. The event rate is defined by the numberof events per 8 seconds
(housekeeping period). Exceptions 66
3.3.16.3 Procedure INITIALISE 67

3.3.17 Module hsl_interface 67
3.3.17.1 Global Variables.. 67
3.3.17.2 Exceptions 67

3.3.18 Module iasw_common 67
3.3.18.1 Global Variables.. 67
3.3.18.2 the current version number of all context tables used for peripheral instruments.The
number could be changed with a patch. It must not be changedby any software access. It's address is
$2001, AS 0, operandpages. (see link file also). Exceptions 67

3.3.19 Module iasw_stacks.. 67
3.3.19.1 Global Variables.. 67
3.3.19.2 Exceptions 67

3.3.20 Module instrument_context................................ 67
3.3.20.1 Global Variables.. 68
3.3.20.2 Exceptions 68
3.3.20.3 Procedure CSF.. 68
3.3.20.4 Procedure CRF 68
3.3.20.5 Procedure SET_CSF.. 68
3.3.20.6 Procedure SET_CRF.. 69
3.3.20.7 Procedure DOWNLOAD_CONTEXT.. 69
3.3.20.8 Procedure UPLOAD_CONTEXT.. 69

3.3.21 Module isgri 69
3.3.21.1 Global Variables.. 70
3.3.21.2 Exceptions 70
3.3.21.3 Procedure SWITCH_BIAS_OFF 70
3.3.21.4 Procedure COMMAND_ISGRI 70
3.3.21.5 Procedure READ_ISGRI................................ 70
3.3.21.6 Procedure GET_SEQ_COUNT.. 71

3.3.22 Module isgri_context_table 71
3.3.22.1 Global Variables.. 71
3.3.22.2 Exceptions 71

3.3.23 Module line_manager 71
3.3.23.1 Global Variables.. 71
3.3.23.2 Exceptions 71
3.3.23.3 Procedure INITIALISE 72
3.3.23.4 Procedure LSL_IS_BLOCKED.. 72
3.3.23.5 Procedure GET_LSL 72
3.3.23.6 Procedure RELEASE_LSL.. 72
3.3.23.7 Procedure GET_HSL.. 73
3.3.23.8 Procedure RELEASE_HSL 73
3.3.23.9 Procedure ANNOUNCE_LSL.. 73
3.3.23.10 Procedure LSL_CONFIRMED.. 73

3.3.24 Module lsl_interface.. 73
3.3.24.1 Global Variables.. 73
3.3.24.2 Exceptions 73

3.3.25 Module mode_dispatcher.. 73

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 7 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.25.1 Global Variables.. 73
3.3.25.2 Exceptions 73

3.3.26 Module obt_operations 74
3.3.26.1 Global Variables.. 74
3.3.26.2 Exceptions 74

3.3.27 Module oem_interface 74
3.3.27.1 Global Variables.. 74
3.3.27.2 Exceptions 74
3.3.27.3 Procedure REPORT_OEM 74
3.3.27.4 Procedure EXCEPTION_OEM.. 74
3.3.27.5 Procedure PERIPHERAL_OEM.. 75
3.3.27.6 Procedure GET_OEM_STATE.. 75

3.3.28 Module picsit 75
3.3.28.1 Global Variables.. 75
3.3.28.2 Exceptions 75
3.3.28.3 Procedure COMMAND_PICSIT 75
3.3.28.4 Procedure READ_PICSIT.. 76
3.3.28.5 Procedure GET_SEQ_COUNT.. 76

3.3.29 Module picsit_context_table.. 77
3.3.29.1 Global Variables.. 77
3.3.29.2 Exceptions 77

3.3.30 Module read_histogram 77
3.3.30.1 Global Variables.. 77
3.3.30.2 Exceptions 77
3.3.30.3 Procedure WAIT.. 77
3.3.30.4 Procedure INITIALISE 77
3.3.30.5 Procedure BUFFER_IS_EMPTY.. 78
3.3.30.6 Procedure START 78
3.3.30.7 Procedure STOP.. 78
3.3.30.8 Procedure RESUME.. 79
3.3.30.9 Procedure RESUME_TIMED 79
3.3.30.10 Procedure DISCARD_HISTOGRAMS.. 79
3.3.30.11 Procedure GET_BLOCK_RATE.. 79
3.3.30.12 Procedure GET_BLOCK_INFO................................ 80
3.3.30.13 Procedure GET_FILLED_AREA.. 80

3.3.31 MoDULE S1 (CdTe photon by photon).. 80
3.3.31.1 Procedure PROCESS_EVENT 81
3.3.31.2 Procedure CLOSE_TM.. 83
3.3.31.3 Procedure RESET.. 83
3.3.31.4 Function GET_SEQUENCE_COUNTER return CSSW_IF_TYPES.T_Source_Seq_Count 84

3.3.32 Module S2 (CdTe CALIBRATION).. 84
3.3.32.1 Procedure PROCESS_EVENT 84
3.3.32.2 Procedure CLOSE_TM.. 85
3.3.32.3 Procedure RESET.. 86
3.3.32.4 Function GET_SEQUENCE_COUNTER return CSSW_IF_TYPES.T_Source_Seq_Count 86

3.3.33 Module S3 (Compton).. 87
3.3.33.1 Procedures PROCESS_S_EVENT 87
3.3.33.2 Procedures PROCESS_M_EVENT.. 89
3.3.33.3 89
3.3.33.4 Procedures CLOSE_S_TM / CLOSE_M_EVENT ... 89
3.3.33.5 Procedure RESET.. 90
3.3.33.6 Functions GET_S3_HK_DATA return T_S3_Hk_Data.. 90
3.3.33.7 Function C_SELECT return Boolean.. 91

3.3.34 Module S4 (CsI Photon by Photon).. 92
3.3.34.1 Procedures PROCESS_SINGLE_EVENT / PROCESS_MULTIPLE_EVENT 93
3.3.34.2 Procedures CLOSE_SINGLE_TM / CLOSE_MULTIPLE_TM.. 94
3.3.34.3 Procedure RESET.. 95
3.3.34.4 Functions GET_S4_HK_DATA return T_S4_Hk_Data.. 95

3.3.35 Module S5 (CsI-Calibration).. 96
3.3.35.1 Procedures PROCESS_HISTOGRAM 96
3.3.35.2 Procedures CLOSE_TM 98

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 8 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.35.3 Procedure RESET.. 99
3.3.35.4 Function GET_SEQUENCE_COUNTER return CSSW_IF_TYPES.T_Source_Seq_Count 99

3.3.36 Module S6 (CsI Polarimetric).. 100
3.3.36.1 Procedures PROCESS_HISTOGRAM 100
3.3.36.2 Procedures CLOSE_TM 102
3.3.36.3 Procedure RESET.. 103
3.3.36.4 Function GET_SEQUENCE_COUNTER return CSSW_IF_TYPES.T_Source_Seq_Count103

3.3.37 Module S7 (Spectral Imaging, CsI single/multiple histogr.) .. 104
3.3.37.1 Procedures PROCESS_S_HISTOGRAM / PROCESS_M_HISTOGRAM........................ 104
3.3.37.2 Procedures CLOSE_S_TM / CLOSE_M_TM.. .. 106
3.3.37.3 Procedure RESET.. 107
3.3.37.4 Functions GET_S7_HK_DATA return T_S7_Hk_Data.. 107

3.3.38 Module S8 (Spectral Timing) 108
3.3.38.1 Procedure PROCESS_EVENT 108
3.3.38.2 Procedure CONFIGURE_COMPRESSION 110
3.3.38.3 Function REPORT_COMPRESSION return Integer ... 111
3.3.38.4 Procedure CLOSE_TM.. 111
3.3.38.5 Procedure RESET.. 112
3.3.38.6 Function GET_SEQUENCE_COUNTER return System.Unsigned.................................. 112

3.3.39 Module science_functions.. 113
3.3.39.1 Global Variables.. 113
3.3.39.2 Exceptions 113

3.3.40 Module science_hk.. 113
3.3.40.1 Global Variables.. 113
3.3.40.2 Exceptions 113

3.3.41 Module science_mode.. 113
3.3.41.1 Global Variables.. 113
3.3.41.2 Exceptions 113

3.3.42 Module sqrt................................ 113
3.3.42.1 Global Variables.. 113
3.3.42.2 Exceptions 113

3.3.43 Module table_handler 114
3.3.43.1 Global Variables.. 114
3.3.43.2 Exceptions 114

3.3.44 Module task_parameter 114
3.3.44.1 Global Variables.. 114
3.3.44.2 Exceptions 114

3.3.45 Module tasks 114
3.3.45.1 Global Variables.. 114
3.3.45.2 Exceptions 114

3.3.46 Module tc_decoder 114
3.3.46.1 Global Variables.. 114
3.3.46.2 Exceptions 114
3.3.46.3 Procedure START 114
3.3.46.4 Procedure EXECUTED_TC 114
3.3.46.5 Procedure REJECTED_TC.. 115

3.3.47 Module tm_interface.. 115
3.3.47.1 Global Variables.. 115
3.3.47.2 Exceptions 115

3.3.48 Module transparent................................ 115
3.3.48.1 Global Variables.. 115
3.3.48.2 Exceptions 115

3.3.49 Module veto.. 115
3.3.49.1 Global Variables.. 115
3.3.49.2 Exceptions 115
3.3.49.3 Procedure SWITCH_VETO_OFF.. 116
3.3.49.4 Procedure COMMAND_VETO 116
3.3.49.5 Procedure READ_VETO................................ 116
3.3.49.6 Procedure GET_SEQ_COUNT.. 117

3.3.50 Module veto_context_table.. 117
3.3.50.1 Global Variables.. 117

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 9 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.50.2 Exceptions 117

4 ANNEX... 117

4.1.1 General description of IBIS IASW TC.. 117
4.1.2 IASW Broadcast packet processes 118

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 10 of: 119

University of
Tübingen

IAAT
Astronomy

TABLE OF FIGURES

FIGURE 1: FORMATS OF 40 BIT EVENT RECORDS 82
FIGURE 2: FORMATS OF 40 BIT DUMMY RECORDS 82
FIGURE 3: FORMATS OF 32 BIT EVENT RECORDS 85
FIGURE 4: FORMATS OF 64 BIT EVENT RECORDS 88
FIGURE 5: FORMATS OF 64 BIT DUMMY RECORDS 89
FIGURE 6: FORMATS OF 32 BIT EVENT RECORDS 93
FIGURE 7: FORMATS OF 32 BIT DUMMY RECORDS 94
FIGURE 8: FORMAT OF 80 BIT HISTOGRAM DATA FIELD HEADER................................. 97
FIGURE 9: EXAMPLE OF HISTOGRAM COMPRESSION ALGORITHM. 98
FIGURE 10: FORMAT OF 80 BIT HISTOGRAM DATA FIELD HEADER................................. 101
FIGURE 11: EXAMPLE OF HISTOGRAM COMPRESSION ALGORITHM. 102
FIGURE 12: FORMAT OF 80 BIT HISTOGRAM DATA FIELD HEADER................................. 105
FIGURE 13: EXAMPLE OF HISTOGRAM COMPRESSION ALGORITHM. 106
FIGURE 14: DATA FIELD HEADER OF TM(8,0). 109

TABLE OF TABLES
TABLE 1: LIST OF IASW TASKS.. 14
TABLE 2: LIST OF MAIN TASK FUNCTIONALITY 15
TABLE 3: LIST OF USED TELECOMMAND TYPES/SUBTYPES 16
TABLE 4: LIST OF TELECOMMANDS ALLOWED IN WHICH MODE 18
TABLE 5: LIST OF ALL IASW MODULES.. 35
TABLE 6: AMPLITUDE CORRECTION GAIN_OFFSET_TABLE 38
TABLE 7: AMPLITUDE CORRECTION FINAL_TABLE 40
TABLE 16: BITCODE OF 4 BIT INTEGER VALUES.. 97
TABLE 19: BITCODE OF 4 BIT INTEGER VALUES.. 101
TABLE 22: BITCODE OF 4 BIT INTEGER VALUES.. 105
TABLE 25: STATUS FLAG OF SPECTRAL TIMING HISTOGRAM.. 110
TABLE 26: STATUS FLAG OF SPECTRAL TIMING HISTOGRAM.. 111
TABLE 27: TABLE OF ACCEPTED IASW TC 117

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 11 of: 119

University of
Tübingen

IAAT
Astronomy

1 INTRODUCTION

1.1 SCOPE
The scope of this document is to describe the design of the software part of the IBIS
IMAGER Data Handling System (DHS), written in ADA 83.

1.2 CONTENT
This document contains the general design of the IBIS instrument application
software (IASW) which runs on the data processing engines (nominal and
redundandunt) of IBIS. It describes the structure and the internal interfaces of the
IASW. It does not describe the specification nor the implementation of the
algorithms of the IASW.

The document is articulated in 4 sections. The first section is the introduction in
which is the scope, the description, definition and acronyms and the references
included.
Section 2 contains the software architecture in respect of tasks/interfaces and
general requirements.
In section 3 the software design is presented by specifying each software module
separately in functional and formal terms.
The appendix in section 4 contains parameter structures, the list of telemetry
packets and telecommands.

1.3 APPLICABLE AND REFERENCE DOCUMENTS

1.3.1 APPLICABLE DOCUMENTS
AD.1: EID-A rev5
AD.2: DPE HW Design Decription, INT-DD-CRS-0001,Is.1

1.3.2 REFERENCE DOCUMENTS
RD 1: HEPI Interface Description, IN-IM-TUB-TN/EL-018, Is. 4.1
RD 2: IBIS Communication Protocol Definition, IN-IM-TUB-ICD-01, Is. 1
RD 3: HEPI Design Description, IN-IM-TUB-DES-001, Is 5.1
RD 4: Software I/F Control Document, INT-IC-GMV-0001 Is. 3
RD 5: Integral Packet structure Definition, INT-RP-AI-0030, Is.04
RD 6: IBIS IASW User manual, IN-IM-TUB-UM-001, Is. 1.4
RD 7: Reference Document for the TLD ADA compiler MIL-STD-1750 Target, Rev
2G, 15 March 1996
RD 8: Reference Document for the TLD macro assembler MIL-STD-1750 Target,
Rev 2F, 15 March 1996
RD 9: Reference Document for the TLD extended memory linker MIL-STD-1750
Target, Rev 3J, 15 March 1996

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 12 of: 119

University of
Tübingen

IAAT
Astronomy

2 SOFTWARE ARCHITECTURE

2.1 TERMS

2.1.1 TASK
The IBIS IASW consists of some processes running in an preemptive multitasking
environment supported by the CSSW. These processes are refered in following as
tasks. Event though they mostly fullfill a specific function the term task should not
be applied as this function but the entity of modules running as a single process.

2.1.2 TYPES OF MODULES
The IBIS IASW consists of modules which fall under different categories:
1. Interface modules which has to form the link between CSSW and data

processing parts of the IASW. They are not necessarily part of a specific task
but may be used from different task.

2. Task modules which own only one specific task.
3. Shared modules which neither form a interface nor belong to a specific task.

These modules provide different tasks with internal algorithms and data.

2.1.3 TASK ENTRY POINTS
Each task is started by calling a procedure called the task entry point. This
procedure contains a task loop which must not end.

2.2 GENERAL REQUIREMENTS

2.2.1 PROGRAMMING LANGUAGE

The SW shall be coded in ADA 83, TLD COMPILER Version V-5.7.L.
Time critical functions could be written in assembler Code according 1750A
assembler code with TLD ASSEMBLER.

2.2.2 RESOURCE REQUIREMENTS

CPU time: 12095 out of 125 per RTC
Memory space: ROM size: 48 kWord

RAM 960 kWord

One Word consists of 16 Bit.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 13 of: 119

University of
Tübingen

IAAT
Astronomy

TC handling: 8 per seconds
TM generation: 136 packets / 8sec nominal case (184 packets / 8sec max.)

2.3 MULTITASKING

2.3.1 IASW USES MULTITASKING
The IBIS IASW uses multitasking to both reakt on specific events and process data
at same time.data at same time.

2.3.2 TYPE OF MULTITASKING USED

2.3.2.1 Priority
The IASW runs in priority based preemptive multitasking.
Each task has its own priority.
Different priorities will ensure that the behaviour does not depend on the timing
granularity of the multitasking system but only on the necessity to process certain
events.
Round-robin multitasking feature therefore will not be used.

2.3.2.2 Priority allocation
The priority of the tasks must be set under following constraints:
1. Commandability and collection of status information has highest priority.
2. Cyclic tasks should have high priority (to avoid exceeding their period).
3. Tasks running longer than 21 msec (1 TM window) per cycle must have a priority

less than 7.

Requirement 3 is ensures that the CSSW will not be blocked from sending the TM
properly which is done with the TM_CYCLE-Task running at priority 7. Refer RD 4,
7.1.
This ensures also that no watchdog event may occur because the DPE watchdog
register is reseted by the TM_CYCLE task.

2.3.2.3 Cyclic tasks
Tasks may be cyclic or acyclic depending whether they are using the CSSW service
of defining a period or not.

2.3.2.4 Cyclic tasks exceeding period
Cyclic tasks must not exceed their period (Refer RD 4, 3.2.3.1.3.8). If this may
happen the cyclic task should become acyclic by deleting its period (refer RD 4,
3.2.3.1.310).

For safety reasons all tasks which have to perform a periodic job should be made
cyclic because the CSSW checks whether these tasks exceed their period or not
(RD 4, 3.2.3.1.3.8).

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 14 of: 119

University of
Tübingen

IAAT
Astronomy

2.3.2.5 Period of cyclic tasks
All cyclic tasks have a period of 1 RTC.

The service of defining a period of multiple RTC’s will not be used because there is
no task which may wait for a long time before performing its job. The only task which
may use the period would be the HK collecting task but just this one is synchronized
with a BCP1 H/W event to avoid phase shift.

2.3.2.6 Dead-Lock Prevention
Under no circumstances a situation must occur that tasks A waits for an event from
task B while task B waits for an event from task A, or any wider wait-event cycle may
happen for a set of tasks. To avoid this situation different techniques were
developed. The simplest approach is as follows:
The tasks must be designed that:
1. For all events any task may wait for exists a common, non-cyclic chain of inter-

task communications.
2. No task (except the one with lowest priority) performs active polling.
3. The CPU budget is set so that event the task with lowest priority will become

ready periodically.

The condition 2 and 3 ensures that tasks may block each other because a high-
priority task polls actively for a flag/event which will be sent from a low-priority task
which never will become running.

2.3.3 LIST OF TASKS

Task Name Task ID Priority Cyclic
Main Task 1 3 No
TC Task 2 11 No
HBR A Task 3 8 No
HK Task 4 12 Yes (but without

period)
Histogram Task 5 10 Yes (may become

acyclic)
Read Histogram
Task

6 4 Yes (may become
acyclic)

Table 1: List of IASW Tasks

2.3.4 DESCRIPTION OF IASW TASKS
Each task will be described as a general entity in terms of behaviour, timing and
resource requirement.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 15 of: 119

University of
Tübingen

IAAT
Astronomy

2.3.4.1 Main Task

2.3.4.1.1 Functionality

The main task defines in which mode the IASW run (RD 6, 2.2).
According current mode the task performs:

Standby Mode • Context save/restore automatism reactions (RD 6,
• HV VETO off automatism reaction

Diagnostic Mode • Reading PPM from HEPI
• Goto Standby mode automatism reaction

Scienctific Mode • Initialize HEPI
• Set HEPI science functions of PPM
• Read PPM from HEPI, link them down
• Goto Standby mode automatism reaction
• Resynchronize HEPI due wrong/low data rata

Table 2: List of Main task functionality

2.3.4.1.2 Initialisation

2.3.4.1.2.1 Connection to events:

The main task will connect to following CSSW events:
• BCP4 (HEPI synchronisation)
• LSL End of Transmission (LSSL access)
• LSL End of Reception (LSSL access)
• LSL Parity Error (LSSL access)
• LSL Overrun Error (LSSL access)
• Timer A (Waiting 10msec)

2.3.4.1.2.2 Init state

The main task will start when CSSW goes to nominal mode.

2.3.4.1.2.3 Task entry point

The task entry point will be the procedure INIT in module MODE_DISPATCHER.

2.3.4.1.3 Timing behaviour

The main task is not cyclic. Data processing in diagnostic/scientific mode will be
performed by polling the input buffer which will result in maximum CPU request.
If no data are available the main task shall wait 10msec till polling for new data.

In standby mode a wait of 1 RTC between two operations shall be performed.

2.3.4.1.4 Interfaces

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 16 of: 119

University of
Tübingen

IAAT
Astronomy

2.3.4.1.4.1 Inter-Task communication:

2.3.4.1.4.1.1 Main task recepts:

• The TC Task will set the mode and will distribute the status according broadcast
packet.

• HK Task will read the mode and event processingcounters.
• HK Task will set the HEPI resynchronisation flag in case of low/bad event rate.
• HBR A TASK information that a buffer is filled with PPM’s.

2.3.4.1.4.1.2 Main task sends:

• Start/Stop of processing histograms to Histogram Task.
• Start/Stop of reading histograms to the Read Histogram Task
• Signal to HBR A Task to start reading of PPM’s from HEPI.

2.3.4.1.4.2 Interface Modules

TBW.

2.3.4.2 TC Task / processing of Telecommands

2.3.4.2.1 Functionality

The TC task waits for telecommands distributed from CSSW. Each recognized
telecommand will be processed provided it is correct in parameter range and size
and is allowed in current mode.

2.3.4.2.2 Used types of telecommands

Name Type Subtype
Pulse_Command 2 1
Start_Task 5 1
Stop_Task 5 2
Load_Task_Parameter 5 3
Report_Task_Parameter 5 4
Mode_Transition 5 5
Report_Specific_TM 9 1
Enable_Specific_TM 9 4
Disable_Specific_TM 9 5
Table 3: List of used telecommand types/subtypes

2.3.4.2.3 Mode dependence

The acceptance of a TC depends on its type/subtype combination which may be
allowed/denied in a certain mode. No other criteria is used to accept/reject
telecommands depending on mode.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 17 of: 119

University of
Tübingen

IAAT
Astronomy

Mode Type Subtype Allowed
Standby 2 1 Yes

5 1 Yes
5 2 Yes
5 3 Yes
5 4 Yes
5 5 Yes
9 1 Yes
9 4 Yes
9 5 Yes

Diagnostic 2 1 Yes
5 1 Yes
5 2 Yes
5 3 Yes
5 4 Yes
5 5 Yes
9 1 Yes
9 4 Yes
9 5 Yes

Science Standard 2 1 No
5 1 No
5 2 No
5 3 No
5 4 No
5 5 Yes
9 1 No
9 4 No
9 5 No

Science PPM 2 1 No
5 1 No
5 2 No
5 3 No
5 4 No
5 5 Yes
9 1 No
9 4 No
9 5 No

Polarimetry 2 1 No
5 1 No
5 2 No
5 3 No
5 4 No
5 5 Yes
9 1 No

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 18 of: 119

University of
Tübingen

IAAT
Astronomy

9 4 No
9 5 No

Table 4: List of telecommands allowed in which mode

2.3.4.2.4 Initialisation

2.3.4.2.4.1 Connection to events:

The tc task will connect to following CSSW events:
• LSL End of Transmission (LSSL access)
• LSL End of Reception (LSSL access)
• LSL Parity Error (LSSL access)
• LSL Overrun Error (LSSL access)

2.3.4.2.4.2 Init state

The TC task will start when CSSW goes to nominal mode.

2.3.4.2.4.3 Task entry point

The task entry point will be the procedure START in module TC_DECODER.

2.3.4.2.5 Timing behaviour

The TC task has almost highest priority and is asynchronous. The task waits
passive to receive telecommands from CSSW and will wake up only when a
telecommand is pending. Because of rejection of telecommands in science mode
the most CPU budget may be spent in standby/diagnostic mode only.

2.3.4.2.6 TC Timeout

The maximum duration waiting for telecommands before a timeout is reported is the
maximum allowable RTC ticks value.

2.3.4.2.7 Interfaces

2.3.4.2.7.1 Inter-Task communication:

2.3.4.2.7.1.1 TC task recepts:

No signal.

2.3.4.2.7.1.2 TC task sends:

• Mode to Main Task
• Broadcast information to Main Task, Histogram Task, Read Histogram Task,

HK Task.
• Start/Stop of processing histograms to Histogram Task.
• Start/Stop of reading histograms to the Read Histogram Task.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 19 of: 119

University of
Tübingen

IAAT
Astronomy

• Automatism state to Main Task, Histogram Task, Read Histogram Task, HK
Task.

2.3.4.2.7.2 Interface Modules

TBW.

2.3.4.3 HBR A Task

2.3.4.3.1 Functionality

The HBR A Task initiates reading PPM events from HEPI via HBR A to DPE and
checks the correct reception. Also the PPM buffer handling is managed by this task
to allow reading and processing of PPM’s in parallel.

2.3.4.3.2 Initialisation

2.3.4.3.2.1 Connection to events:

The HBR A task will connect to following CSSW events:
• HSSL End of Reception (HSSL access)
• HSSL FIFO Overflow error (HSSL access)

2.3.4.3.2.2 Init state

The HBR A task will start when CSSW goes to nominal mode.

2.3.4.3.2.3 Task entry point

The task entry point will be the procedure in INITIALISE module HBR_A_IF.

2.3.4.3.3 Timing behaviour

The task is asynchronous and will be activated when the main task asks for PPM.
The CPU budget of this task is low for only start will be triggered and a wait to stop
event occurs. This may happen in diagnostic/scientific modes only. In standby mode
the task will not be used.

2.3.4.3.4 Interfaces

2.3.4.3.4.1 Inter-Task communication:

2.3.4.3.4.1.1 HBR A task recepts:

• S/W event from Main Task when buffer of PPM is requested.
• Main Task sets flag that buffer is read out.

2.3.4.3.4.1.2 HBR A task sends:

• Sets flag when buffer is available for Main Task.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 20 of: 119

University of
Tübingen

IAAT
Astronomy

2.3.4.3.4.2 Interface Modules

TBW.

2.3.4.4 Histogram Task

2.3.4.4.1 Functionality

The histogram task manages the starting and stopping of histogram integration in
HEPI for PiCsIT events. Also this task aktivates reading of last integrated histogram
which will be performed with the Read Histogram Task.

Integration of histograms will be performed in scientific mode only. The conditions
that a histogram what type soever will be integrated are defined in RD 6, sect.
3.2.5.1.

2.3.4.4.2 Initialisation

2.3.4.4.2.1 Connection to events:

The Histogram Task will connect to following CSSW events:
• LSL End of Transmission (LSSL access)
• LSL End of Reception (LSSL access)
• LSL Parity Error (LSSL access)
• LSL Overrun Error (LSSL access)

2.3.4.4.2.2 Init state

The Histogram Task will not start when CSSW goes to nominal mode.
The task will start when the main task goes to scientific mode.
The task will stop himself when main task leaves scientific mode.

2.3.4.4.2.3 Task entry point

The task entry point will be the procedure NITIALISE in module HBR_B_IF.

Remark: The module name HBR B IF was chosen to reflect the similarity of HEPI
interface lines HBR A and B (PPM/histogram blocks). During design process it
turned out that processing of histograms needs two tasks for one must track the
timing while integrating while the other task reads out and processes the histogram
blocks. The modul name remained but its functionallity is not any more the access of
the HBR B line.

2.3.4.4.3 Timing behaviour

The Histogram Task is cyclic with a period of 1 RTC (125msec).

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 21 of: 119

University of
Tübingen

IAAT
Astronomy

In each period the task checks whether one of the start/stop conditions occurred
and performs the actions (acessing HEPI to enable/disable certain histogram
buffers). During the access of HEPI the task is made non-cyclic by deleting its
period to avoid a task overrun condition.

2.3.4.4.4 Interfaces

2.3.4.4.4.1 Inter-Task communication:

2.3.4.4.4.1.1 Histogram task recepts:

• A start/stop task command from Main Task when entering/leaving scientific
mode to start/stop.

• The satellite status from TC Task via a broadcast packet (needed to determine
point/slew state and on-target flag).

2.3.4.4.4.1.2 Histogram task sends:

• A signal to the Read Histogram Task to start reading of indicated buffers.

2.3.4.4.4.2 Interface Modules

TBW.

2.3.4.5 Read Histogram Task

2.3.4.5.1 Functionality

The Read Histogram Task performs the actual reading of blocks from HEPI,
compressing them and link the data down as telemetry packets.
The conditions for reading histogram blocks for the different histogram types are
defined in RD 6, sect. 3.2.5.3.
Both types of histograms - science histograms (CsI single/multiple and polarimetry
histograms) and calibration histograms – are read blockwise. Because the telemetry
rate should be constant the reading and processing of histogram blocks is
distributed over the entire reading process of a histogram. According RD 6,
3.2.5.3.1, the reading time shall be the expected integration time of the following
histogram (of same type) less a time margin TBD.

Reading histogram blocks contains following steps:
1. Send a request histogram block to HEPI with the block address.
2. Wait at least TBD msec.
3. Check, whether the block is available.
4. Read the histogram block via HBR B.
5. Compress the block, link down the telemetry containing its data.

2.3.4.5.2 Initialisation

2.3.4.5.2.1 Connection to events:

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 22 of: 119

University of
Tübingen

IAAT
Astronomy

The Read Histogram Task will connect to following CSSW events:
• LSL End of Transmission (LSSL access)
• LSL End of Reception (LSSL access)
• LSL Parity Error (LSSL access)
• LSL Overrun Error (LSSL access)
• HSSL End of Reception (HSSL access)
• HSSL FIFO Overflow error (HSSL access)

2.3.4.5.2.2 Init state

The Read Histogram Task will start when CSSW goes to nominal mode.

2.3.4.5.2.3 Task entry point

The task entry point will be the procedure INITIALISE in module
READ_HISTOGRAM.

2.3.4.5.3 Timing behaviour

The read histogram task is cyclic with a period of 1 RTC (125 msec).
The scheme is as follows:
• Check, whether block is needed to be read out (according time/last block read)
• If so, send block request command to HEPI
• wait till next period
• Read/process block.
The main CPU budget is the processing of blocks which may last up to 65msec.

2.3.4.5.4 Interfaces

2.3.4.5.4.1 Inter-Task communication:

2.3.4.5.4.1.1 Read Histogram task recepts:

• A signal from Histogram Task/TC Task when a certain histogram should be
read out.

• The satellite status from TC Task via a broadcast packet (needed to determine
the hand-over flag).

2.3.4.5.4.1.2 Read Histogram task sends:

No signal.

2.3.4.5.4.2 Interface Modules

TBW.

Request blockRTC RTC
Processing of
block

t

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 23 of: 119

University of
Tübingen

IAAT
Astronomy

2.4 INTERFACE MODULES
Interface modules are those modules whose routines belong not to a single task
only and/or who supply services to either access external devices or share common
informations/algorithms.

2.4.1 CONSIDERATIONS

2.4.1.1 Reentrability
If some interface routines will be accesses from different task which run in parallel it
must be made shure that the functional result of this routine does not change when
it is called at same time from different tasks. To achieve this different approaches
may be used:
1. If a resource is needed which allows only one access a time a semaphore

concept must be used.
2. No routine should set global variables (except as defined in 1.).
3. Reading global variables will be allowed if the read process is a single atomic

access.

2.4.1.2 Mutual exclusion

2.4.1.2.1 Semaphores

Access to single access resources will be controlled by following semaphore
mechanisms:

1. Blocking will be controlled by an binary semaphore variable which will be read
and set/unset in a crititcal region.

2. If the resource is blocked (semaphore variable is set) the task waits for a specific
“free” message which will be sent when the resource is unblocked.

3. Also the task ID of the blocking task will be stored.

According general principles a message is sufficient to control the blocking
mechanism by sending the message each time the resource will become unblocked.
The additional variables are used to ensure that the design is implemented properly
by checking:
• The block-function will not be called by the same task in nested situations.
• The resource does not remain blocked by checking whether the same task is

blocking the resource twice.
• It could be checked by the interface modules that a specific task indeed blocks

the given resource.

2.4.1.2.2 Access by an announce/confirm mechanism

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 24 of: 119

University of
Tübingen

IAAT
Astronomy

For specific resources (access of LSSL in Main Task) it is necessary that the task
needs not wait till the resource becomes free. For this a different approach will be
implemented:
• The task announces an access to the resource (LSSL) which sets a flag.
• If the resource becomes unblocked the annoucing task gets access to the

announced resource.
• The task check this situation by polling a function (confirm) which returns true

when the access to the resource is granted.

2.4.2 TYPES OF INTERFACES

2.4.2.1 Detector Interfaces
TBW

2.4.2.2 TM Interface
TBW

2.4.2.3 Status Informations
TBW

2.4.2.4 Tables
TBW

2.4.2.5 Algorithms
TBW

2.5 MEMORY MAPPING
The 1750A structure allows 64KWord each data and instructions at same time. To
enhance the memory space it is possible to reprogramm the memory controller in
units of 4kWord pages. The mapping of physical and logical pages could be set as
desired.
The TLD ADA compiler/linker supports the enhanced memory by swapping the set
of accessible pages each time. Changing this set (also refered as adress state) the
is time consuming so the change of addressstates should occur as seldom as
possible. See also RD 9, sect 3.4.

2.5.1 OVERVIEW

2.5.1.1 Data exchange between different address states
If the address state will change no variables are accessible except those parts of
data which are allocated in pages which do not change physically when changing
the address state (address state transition). The address states are numbered,
starting from 0.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 25 of: 119

University of
Tübingen

IAAT
Astronomy

2.5.1.1.1 Global variables

No global variables must be accessed across different address states.

Exception:
Global variables which must be common for different address states may be defined
in module IASW_COMMON which will be allocated at the same physical page for all
address states.

2.5.1.1.2 Transfer of data between address states

1. The stack must be allocated at common physical pages for both source and
destination addess states for all address state transitions.

2. All variables transfered between different address states and are accessed via a
VAR clause must be allocated on stack .

3. All variables transfered between different address states and greater than 1
Word must be allocated on stack.

4. Arguments of procedures which hase size 1 Word ore are scalar types need not
be allocated on stack.

These Variables are stored in the 1750A register and remain as is during address
state transition.

2.5.1.2 Allocation of modules in different address states

2.5.1.2.1 Stack allocation of tasks

Each task has its own stack. The stack must be allocated on physical pages which
are visible in all address states the task will run at.

2.5.1.2.2 Adress state 0 modules

1. Time critical code of IASW and entire CSSW code is running in AS (address
state) 0.

2. All task entry points are in AS 0.

2.5.1.2.3 Address state 1 modules : Histogram processing

All histogram controlling/processing routines are allocated in AS 1.

2.5.1.2.4 Address state 2 modules: Tables

All context tables are allocated in AS 2.

2.5.1.2.5 Address state 3 modules: ISGRI Energy correction

The ISGRI energy correction table and its algorithm is allocated in AS 3.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 26 of: 119

University of
Tübingen

IAAT
Astronomy

2.6 ERROR HANDLING

2.6.1 EXCEPTIONS
Under no circumstances ADA-Exceptions should be allowed to leave the outmost
scope of a single ADA-task because then a runtime routine containing a breakpoint
will be reached. This would result in stopping the entire IASW.
So each exception must be handled at least at task scope or in embedded scopes.
The way it will be done is that each major function (which one depends on timing/fail
save conditions) shall handle exceptions it must deal with. So both should be done:
• The exception is reported (On Event message)
• The software reacts on the exception so it is in a stable state.

2.6.1.1 Task exception handler
Each task must maintain an exception handler which catches all exceptions within
the task loop.

2.6.1.2 Function exception handler
1. Each function which is called when resources are blocked must maintain an

exception handler.
2. Each function which is called within a critical context should maintain an

exception handler.
3. In case of speed reasons a function may leave out an exception handler

provided a failure will have no sideeffects.

2.6.1.3 Reactions on exceptions:

2.6.1.3.1 On-event message

If an exception was catched the exception handler shall send an On-event Message
which contains:
• An unique exception ID which defines location or reason of exception raise.
• Type of exception (if common exception).
• Task ID when exception occurred.
• Logical address of exception variable.

Example:
PROCEDURE A is
BEGIN

EXCEPTION
 WHEN Constraint_Error_Exception ⇒

Exception_Handler.Constraint_OEM (23);

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 27 of: 119

University of
Tübingen

IAAT
Astronomy

 WHEN others ⇒
Exception_Handler.Exception_OEM (23);

END A;

2.6.1.3.2 Retry/Stop in exception case

In most cases it is sufficient to continue with the caller which will continue
processing.

2.6.2 STACK OVERFLOW

2.6.2.1 Static stack check
For each task the maximal stack consumption shall be verified at software
integration time.

For each task the stack size should be set at maximum stack consumption plus 100
Word margin.
The TLD compiler supports the stack analysis provided no procedure is recursive
and the parameter size is always well defined. Recursion shall not be used in the
IBIS IASW, so this may not bother. The parameter size is not always strict defined
because commands which are sent to an external device may have different length.
The maximum allowable length is 64 Word. To have some margins (about 10%)
used by Astres the value above is defined.

2.6.2.2 Stack check at run time
Stack overflow will be checked at run time periodically by the CSSW.

2.6.3 TASK OVERRUN
Periodic tasks are checked by CSSW.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 28 of: 119

University of
Tübingen

IAAT
Astronomy

3 DETAILED DESIGN DESCRIPTION

3.1 USED H/W-S/W INTERFACE
Working as a real time data evaluating and controling instrument the IBIS DPE has
to access both the instrument as the OBDH bus. This will be achieved by serial lines,
analog lines and relais lines to the instrument devices and on the other hand by
means to access the OBDH bus to supply Telemetry data and to receive
Telecommands.

3.1.1 ACCESS VIA CSSW ONLY
The IASW shall use the CSSW only to access any hardware beyond the DPE.
The interfaces used by IASW will be described in following sections. For CSSW
terms refer [RD 5].

3.1.2 TELECOMMANDS
Telecommands shall be collected with CSSW function GET_TC only.

3.1.2.1 TC Buffer size
The telecommand buffer size shall be able to keep 8 unprocessed telecommands.
Telemetry
All telemetry data except essential housekeeping shall be given to CSSW function
PUT_SCIENCE_TM.

3.1.2.2 Housekeeping

Essential housekeeping shall be given CSSW function PUT_IASW_HK_TM.

3.1.2.3 On-Event Messages
The IASW may in case of specific events generate on-event-messages. These
messages shall be delivered to CSSW function PUT_ON_EVENT_MESSAGE
which fills the on-event message into the CSSW OEM-Buffer. IASW must take care
that this buffer does not overflow.

3.1.2.4 Interface Communication Buffer Status
The IASW must care that the CSSW buffer does not overflow. This will be checked
with the status of the buffer in the CSSW which keeps the outgoing telemetry
packets except essential housekeeping.
The status is checked with the CSSW function GET_ICB_STATE.

3.1.3 LOW SPEED SERIAL LINE (LSSL)
The low speed serial line is used to transmit commands to and read configuration
data from detector electronic devices.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 29 of: 119

University of
Tübingen

IAAT
Astronomy

3.1.3.1 Devices
There are 11 electronic devices of IBIS which could be accessed via the low speed
serial line [RD 2]. They are referenced as peripheral instruments also.

3.1.3.1.1 HEPI

Single device for data evaluation.
LSL Line 0, address not used (0).

3.1.3.1.2 ISGRI

8 modules (MCE) to read out ISGRI CdTe data.
LSL Line 3, address lines 0,1,4:

MCE Address
1 194
2 226
3 210
4 242
5 193
6 225
7 211
8 241

3.1.3.1.3 PICSIT

Single device to read out PICSIT CsI data.
LSL Line 1, address not used (0).

3.1.3.1.4 VETO

Single device to control veto shield.
LSL Line 2, address not used (0).

3.1.3.2 initialising LSSL

IASW will use the CSSW functions SET_LOW_SPEED_LINE_MODE and
SET_TRS_LINE to define an asynchronous, high level protocol.

3.1.3.3 Starting LSSL Transmission
When starting a LSSL transmission the CSSW functions
• CONFIGURE_LOW_SPEED_LINE,
• SET_TRANSMITTER_ADDRESS,
• ENABLE_LOW_SPEED_LINE
• TRANSMIT_LSL_MESSAGE
will be used to define the channel and address of the transmission according the
receiving device. The line will be enabled and the data transmitted as being stored
in transmit buffer.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 30 of: 119

University of
Tübingen

IAAT
Astronomy

The baud rate will be set at 16kBit/sec [RD 2].

3.1.3.4 Starting LSSL Reception
When starting a LSSL reception the CSSW functions
• CONFIGURE_LOW_SPEED_LINE,
• SET_TRANSMITTER_ADDRESS,
• ENABLE_LOW_SPEED_LINE
• RECEIVE_LSL_MESSAGE
will be used to define the channel and address of the transmission according the
sending device. The line will be enabled and the data received stored in given
buffer.

The baud rate will be set at 16kBit/sec [RD 2].

3.1.3.5 resetting LSSL
The LSSL will be reseted using the CSSW function
SET_LOW_SPEED_LINE_MODE with first synchronous mode, then asynchronous
mode.
This will provoke an CSSW internal reset of the low speed serial line.
[RD 5, sect. 3.2.4.3.3.1]

3.1.4 HIGH SPEED SERIAL LINE (HSSL)
The high speed serial line is used to transmit scientific data from HEPI to DPE.

3.1.4.1 Initialising HSSL
The HSSL shall be initialised with the CSSW functions
RESET_SERIAL_LINE_MODULE and CONFIGURE_HIGH_SPEED_LINE with
DMA interlace 32.

3.1.4.2 Starting Reception

The HSSL reception calls CSSW functions SELECT_HIGH_SPEED_LINE (A/B) and
RECEIVE_HSL_MESSAGE.

3.1.4.3 Resetting HSSL
The HSSL shall be reseted with the CSSW function
RESET_SERIAL_LINE_MODULE.

3.1.4.4 HSSL A
The high speed serial line A shall be used to read single photon event data from
HEPI [RD 1].

3.1.4.5 HSSL B
The high speed serial line B shall be used to read histogram data from HEPI [RD 1].

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 31 of: 119

University of
Tübingen

IAAT
Astronomy

3.1.5 ANALOG CHANNEL ACQUISITION
Analog values shall be converted with CSSW function
START_ANALOG_ACQUISITION and read out with function READ_LAST_
ANALOG_ ACQUIRED_VALUE.

3.1.5.1 Bilevel Channel ACQUISITION
Some analog channels shall be declared as bilevel with CSSW function
CREATE_A_BILEVEL, which will define these channels to contain only single bit
information (high/low).

3.1.5.2 Analog channels
Analog values will be fetched from following peripheral instruments:

Peripheral Instrument Channel Bilevel Use
VETO 0 No VECU 1
VETO 1 No VECU 2
VETO 2 No PMT
PICSIT 3 No PICSIT voltage
VETO 4 Yes Watchdog enabled
PICSIT 5 Yes Watchdog enabled

3.1.6 RELAIS PULSES
Additionally to the serial lines and analog lines the IASW may access single lines
which will send/receive relais pulses. There are 8 channels which could be used for
relais send/receive.

3.1.6.1 Sending relais pulses

Relais pulses are sent with CSSW function SWITCH_RELAIS. All channels will be
accessible via telecommand.

3.1.6.2 Reading Relais status
Following relais lines will be used for getting information from HEPI:
• LINE 0 : Single photon events are available to be read via HSSL A.
• Line 1: Histogram blocks are available to be read via HSSL B.

It shall be possible to read any relais status signals via telecommand.

3.1.6.3 Send/Receive Relais signals independend
There is no functional correlation between the relais lines used for sending and
receiving signals.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 32 of: 119

University of
Tübingen

IAAT
Astronomy

3.1.7 ON-BOARD TIME
The on board time will be fetched with CSSW function GET_CURRENT_OBT. In
case the time need not be very accurate the function GET_LAST_FROZEN_OBT
may be used.

3.1.7.1 BCP4
HEPI uses the 1 second broadcast pulse (BCP) 2/4 to define a synchronized time to
timestamp all photon events supplied by ISGRI/PICSIT. For a time reconstruction on
ground the starting time of each measurement must be known with high accuracy .
This time will be the first broadcast pulse after a detector reset command which will
be read from IASW.

For detector time synchronisation the last BCP4 time will be read.

3.1.8 HARDWARE EVENTS (INTERRUPTS)

The IASW allocates following hardware events:

• BCP1 (Housekeeping synchronisation)
• BCP4 (Detector synchronisation)
• LSL End of Transmission (LSSL access)
• LSL End of Reception (LSSL access)
• LSL Parity Error (LSSL access)
• LSL Overrun Error (LSSL access)
• HSL End of Message (HSSL access)
• HSL FIFO Full Error (HSSL access)
• Timer A (Waiting short time)
• End of Analog Acquisition (Analog access)

3.1.8.1 Interrupt allocation
The IASW may replace the standard CSSW interrupt handlers in case of timing
problems. If the interrupts are used by parts of the CSSW it must be made shure
that the H/W events are redistibuted to all parts of the DPE S/W system.

3.2 LIST OF MODULES

Name Type Adress
state

Task

ADD_HK Task Module 0 HK Task
AMPLITUDE_CORRECTION Task Module 3 Main Task
ANALOG_IF Interface Module 0 HK Task
BCP4_HANDLER Interface Module 0
BCPK_HANDLER Interface Module 0 TC Task, Main

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 33 of: 119

University of
Tübingen

IAAT
Astronomy

Task, Histogram
Task, Read
Histogram Task

COMPUTE_CHECKSUM Interface Module 0 Main Task, TC Task
DETECTOR_INTERFACE Interface Module 0 TC Tasks, Main

Task, HK Task,
Histogram Task,
Read Histogram
Task

DIAGNOSTIC Task Module 0 Main Task
DIAGNOSTIC_MODE Task Module 0 Main Task
ECR Interface Module 0 Main Task, HK

Task, TC Task
FAST_TR Transit routine 0
HANDLE_PIXEL_NOISY Task Module 0 HK Task
HBR_A_IF Task Module 0 HBR A Task
HBR_B_IF Task Module 1 Histogram Task
HEPI Interface Module 0 Main Task, HK

Task, TC Task,
Histogram Task,
Read Histogram
Task

HEPI_CONTEXT_TABLE Interface Module 2 Main Task, TC Task
HISTOGRAM_CONFIG Task Module 1 Histogram Task
HISTOGRAM_OP Task Module 1 Read Histogram

Task
HK Task Module 0 HK Task
HSL_INTERFACE Interface Module 0 HBR A Task, Read

Histogram Task
IASW IASW ENTRY

POINT
0 N/A

IASW_COMMON Interface Module 0 N/A
IASW_STACKS Interface Module 0 HK Task, Histogram

Task, Read
Histogram Task

INSTRUMENT_CONTEXT Interface Module 0 Main Task, TC Task
ISGRI Interface Module 0 Main Task, TC

Task, HK Task
ISGRI_CONTEXT_TABLE Interface Module 2 Main Task, TC Task
LINE_MANAGER Interface Module 0 Main Task, HK

Task, HBR A Task,
TC Task, Histogram
Task, Read
Histogram Task

LSL_INTERFACE Interface Module 0 Main Task, HK

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 34 of: 119

University of
Tübingen

IAAT
Astronomy

Task, TC Task,
Histogram Task,
Read Histogram
Task

MODE_DISPATCHER Task Module 0 Main Task
OBT_OPERATIONS Interface Module 0 Main Task, TC

Task, Histogram
Task, Read
Histogram Task

OBT_ASM Interface Module 0 Main Task, TC
Task, Histogram
Task, Read
Histogram Task

OEM_INTERFACE Interface Module 0 Main Task, HBR A
Task, HK Task, TC
Task, Histogram
Task, Read
Histogram Task

PICSIT Interface Module 0 Main Task, TC
Task, HK Task

PICSIT_CONTEXT_TABLE Interface Module 2
READ_HISTOGRAM Task Module 1 Read Histogram

Task
S1 Task Module 0 Main Task
S2 Task Module 0 Main Task
S3 Task Module 0 Main Task
S4 Task Module 0 Main Task
S5 Task Module 1 Read Histogram

Task
S6 Task Module 1 Read Histogram

Task
S7 Task Module 1 Read Histogram

Task
S8 Task Module 0 Main Task
SCIENCE_FUNCTIONS Interface Module 0 Main Task,

Histogram Task,
Read Histogram
Task

SCIENCE_HK Interface Module 0 Main Task, HK
Task, TC Task,
Histogram Task,
Read Histogram
Task

SCIENCE_MODE Task Module 0 Main Task
SQRT Interface Module 0 Main Task

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 35 of: 119

University of
Tübingen

IAAT
Astronomy

TABLE_HANDLER Interface Module 2 TC Task
TASK_PARAMETER Task Module 0 TC Task
TASKS INITIAL MODULE 0 N/A
TC_DECODER Task Module 0 TC Task
TM_INTERFACE Interface Module 0 Main Task, HK

Task, TC Task,
Read Histogram
Task

TRANSPARENT Task Module 0 Main Task
VETO Interface Module 0 Main Task, TC

Task, HK Task
VETO_CONTEXT_TABLE Interface Module 2 Main Task, TC Task
Table 5: List of all IASW modules

3.2.1 LINE RESOURCE MANAGEMENT

Different Tasks need access of the HSL or LSL Device. Hence it follows the
problem, that one Task wants to read from the Device during a other Task is
reading. To avoid this shared resource conflict each HSL or LSL accessing Task
must use the LINE MANAGEMENT PROTOCOL: (High and Low speed Line are
considered in the same manner, as a LINE)
1. Bevore using the Line it must be checked whether the Line is free. If so then the

Line might be used. If not the task must wait till the Line becomes free.
2. When a task has access to the Line it must block the Line. Operation 1.), 2.) must

be atomic operations in respect of multitasking, i.e. must not be interrupted by the
task scheduler.

3. If a certain Task used the Line it must unblock the Line and inform waiting tasks
that the Line has become free.

4. A polling approach with high priority should be maintained, i.e. a certain taks
must have the possibility to look whether the Line has become unblocked and
then get access to it (Main task event loop).

3.2.1.1 Context tables
All context tables are located at AS 2.

Description Size
(word)

Start address
(physical)

Start address
(logical)

HEPI 10240 16#1A000# 16#4000#
VETO 64 16#1E000# 16#8000#
PICSIT 320 16#1F000# 16#9000#
ISGRI 10752 16#20000# 16#A000#

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 36 of: 119

University of
Tübingen

IAAT
Astronomy

Remarks:
ISGRI table consists of 8 single ISGRI context tables, one per MCE. Each single
ISGRI MCE context table is 21 blocks a 64 words large.
HEPI context above defines the LUT, but HEPI also contains a certain context in the
REGISTER TYPE II which is stored in DPE and upload each time when a science
mode is started. The REGISTER TYPE II has a size of 35 byte (+ 1 spare).
The table above declares table allocation in blocks. The used table size might be
smaller according length value of last block. (see: IBIS COMMUNICATION
PROTOCOL DEFINITION).

3.3 DESCRIPTION OF THE SW MODULES

3.3.1 MODULE ADD_HK

• List of Contents:
Procedure GET_ADD_HK

• Global Variables: VETO_SPECTRA_PARAMETER.

Structure:
component length (bit) Description Default
SP_CAL 1 Flag to define

whether spectra
is in concidence
with (1) or without
(0) conincidence
of calibration

0

SPEHK_PER 15 spectra
integration time in
sec.

300

SPEHK_INF defines whether
(1) or not (0)
channels will
increase. If not,
SPEHK_CH
defines channel
to integrate into.

0

SPEHK_CH channel to
integrate spectra
into.

0

VETO_SPECTRA_PARAMETER is sent as is to veto when new spectra will be integrated.
IASW will use the SPEHK_PER-component only to determine when to read the
spectra next time.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 37 of: 119

University of
Tübingen

IAAT
Astronomy

Description
The module ADD_HK collects additional housekeeping H3, H4 from ISGRI, PICSIT
and VETO. Each time the function GET_ADD_HK is called (which must be done
periodically each 8 seconds) it will be checked whether it is time to collect new data
from the detectors. The time is:
1. ISGRI additional HK is read each 32 sec = 4 HK cycles.
2. PICSIT additional HK is read each 32 sec = 4 HK cycles.
3. VETO additional HK period depends on the time period of the variable

VETO_SPECTRA_PARAMETER. SPEHK_PER which may be changed via telecommand.

3.3.1.1 Procedure GET_ADD_HK

• Input: Electrical configuration register ECR: Defines which detector is switched
on.

• Output: Returns true when successfull collected additional housekeeping H3,
H4.

• Called by modules: HK, each 8 seconds.
• Description:
The function increases an internal counter which defines when to read out which
type of additional HK. Provided it is time to read an H3 data packet first PICSIT will
be read, then ISGRI (with increasing MCE number) will be read out. After
successfull reading the data read is copied into the telemetry packet H3 and sent
next cycle (next call of function GET_ADD_HK).
If the ECR for given detector is off (PICSIT or ISGRI MCE to be read out) no access
to the detector will performed. The H3 packet contains a flag at the end of the
telemetry packet which indicates that the content of the H3 packet is empty.

Veto HK will be read out according the period defined in global variable
VETO_SPECTRA_PARAMETER. This will be done in following steps:
1. Set internal veto integration time at period defined in variable

VETO_SPECTRA_PARAMETER.
2. Send to VETO the content of veto_spectra_parameter with command

V_SPEHKPAR.
3. Wait the period plus 1 HK margin.
4. Read VETO spectra into H4 packet, send TM H4.

• Constraints: The function must be called each 8 sec.
• Efficiency: Not applicable
• Verification Requirement: TBD

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 38 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.2 MODULE AMPLITUDE_CORRECTION
• List of Contents:

 Function RISETIME_CORRECTION return Amplitude_correction.
 T_Risetime_range

 Function GAIN_CORRECTION return Float
 Function FIRST_STEP return Amplitude_correction.T_Unsigned_4bit
 Function SECOND_STEP return System.Unsigned
 Function COMPTON_AMP_CORR return System.Unsigned
 Procedure ISGRI_AMP_CORR
 Function READ_GAIN_OFFSET_TABLE return Table_Handler.T_Block
 Procedure WRITE_GAIN_OFFSET_TABLE
 Function READ_FINAL_TABLE return Table_Handler.T_Block
 Procedure WRITE_FINAL_TABLE

• Global Variables: None

• Description:
This module contains all routines to perform the 2-step correction of a CdTe
amplitude according the following equations:

First step: Gain and Offset
This step needs values out of a 16 kword lookup table named
GAIN_OFFET_TABLE. The size of this table is 256 blocks of 128 bytes. Each block
could be set via TC(5,3)(TID=32, FID=0) and read out via TC(5,3)(TID=32, FID=0).
For every CdTe pixel (Y,Z) there are four 4-bit Integer values g_h, o_h, g_t o_t
(range –8..+7). The four values for one pixel are stored inside a single word (same
memory address). All values are initialised with zero.

Structure of the GAIN_OFFSET_TABLE: 128 x 128 x 4 4-bit Integer
Pixel g_h (4 bit) o_h (4 bit) g_t (4 bit) o_t (4 bit)
Y, Z=0 (1
word)

0 0 0 0

Y, Z=1 (1
word)

0 0 0 0

... (1
word)

0 0 0 0

Y=127, Z=127 0 0 0 0

Table 6: Amplitude correction GAIN_OFFSET_TABLE

This lookup table values are parameters for the following calibration functions.
Resulting ranges:

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 39 of: 119

University of
Tübingen

IAAT
Astronomy

)_*4(4_

)_*1,0(2_

)_*6(1_

1

hohoffset

hghgain

totoffset

tgtgain

+−=
+=

+−=
+=

24_36

7,2_2,1

41_49

8_7

≤≤−
≤≤

≤≤−
≤≤−

hoffset

hgain

toffset

tgain

At the begin of the first step a linear correction of the origin detector values for rise-
time and pulse height is performed. Using this results the type of charge loss curve
is determined.

TT

HT
E

hoffsethgaintpulseheighH

toffsettgainrisetimeT

−
=

+=
+=

0

0 *
1

)*(

)*(
Allowed ranges:

1510

9,55500

1270

≤≤
≤≤

≤≤

E

H

T

with T: linear corrected input value rise-time.
H: linear corrected input value of pulse height.
T0 (constant): 127 = maximum value of rise-time.
E1: type of charge loss curve, table entry value for second step.

Second step: Charge Loss Curves
The charge loss curves give the ratio between the energy and the pulse height as a
function of the rise-time. The 2 kword lookup table FINAL_TABLE keeps 16 bit
shape parameters of the h(E,T) relationship. The size of this table is 32 blocks of
128 bytes. Each block could be set via TC(5,3)(TID=32, FID=1) and read out via
TC(5,3)(TID=32, FID=1).
The corrected pulse height H out of the first step multiplied by shape parameter
S(E1,T) result in the corrected amplitude in units of [keV].

)4exp(8,1*),1(*2 −= TESHE
Resulting range:

6548020 ≤≤ E

Because E2 must stay in range of 16 bit System.Unsigned (0..65535) and with
maximum value of H = 5550,9 the maximum allowed factor = 11,8. The allowed
range for shape parameters inside the FINAL_TABLE is 65535),1(0 ≤≤ TES . So an
additional calibration factor (1,8exp(-4)) is used to map the table value range of
(0..65535) to the range (0..11,8).

Structure of the FINAL_TABLE:
E1 \ T 0 1 ... 127

0 S0,0 S0,1 ... S0,127

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 40 of: 119

University of
Tübingen

IAAT
Astronomy

1 S1,0 S1,1 ... S1,127

...
15 S15,0 S15,1 ... S15,127

Table 7: Amplitude correction FINAL_TABLE

All values S are initialised with ”11111”. Together with the calibration factor of
1,8exp(-4) the initialisation values correspond to a factor = 2.

3.3.2.1 Function RISETIME_CORRECTION return
Amplitude_Correction.T_Risetime_range

• Input: pulse height, rise time, Y-position, Z-position of an event type
Hex(24,A4, A8)

• Output: Corrected rise time

• Called by modules: AMPLITUDE_CORRECTION

• Description:
 This module internal function performs the linear rise time correction of the CdTe
amplitude correction. It needs two parameter g_t, o_t out of the 16 kword lookup
table GAIN_OFFSET_TABLE. This two parameters are used for the calibration
functions:

)_*6(1_

1

totoffset

tgtgain

+−=
+=

 Resulting ranges:

41_49

8_7

≤≤−
≤≤−
toffset

tgain

 Then the linear correction of the rise time is performed according to:

 toffsettgainrisetimeT _)_*(+=

 The allowed range for the corrected rise time is 1270 ≤≤ T . If the result of the
calculation is negative T will be set to zero. If the result of the calculation is greater
than 127 T will be set to 127.
 All calculations inside this function are done in floating points. The corrected
risetime value T is returned as system unsigned.

• Constraints: None.
•

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 41 of: 119

University of
Tübingen

IAAT
Astronomy

• Efficiency: Not applicable.

• Verification Requirement: TBD

3.3.2.2 Function GAIN_CORRECTION return Float

• Input: pulse height, rise time, Y-position, Z-position of an event type Hex(A4,
A8)

• Output: Linear corrected pulse height

• Called by modules: AMPLITUDE_CORRECTION

• Description:
 This module internal function performs the linear pulse height correction of the
CdTe amplitude correction. It needs two parameter g_h, o_h out of the 16 kword
lookup table GAIN_OFFSET_TABLE. This two parameters are used for the
calibration functions:

)_*4(4_

)_*1,0(2_

hohoffset

hghgain

+−=
+=

 Resulting ranges:

24_36

7,2_2,1

≤≤−
≤≤
hoffset

hgain

 Then the linear correction of the rise time is performed according to:

 hoffsethgaintpulseheighH _)_*(+=

 The allowed range for the corrected pulse height is 9,55500 ≤≤ T . If the result of the
calculation is negative H will be set to zero. The value 5550,9 is the maximum value
which is possible for H (pulse height = 2047; gain_h = 2.7 and offset_h = 24).
 All calculations inside this function are done in floating points. The linear corrected
pulse height value H is returned as floating point.

• Constraints: None.

• Efficiency: Not applicable

• Verification Requirement: TBD

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 42 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.2.3 Function FIRST_STEP return Amplitude_Correction.T_Unsigned_4bit

• Input: linear corrected pulse height, linear corrected rise time,

• Output: charge loss curve selection parameter E1

• Called by modules: AMPLITUDE_CORRECTION

• Description:
 This module internal function performs the first step of the CdTe amplitude
correction. It needs the linear corrected pulse height H and the linear corrected rise
time T of the event.

TT

HT
E

−
=

0

0 *
1

 Resulting range:
 1510 ≤≤ E

 with T: linear corrected input value rise-time.
 H: linear corrected input value of pulse height.

 T0 (constant): 127 = maximum value of rise-time.
 E1: type of charge loss curve, table entry value for second step.

 All calculations inside this function are done in floating points. The charge loss
curve selection parameter E1 is returned as system unsigned.

• Constraints: None

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.2.4 Function SECOND_STEP return System.Unsigned

• Input: charge loss curve selection parameter E1, linear corrected rise time,
linear corrected pulse height

• Output: Corrected CdTe amplitude in [keV]

• Called by modules: AMPLITUDE_CORRECTION

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 43 of: 119

University of
Tübingen

IAAT
Astronomy

• Description:
 This module internal function performs the second step of the CdTe amplitude
correction. It needs the parameter S(E1,T) out of the 2 kword lookup table
FINAL_TABLE. The result of this function is the corrected CdTe amplitude in keV.

)4exp(8,1*),1(*2 −= TESHE

 Resulting range:
 6548020 ≤≤ E

 Because E2 must stay in range of 16 bit System.Unsigned (0..65535) and with
maximum value of H = 5550,9 the maximum allowed factor = 11,8. The allowed
range for shape parameters inside the FINAL_TABLE is 65535),1(0 ≤≤ TES . So an
additional calibration factor (1,8exp(-4)) is used to map the table value range of
(0..65535) to the range (0..11,8).

• Constraints: None.

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.2.5 Function COMPTON_AMP_CORR return System.Unsigned

• Input: pulse height, rise time, Y-position, Z-position of an Compton single
event type Hex(A4) or Compton multiple event type Hex(A8)

• Output: Corrected CdTe amplitude

• Called by modules: S3

• Description:
 This global function calls all the internal functions which are necessary to perform
the CdTe amplitude correction. The sequence of function calls is:

 RISETIME_CORRECTION
 GAIN_CORRECTION
 FIRST_STEP
 SECOND_STEP

• Constraints: None.

• Efficiency: Not applicable

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 44 of: 119

University of
Tübingen

IAAT
Astronomy

• Verification Requirement: TBD

3.3.2.6 Procedure ISGRI_AMP_CORR

• Input: pulse height, rise time, Y-position, Z-position of a CdTe PPM event
type Hex(24) and the high rise time threshold

• Output: Corrected rise time and corrected amplitude

• Called by modules: S1

• Description:
 This global function calls all the internal functions which are necessary to perform
the CdTe amplitude correction similar to function COMPTON_AMP_CORR. In
addition the procedure ISGRI_AMP_CORR contains a risetime filter for CdTe PPM
events. If the corrected rise time is greater than the high rise time threshold (the
CdTe PPM event will not pass the rise time filter of module S1 and it will not be
linked down), then the rest of the amplitude correction must not be performed to
save CPU time. The sequence of function calls is:

 RISETIME_CORRECTION

 Only if the corrected rise time is smaller than the high rise time threshold:
 GAIN_CORRECTION
 FIRST_STEP
 SECOND_STEP

• Constraints: None

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.2.7 Function READ_GAIN_OFFET_TABLE return Table_Handler.T_Block

• Input: Block_ID

• Output: 128 byte block of the GAIN_OFFSET_TABLE

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 45 of: 119

University of
Tübingen

IAAT
Astronomy

• Called by modules: TABLE_HANDLER

• Description:
 It must be possible to read out the values of the GAIN_OFFSET_TABLE. It is not
possible to read out a single value, but one block with length of 128 byte. For this
reason the whole table is mapped into blocks of 128 bytes. Each block of the
mapped table has got its own Block_ID. Each block could be read out via
TC(5,3)(TID=32, FID=0).
 This function reads out the block with number Block_ID of the
GAIN_OFFSET_TABLE.

• Constraints: None

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.2.8 Procedure WRITE_GAIN_OFFSET_TABLE

• Input: Block_ID, block of 128 byte containing new values for the
GAIN_OFFSET_TABLE

• Output: None

• Called by modules: TABLE_HANDLER

• Description:
 It must be possible to assign new values to the GAIN_OFFSET_TABLE. It is not
possible to assign a single value, but one block with length of 128 byte. For this
reason the whole table is mapped into blocks of 128 bytes. Each block of the
mapped table has got its own Block_ID. Each block could be set via
TC(5,3)(TID=32, FID=0). This procedure overwrites the block with number Block_ID
of the GAIN_OFFSET_TABLE.

• Constraints: None

• Efficiency: Not applicable

• Verification Requirement: TBD

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 46 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.2.9 Function READ_FINAL_TABLE return Table_Handler.T_Block

• Input: Block_ID

• Output: 128 byte block of the FINAL_TABLE

• Called by modules: TABLE_HANDLER

• Description:
 It must be possible to read out the values of the FINAL_TABLE. It is not possible to
read out a single value, but one block with length of 128 byte. For this reason the
whole table is mapped into blocks of 128 bytes. Each block of the mapped table has
got its own Block_ID. Each block could be read out via TC(5,3)(TID=32, FID=1).
 This function reads out the block with number Block_ID of the FINAL_TABLE.

• Constraints: None

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.2.10 Procedure WRITE_FINAL_TABLE

• Input: Block_ID, block of 128 byte containing new values for the
FINAL_TABLE

• Output: None

• Called by modules: TABLE_HANDLER

• Description:
 It must be possible to assign new values to the FINAL_TABLE. It is not possible to
assign a single value, but one block with length of 128 byte. For this reason the
whole table is mapped into blocks of 128 bytes. Each block of the mapped table has
got its own Block_ID. Each block could be set via TC(5,3)(TID=32, FID=1). This
procedure overwrites the block with number Block_ID of the FINAL_TABLE.

• Constraints: None

• Efficiency: Not applicable

• Verification Requirement: TBD

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 47 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.3 MODULE ANALOG_IF

• List of Contents:
 Functions:

 FETCH_ANALOG_VAL,
 FETCH_BILEVEL_VAL

• Global Variables: None.

• Exceptions:

3.3.3.1 Function FETCH_ANALOG_VAL

• Input: CHANNEL - the analog channel to read from according RD 4.
• Output: Returns the converted analog value if successfully done, otherwise 0.
• Called by modules: HK
• Description:
1. starts a conversion of given channel
2. waits till conversion is over
3. reads out and returns converted value
• Constraints:
Keep care that the function is not called when in other tasks an analog conversion is
still running.
The channel must not be configured as a BILEVEL
Before calling the event END_OF_ANALOG_ACQUISITION_SIGNAL must be
connected to the HW event END_OF_ANALOG_ACQUISITION (in module TASKS).
The analog value mask must be configured false.

• Efficiency: Not applicable
• Verification Requirement: TBD

3.3.3.2 Function FETCH_BILEVEL_VAL

• Input: CHANNEL - the analog channel to read from according RD 4.
• Output:
Returns the converted analog bilevel value if successfully done, otherwise 0.

• Called by modules: HK
• Description:
- starts a bilevel conversion of given channel
- waits till conversion is over

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 48 of: 119

University of
Tübingen

IAAT
Astronomy

- reads out and returns converted value.

• Constraints:
Keep care that the function is not called when in other tasks an analog conversion is
still running. The channel must be configured as a BILEVEL.
Before calling the event END_OF_ANALOG_ACQISITION_SIGNAL the HW event
END_OF_ANALOG_ACQISITION must be connected (in module TASKS).
The analog value mask must be configured false.

• Efficiency: Not applicable
• Verification Requirement: TBD

3.3.4 MODULE BCP4_HANDLER

• List of Contents:
Procedure INITIALISE
Procedure ENABLE
Procedure DISABLE

• Global Variables: None.

• Description
This module contains an enhanced bcp4 interrupt handler (interrupt #11) which
could be disabled/ enabled by calling a procedure.
The new interrupt handler should prevent the occurence of the LSSL overrun error.

3.3.4.1 Procedures INITIALISE

• Input: None
• Output: None
• Called by modules:
-IASW

• Description:
Installs internal bcp4 interrupt handler with mask 0.
This new handler checks whether being enabled and, if not, skips sending of bcp4
events. Per default the BCP4-handling is enabled.

• Constraints:
Should be used to replace the CSSW BCP4 interrupt (int 11) handler. The new
interrupt handler could be enabled/disabled with procedures below.
The procedure should be installed after the cssw has started up.

• Efficiency: Not applicable

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 49 of: 119

University of
Tübingen

IAAT
Astronomy

• Verification Requirement: TBD

3.3.4.2 Procedure Enable

• Input: None
• Output: None
• Called by modules:
-SCIENCE_MODE
-DIAGNOSTIC_MODE

• Description:
Enables handling of BCP4-interrupt (INT 11). Sets flag true which enables BCP4
handling.

• Constraints:
May be called after the bcp4 interrupt was
disabled. Should be called before using HEPI resync
procedure which waits for BCP4.

• Efficiency: Not applicable
• Verification Requirement: TBD

3.3.4.3 Procedure Disable

• Input: None
• Output: None
• Called by modules:
-SCIENCE_MODE
-DIAGNOSTIC_MODE

• Description:
Disables handling of BCP4-interrupt (INT 11). Sets flag false which enables BCP4
handling.

• Constraints:
May be called after the bcp4 interrupt was disabled. Should not be called before
using HEPI resync procedure which waits for BCP4.

• Efficiency: Not applicable
• Verification Requirement: TBD

3.3.5 MODULE BCPK_HANDLER
• Procedure SET_BCPK

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 50 of: 119

University of
Tübingen

IAAT
Astronomy

• Procedure UPDATE_BCPK
• Procedure SET_POINTING
• Procedure POINTING
• Procedure ON_TARGET
• Procedure HAND_OVER
• Procedure SAVE_CONTEXT
• Procedure VETO_OFF
• Procedure ISGRI_BIAS_OFF-when
• Procedure SLEW_TIME
• Procedure GET_LAST_POINTING_START
• Procedure GET_LAST_SLEW_START
• Procedure GET_POINTING_ID
• Procedure WRITE_IREM_TABLE
• Procedure READ_IREM_TABLE
• Procedure PROCEDURE

3.3.5.1 Global Variables

3.3.5.1.1 POINT_SLEW_AUTOMATISM
defines how to react when satellite status changes point/slew. It does:

POINT-SLEW AUTOMATISM is ON:
- The function POINTING reports the satellite state being in pointing(true)
or slew (false) according the broadcast package contents.
- The function SLEW_TIME reports (as OBT) the start of next slew
POINT-SLEW AUTOMATISM is OFF:
- The function POINTING reports the last setting of point/slew withthe
procedure SET_POINTING (s.b.).
- The function SLEW_TIME must not be called when POINT-SLEW AUTOMATISM is
off. If doing so an exception EX_NO_SLEW_TIME will be raised.
Remark: This variable is global but should be set only byload task
parameter access.

3.3.5.1.2 ECLIPSE_AUTOMATISM
defines how to react when satellite enters eclipse mode.
ECLIPSE_AUTOMATISM is ON:
Each time the broadcast package contains an eclipse flag it affectsthe
functions GOTO_STANDBY and SAVE_CONTEXT (s.b.).The result : the IASW goes
to eclipse mode,i.e. stop science mode, save context.
ECLIPSE_AUTOMATISM is OFF:The broadcast package eclipse flag will NOT
affect GOTO_STANDBY andSAVE_CONTEXT functions.
Remark: This variable is global but should be set only byload task
parameter access.

3.3.5.1.3 RADIATION_BELT_AUTOMATISM
defines how to react when satellite enters the radiation belt.
RADIATION_BELT_AUTOMATISM is ON:
Each time the broadcast package contains an radiation belt flag it
affectsthe functions GOTO_STANDBY and VETO_OFF (s.b.).The result : the
IASW goes to standby mode,i.e. stop science mode.
RADIATION_BELT_AUTOMATISM is OFF:The broadcast package radiation belt flag
will NOT affect GOTO_STANDBYfunction.
Remark: This variable is global but should be set only byload task
parameter access.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 51 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.5.1.4 EMERGENCY_OFF_AUTOMATISM
defines how to react when emergency switch off mode (ESAM) or imminent
switch offbroadcast flag is set.
EMERGENCY_OFF_AUTOMATISM is ON:
Each time the broadcast package contains a true ESAM flagor an imminent
switch off flag the functions GOTO_STANDBY(s.b.) returns TRUE.The result :
the IASW goes to standby mode,i.e. stop science mode.
EMERGENCY_OFF_AUTOMATISM is OFF:The broadcast package ESAM flag will NOT
affect GOTO_STANDBYfunction.
Remark: This variable is global but should be set only byload task
parameter access.

3.3.5.1.5 RADIATION_MONITOR_AUTOMATISM
defines how to react when a radiation monitor countrate exceeds its
threshold.
RADIATION_MONITOR_AUTOMATISM is ON:
Each time broadcast package radiation monitor flag exceeds its thresholdit
affects the functions GOTO_STANDBY and VETO_OFF (s.b.).The result : the
IASW goes to standby mode,i.e. stop science mode, and veto is switched off.
RADIATION_MONITOR_AUTOMATISM is OFF:The broadcast package radiation monitor
entries does not affectIASW.
Remark: This variable is global but should be set only byload task
parameter access.

3.3.5.1.6 RADIATION_MONITOR_1_THRESHOLD
the threshold of the radiation monitor 1 (electron count rate) above which
the instruments are switched off.default : at upper most value.
The variable is defined global to be read out by the housekeeping taskAND
to be written into by tc_decoder/task parameter only

3.3.5.1.7 RADIATION_MONITOR_2_THRESHOLD
the threshold of the radiation monitor 2 (proton count rate 1) above which
the instruments are switched off.default : at upper most value.
The variable is defined global to be read out by the housekeeping taskAND
to be written into by tc_decoder/task parameter only

3.3.5.1.8 RADIATION_MONITOR_3_THRESHOLD
the threshold of the radiation monitor 3 (proton count rate 2) above which
the instruments are switched off.default : at upper most value.
The variable is defined global to be read out by the housekeeping taskAND
to be written into by tc_decoder/task parameter only

3.3.5.2 Exceptions

3.3.5.2.1 EX_NO_SLEW_TIME
this exception will be raised if it is tried to get the next slew time
though none is availablebecause of POINT-SLEW AUTOMATISM is off.

3.3.5.3 Procedure SET_BCPK

3.3.5.3.1 Input
BCPK_TC - the broadcast package received as a telecommand. Length must be
according BCPKT-Document. (34 words)

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 52 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.5.3.2 Use/Constraints
This function will be called from TC decoder which- received a TC
containing the broadcast package.

3.3.5.3.3 Description

- Check length, if not correct -> OEM
- Stores bcpk received
- Set internal flags according content.
- Derive additional information as e.g. slew time.
- Calls procedure UPDATE_BCPK.

3.3.5.4 Procedure UPDATE_BCPK

3.3.5.4.1 Use/Constraints
This function should be called periodically to ensure last broadcast packet
received will be evaluated properly. This concerns especially entry/exit of
radiation belt and eclipse condition which is on-board time dependend (it
must be decided according current OBT whether the satellite is in or out
eclipse/ radiation belt).

3.3.5.4.2 Description

- defines whether being in eclipse/radiation belt
- changes mode to standby when necessary.

3.3.5.5 Procedure SET_POINTING

3.3.5.5.1 Input
ON - Flag that shows whether we are in pointing (TRUE) or slew (FALSE)
mode.

3.3.5.5.2 Use/Constraints
This function should be called when the point/slew- status is changed
manually (eg. via a TC) when point-slew automatism is off. It doesn't have
any effect if point-slew automatism is on.

3.3.5.5.3 Description
If point slew automatism is off -> set internal flag reported in function
POINTING.

3.3.5.6 Procedure POINTING

3.3.5.6.1 Output
Returns : TRUE when satellite is in pointing status FALSE when satellite is
in slew status.

3.3.5.6.2 Use/Constraints
Call when the information whether satellite is in pointing mode needed.

3.3.5.6.3 Description

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 53 of: 119

University of
Tübingen

IAAT
Astronomy

A Pointing flag is set by broadcast packages so the accuracy of the flag is
about 8 sec. This flag is returned. We are in pointing mode if a.) ACC mode
is inertial pointing mode b.) AOCS sub mode is IPM c.) The pointing-ID is
not zero (then we are in slew)- Remark: We may be in pointing mode though
not stable pointing In that case this function returns true while the On-
Target-function returns false.

3.3.5.7 Procedure ON_TARGET

3.3.5.7.1 Output
Returns : TRUE when satellite is on target FALSE when not

3.3.5.7.2 Use/Constraints
Call when information of satellite on target status needed. Usefull for
histogram integration when integration must be stopped (and resumed later)
because of non-stable pointing.

3.3.5.7.3 Description
A On-Target flag is set by broadcast packages so the accuracy of the flag
is about 8 sec. This flag is returned. It returns true when we are in IPM
mode and on target flag is set.

3.3.5.8 Procedure HAND_OVER

3.3.5.8.1 Output
Returns : TRUE when satellite changes stations FALSE when not (save
downlinking of data)

3.3.5.8.2 Use/Constraints
Call when information about savety to link down data is needed.Usefull for
histogram integration when histogram packets are read out and must be
linked down while none of them should be lost (resulting in image
corruption for it might be compressed).

3.3.5.8.3 Description
A Hand-Over flag is set by broadcast packages so the accuracy of the flag
is about 8 sec. This flag is returned.

3.3.5.9 Procedure SAVE_CONTEXT

3.3.5.9.1 Output
returns TRUE when context of HEPI,ISGRI,PICSIT,VETO must be saved now.
returns FALSE when not.

3.3.5.9.2 Use/Constraints
This function should be called when entering standby in cause of
goto_standby procedure. If it returns TRUE the context of all instruments
should be saved. If it turnes to FALSE the context should be restored.

3.3.5.9.3 Description
returns (eclipse entered OR imminent switch off)

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 54 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.5.10 Procedure VETO_OFF

3.3.5.10.1 Output
returns TRUE when veto high voltage must be turned off. returns FALSE when
not.

3.3.5.10.2 Use/Constraints
This function should be called when standby is entered because of
GOTO_STANDBY function. When TRUE the veto high voltage must be switched
off.

3.3.5.10.3 Description
returns (ESAM OR (radiation > threshold) OR radiation belt entry OR
imminent switch off)

3.3.5.11 Procedure ISGRI_BIAS_OFF-when

3.3.5.11.1 Output
returns TRUE when isgri bias must be set to zero. off. returns FALSE when
not.

3.3.5.11.2 Use/Constraints
This function should be called in standby mode due to GOTO_STANDBY
function. When TRUE ISGRI bias should be set to zero.

3.3.5.11.3 Description
returns (ESAM OR (radiation > threshold) OR Eclipse entry OR radiation belt
entry OR imminent switch off)

3.3.5.12 Procedure SLEW_TIME

3.3.5.12.1 Output
RETURNS : on-board time when the satellite will enter slew mode.

3.3.5.12.2 Use/Constraints
Might be called if a roughly estimation of the start of next slew mode is
desired. THIS FUNCTION MUST NOT BE CALLED WHEN POINT-SLEW AUTOMATISM
IS OFF And: The slew time is wrong if we are not in pointing
mode

3.3.5.12.3 Description
The next slew time is set by the broadcast packages. So this information is
updated each 8 sec. The slew time is computed by following assumptions: a.)
The pointing will be recogniced as above. b.) The length of pointing is
declared in the broadcast information pointing_duration. The function will
return the sum of start of pointing- and its duration. If Point-Slew
automatism is of an exception EX_NO_SLEW_TIME will be raised.

3.3.5.13 Procedure GET_LAST_POINTING_START

3.3.5.13.1 Output

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 55 of: 119

University of
Tübingen

IAAT
Astronomy

Entry time (OBT) of last pointing. Returns 0 if still not occurred.

3.3.5.13.2 Use/Constraints
Might be called to get information about pointing/slew (Science HK).

3.3.5.13.3 Description
Each time the bcpk reports entering pointing the current on board time will
be stored and reported by this function.

3.3.5.14 Procedure GET_LAST_SLEW_START

3.3.5.14.1 Output
Entry time (OBT) of last slew. Returns 0 if still not occurred.

3.3.5.14.2 Use/Constraints
Might be called to get information about pointing/slew (Science HK).

3.3.5.14.3 Description
Each time the bcpk reports entering slew mode the current on board time
will be stored and reported by this function.

3.3.5.15 Procedure GET_POINTING_ID

3.3.5.15.1 Output
Returns pointing number and revolution number as defined by last broadcast
package.

3.3.5.15.2 Use/Constraints
Might be called to get information about the pointing which is/was
performed (science hk)

3.3.5.15.3 Description
Extracts pointing ID as set by set_bcpk.

3.3.5.16 Procedure WRITE_IREM_TABLE

3.3.5.16.1 Input
Block - the values could not be sent single but inside a block of 64
word. the first three words of this block contain the new values

3.3.5.16.2 Use/Constraints
This function will be called from TABLE HANDLER which itself receiced the
block

3.3.5.16.3 Description

- Copy first three words of Block into the Radiation Monitor tresholds
variavbles

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 56 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.5.17 Procedure READ_IREM_TABLE

3.3.5.17.1 Output
Returns - the values could not be sent single but inside a Block of 64
word. the first three words of this block contain the new values

3.3.5.17.2 Use/Constraints
This function will be called from TABLE HANDLER which itself returns the
block

3.3.5.17.3 Description

- Copy the three radiation monitor treshold values into the first three
words of a Block with 64 words length

3.3.5.18 Procedure PROCEDURE

3.3.6 MODULE COMPUTE_CHECKSUM

3.3.6.1 Global Variables

3.3.6.2 Exceptions

3.3.7 MODULE DETECTOR_INTERFACE
• Procedure SEND_CMD

• Procedure READ
• Procedure GET_LAST_SUB_I_ADDR

3.3.7.1 Global Variables

3.3.7.2 Exceptions

3.3.7.3 Procedure SEND_CMD

3.3.7.3.1 Input

- SUB_I_ADDR : the sub instrument address, consisting of a channel and a
address field.
- SEQ_COUNT : the sequence counter to be sent. This counter reflects the
sended command number and must- be increased each time when a command is
sent. Bit 14 shows whether it is an external (0) or internal (1) command.
Each instrument interface must take care to increase the sequence counter.
- CMD : the buffer to link to given instrument.- The transmitted
word number is derived from the length of this buffer.

3.3.7.3.2 Output
OK : Returns true if succesfully transmitted command.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 57 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.7.3.3 Use/Constraints
Call this procedure to send a sequence of words as a command to the
peripheral instrument defined by the sub_instrument address. The sequence
counter must be either:
- the sequence counter as received from GET_TC function (a 13 bit value) or
- the value 16#2000# (bit 2 which is the 14-th bit from LSB set) to show
that the detector interface must use its own TC counter. After sending the
command (after which the procedure will return) the ok flag shows whether
transfer was successfully. THE LENGTH OF COMMAND MUST BE AT LEAST 3 WORDS
THERE IS NO INTERNAL BLOCKING OF THE LSL

3.3.7.3.4 Use/Constraints
THE LINE MANAGER MUST BE USED BY THE CALLER OF THIS PROCEDURE

3.3.7.3.5 Description

- Sets the apid and the sequence count in the command buffer.
- starts lbr transmission at address/channel according- sub-instrument
address.
- Waits till transmission is over or timeout occurred.-

3.3.7.4 Procedure READ

3.3.7.4.1 Input

- SUB_I_ADDR : the sub instrument address, consisting of a channel and a
address field.
- SEQ_COUNT : the sequence counter to be sent. This counter reflects the
sended command number and must- be increased each time when a command is
sent. Bit 14 shows whether it is an external (0) or internal (1) command.
Each instrument interface must take care to increase the sequence counter.
- CMD : the buffer to link to given instrument.- The transmitted
word number is derived from the length of this buffer. It must contain the
command which provokes a response.
- RESP_LEN : The length of the expected response in words. Warning The
buffer must be at least contain RESP_LEN words

3.3.7.4.2 Output

- OK : Returns true if succesfully transmitted command.a
- RESPONSE : The buffer in which the received values must be written into.

3.3.7.4.3 Use/Constraints
Call this procedure to send a sequence of words as a command to the
peripheral instrument defined by the sub_instrument address. The sequence
counter must be either:
- the sequence counter as received from GET_TC function (a 13 bit value) or
- the value 16#2000# (bit 2 which is the 14-th bit from LSB set) to show
that the detector interface must use its own TC counter. After sending the
command and receiving responding words the procedure will return and show
in ok whether- being successfully. THE LENGTH OF COMMAND MUST BE AT LEAST
3 WORDS THERE IS NO INTERNAL BLOCKING OF THE LSL

3.3.7.4.4 Use/Constraints
THE LINE MANAGER MUST BE USED BY THE CALLER OF THIS PROCEDURE

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 58 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.7.4.5 Description

- Sets the apid and the sequence count in the command buffer.
- starts lbr transmission at address/channel according- sub-instrument
address.
- sets response buffer at receive buffer.
- Waits till transmission is over or timeout occurred.-
- Waits till reception is over or timeout occurred. -

3.3.7.5 Procedure GET_LAST_SUB_I_ADDR

3.3.7.5.1 Output
Returns : instrument address of last on-board command sent.

3.3.7.5.2 Use/Constraints
For HK - call to get last instrument accessed LSL.- Should be called
BEFORE fetching HK from instruments because otherwise it is the ID of last
HK command.

3.3.7.5.3 Description
Each time the Detector interface is accessed it stores the Sub-instrument-
address of its command if the sequence counter shows it was an internal
command. This address is returned.

3.3.8 MODULE ECR

3.3.8.1 Global Variables

3.3.8.2 Exceptions

3.3.9 MODULE HANDLE_PIXEL_NOISY

3.3.9.1 Global Variables

3.3.9.2 Exceptions

3.3.10 MODULE HBR_A_IF
• Procedure BUFFER_AVAILABE
• Procedure INITIALISE
• Procedure GET_BUFFER_RANGE
• Procedure RESET

3.3.10.1 Global Variables

3.3.10.1.1 BUFFER
The buffer for reading in events.
 MUST NOT BE WRITTEN IN

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 59 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.10.2 Exceptions

3.3.10.2.1 NO_BUFFER_AVAILABLE
exception raised when calling GET_BUFFER though no buffer is available.

3.3.10.3 Procedure BUFFER_AVAILABE

3.3.10.3.1 Output
boolean, true, if an buffer could be fetched

3.3.10.3.2 Use/Constraints
: Must be called before getting events to be shure there are any.

3.3.10.3.3 Description
Checks, if buffer is empty. If so -> try to read from other buffer (if it
is filled). In that case start to read in new data from HEPI.

3.3.10.4 Procedure INITIALISE

3.3.10.4.1 Use/Constraints
Must be called when the system is initialised.

3.3.10.4.2 Description
The HBR_A-task reads in a block of 1kW which is split into single events.
While on block supplies the events the other one is filled by the HSL.-
again if any events are available by HEPI. The buffer is filled only when
- empty
- not used for supplying events.

3.3.10.5 Procedure GET_BUFFER_RANGE

3.3.10.5.1 Output
The range of here global declared buffer which migth be used for read out.
The supplied buffer range is declared empty after read out. The range
consists of: -
- START_INDEX - the index (inclusive) of first event
- END_INDEX - the index (inclusive) of last event

3.3.10.5.2 Use/Constraints
If running a science mode GET_BUFFER_RANGE should called periodically as
often as the BUFFER_AVAILABLE Flag is true. If so the global declared
buffer could be e used in given index ranges for event processing.
CONSTRAINTS : GET_BUFFER_RANGE MUST NOT BE CALLED IF NO BUFFER IS AVAILABLE
Otherwise an exception will be raised.

3.3.10.5.3 Description
Defines according buffer state (empty or filled) which buffer is to be read
out. Declares a block to be empty when read out.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 60 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.10.6 Procedure RESET

3.3.10.6.1 Use/Constraints
call this procedure when to skip events residing in buffers.

3.3.10.6.2 Description
declares both buffers as empty (read out)

3.3.11 MODULE HBR_B_IF

3.3.11.1 Global Variables

3.3.11.2 Exceptions

3.3.12 MODULE HEPI
• Procedure HBR_A_DATA_AVAILABLE
• Procedure HBR_B_DATA_AVAILABLE
• Procedure COMMAND_HEPI
• Procedure READ_HEPI
• Procedure HEPI_STATUS_SHADOW
• Procedure INITIALISE
• Procedure SYNCHRONIZE
• Procedure GET_LAST_SYNC_OBT
• Procedure GET_SEQ_COUNT

3.3.12.1 Global Variables

3.3.12.1.1 HEPI_TYPE_II_VAR
the hepi type II register. This is a global variable which must be set ONLY
by TCdecoder. It might be read from everywhere else.

3.3.12.2 Procedure HBR_A_DATA_AVAILABLE

3.3.12.2.1 Use/Constraints
Call to check whether new data could be read in via HBR A.

3.3.12.2.2 Description
reads mRTU 0 status.

3.3.12.3 Procedure HBR_B_DATA_AVAILABLE

3.3.12.3.1 Use/Constraints
Call to check whether new data could be read in via HBR B (histograms).

3.3.12.3.2 Description
reads mRTU 1 status.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 61 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.12.4 Procedure COMMAND_HEPI

3.3.12.4.1 Input
HEPI_COMMAND - The command to be send to HEPI. PARAMETER - The parameter
for that command.

3.3.12.4.2 Output
: ok is true when transfer successfully done

3.3.12.4.3 Use/Constraints
Call the procedure with given command ID and parameter for that command.
NO PARAMETER CHECK WILL BE DONE THERE IS NO INTERNAL BLOCKING OF THE LSL

3.3.12.4.4 Use/Constraints
THE LINE MANAGER MUST BE USED BY THE CALLER OF THIS PROCEDURE

3.3.12.4.5 Description
Command_Hepi transmits the command via the LSL to HEPI. The control will
return when transmission is over. The length of the command is set
according the length of the parameter array. The internal hepi status
register variable is set by this procedure when setting status register
with H_S_HEPI_ST or resetting HEPI with H_HEPI_RES or H_STR_SYNC.

3.3.12.5 Procedure READ_HEPI

3.3.12.5.1 Input
HEPI_COMMAND - The read command to be sent to HEPI PARAMETER - The
parameter necessary for this command

3.3.12.5.2 Output
HEPI_RESPONSE : The data read out from HEPI. This array must be set
properly at the expected data size from HEPI. ok : true when
transfer successfully done

3.3.12.5.3 Use/Constraints
Call Read_Hepi with a command which requests data from HEPI, and necessary
parameters. The procedure will return the hepi response data according the
command sent into response buffer. NO PARAMETER CHECK WILL BE DONE ALSO
NO COMMAND ID CHECK IS APPLIED THERE IS NO INTERNAL BLOCKING OF THE LSL

3.3.12.5.4 Use/Constraints
THE LINE MANAGER MUST BE USED BY THE CALLER OF THIS PROCEDURE

3.3.12.5.5 Description
Command_Hepi transmits the command via the LSL to HEPI. Then the HEPI will
send the data requested- via LSL to DPE . The control will return to caller
when transmission is over. The length of the command to send is derived
from the parameter block length; that of the response from the response
block length.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 62 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.12.6 Procedure HEPI_STATUS_SHADOWRETURNS: Contents of HEPI
status register which is last sent to HEPI.

3.3.12.6.1 Use/Constraints
Should be called when a certain bit of the hepi status must be changed but
the whole status is to be sent to HEPI. Keep care of different tasks
reading this hepi status and setting their bits

3.3.12.6.2 Description
Each times the status is sent to HEPI it is stored also in this hepi
module. This value is readable by this function which returns the 'shadow'
value of the master HEPI status register. The internal hepi status register
variable is set by the COMMAND_HEPI-procedure when setting status register
with H_S_HEPI_ST or resetting HEPI with H_HEPI_RES or H_STR_SYNC.

3.3.12.7 Procedure INITIALISE

3.3.12.7.1 Use/Constraints
Call this procedure when HEPI needs to be initialised, i.e. in the very
beginning of THE CALLER MUST NOT BLOCK LSL

3.3.12.7.2 Description

- performs an init pulse.
- wait 5 seconds
- sends a init command to HEPI via LSL
- wait 5 seconds
- sends a reset command to HEPI via LSL

3.3.12.8 Procedure SYNCHRONIZE

3.3.12.8.1 Use/Constraints
Call this procedure when HEPI needs to be synchronized, i.e. when starting
science/dia- gnostic mode or HEPI lost synchronisation. The calling task
must connect the BCP4-HW event at BCP4_EVENT declared above

3.3.12.8.2 Description

- Waits for the next BCP4-event (occuring each second)-
- sends a synchronize-command to HEPI
- waits till next BCP4-event
- change sync-onboard time according bcp4-time (readable via
GET_LAST_SYNC_OBT)

3.3.12.9 Procedure GET_LAST_SYNC_OBT

3.3.12.9.1 Output
Returns: the on board time of last HEPI synchro- nisation performed with
procedure SYNCHRONIZE.

3.3.12.9.2 Use/Constraints
Call this for report in science_hk module.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 63 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.12.9.3 Description
returns stored on board time of last synchronisation set with procedure
SYNCHRONIZE. Returns zero if not set.

3.3.12.10 Procedure GET_SEQ_COUNT

3.3.12.10.1 Output
Returns: 13-bit value containing current number of commands sent to hepi.
Value wraps around at 2^13.

3.3.12.10.2 Use/Constraints
In HK for setting the HEPI sequence count field. returns 13-Bit value

3.3.12.10.3 Description
Reflects counter status.

3.3.13 MODULE HEPI_CONTEXT_TABLE

3.3.14 MODULE HISTOGRAM_CONFIG

3.3.14.1 Global Variables

3.3.14.2 Exceptions

3.3.15 MODULE HISTOGRAM_OP
• Procedure FIRST_READ_ADDRESS
• Procedure NEXT_READ_ADDRESS
• Procedure SWITCH_INTEGRATION
• Procedure CLEAR_INTEGRATION_BUFFER
• Procedure BUFFER2BLOCKS
• Procedure ORDER_HISTOGRAM_BLOCK
• Procedure READ_HISTOGRAM_BLOCK-

3.3.15.1 Global Variables

3.3.15.2 Exceptions

3.3.15.2.1 NO_BLOCK_AVAILABLE
exception raised when calling READ_HISTOGRAM_BLOCK though no data block
available(checked with HEPI HBR_B_DATA_AVAILABLE).

3.3.15.3 Procedure FIRST_READ_ADDRESS

3.3.15.3.1 Input
Buffer - the buffer of which the first read address is to be determined.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 64 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.15.3.2 Output
Returns the address of first buffer which must be read- out.

3.3.15.3.3 Use/Constraints
Call this function when for given buffer a read out is to be started and
the first address is to be defined. THE BUFFER MUST NOT BE EMPTY AND AT
LEAST ONE BUFFER MUST BE SET TRUE

3.3.15.3.4 Description
Returns according toggle and buffer switched on the first address.

3.3.15.4 Procedure NEXT_READ_ADDRESS

3.3.15.4.1 Input

- Buffer : The histogram buffer to be taken into account.
- Address: The histogram address of which the next is to be determined.

3.3.15.4.2 Output
Address : The address which will be set at the predator of previous
address. Buffer: The buffer will be set empty when last address of buffer
turned on is reached. And: Each buffer read out will be disabled.

3.3.15.4.3 Use/Constraints
Call this procedure when for given histogram buffer and address already
read the following address is needed for read out. Also a end of buffer
check will be done to set buffer empty flag. When a certain - histogram is
read out its flag will be set at FALSE.

3.3.15.4.4 Description

- adds a single 1024 kByte block to address.
- if larger than current buffer to be read out -> check whether following
is not empty. start there, if so.
- set empty flag true when at end of all buffers.
- set flag of buffer already read out at FALSE.

3.3.15.5 Procedure SWITCH_INTEGRATION

3.3.15.5.1 Input

- ON - defines whether to turn on or off integration
- BUFFER - defines which buffer in HEPI to turn on/off-

3.3.15.5.2 Output
Returns true when successfully done.

3.3.15.6 Procedure CLEAR_INTEGRATION_BUFFER

3.3.15.6.1 Input

- TOGGLE : defines the toggle buffer to clear buffer buffer in.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 65 of: 119

University of
Tübingen

IAAT
Astronomy

- SCIENCE : if true the science buffers (CsI single and multiple or
Polarimetry are the same memory area, therefore cleared in total),
otherwise the calibration- memory is cleared.

3.3.15.6.2 Output
returns true when successfully done.

3.3.15.7 Procedure BUFFER2BLOCKS

3.3.15.7.1 Input
HISTOGRAM_BUFFER - the buffer to be read out and whose number of blocks is
needed.n

3.3.15.7.2 Output
Returns number of blocks contained in given buffer. If the buffer is empty
or no buffer selected the function returns 0.

3.3.15.7.3 Use/Constraints
May be used to get the total number of blocks needed to read a certain type
of histograms.

3.3.15.7.4 Description

- checks for type of histogram
- if not empty return block number for selected histogram

3.3.15.8 Procedure ORDER_HISTOGRAM_BLOCK

3.3.15.8.1 Input

- ADDRESS - the memory address in HEPI to read from

3.3.15.8.2 Output

- OK - flag to show whether successfully done.

3.3.15.8.3 Use/Constraints
Call this function when a histogram block is requested to be read out but
still nothing in FIFO. The histogram reading should be done in following
order: 1.) Order a histogram block with ORDER_HISTOGRAM_BLOCK 2.) After
certain time (~ 1msec) check whether data are available with HEPI function
HBR_B_DATA- AVAILABLE. If false -> wait longer. 3.) When data are available
-> use READ_HISTOGRAM- block to get the data from HEPI via HBR B. KEEP
TRACK OF BLOCKS HELD IN HEPI FIFO - DO NOT ORDER MORE THAN 7 BLOCKS
WITHOUT READING OUT

3.3.15.8.4 Description
Sends HEPI a LSL command with given address to put histogram block into HBR
B FIFO.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 66 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.15.9 Procedure READ_HISTOGRAM_BLOCK-

3.3.15.9.1 Input

- ADDR_STATE - the address state the output buffer is residing at.

3.3.15.9.2 Output

- OK - flag to show whether successfully done.
- HISTOGRAM_DATA - the data to be read out.

3.3.15.9.3 Use/Constraints
Call this function when a histogram block is already in FIFO (by procedure
ORDER_HISTOGRAM_BLOCK) and available to be read out. The histogram reading
should be done in following order: 1.) Order a histogram block with
ORDER_HISTOGRAM_BLOCK 2.) After certain time (~ 1msec) check whether data
are available with HEPI function HBR_B_DATA- AVAILABLE. If false -> wait
longer. 3.) When data are available -> use READ_HISTOGRAM- block to get the
data from HEPI via HBR B. KEEP TRACK OF BLOCKS HELD IN HEPI FIFO - DO NOT
TRY TO READ FROM AN EMPTY HEPI FIFO. THIS MEANS: DO NOT CALL
THIS PROCEDURE WHEN HBR_B_DATA_AVAILABLE RETURNS FALSE
IF DOING SO AN EXCEPTION

3.3.15.9.4 Description
Blocks HBR B, reads in HBR B data into given histogram data block and
returns result of reading.

3.3.16 MODULE HK
• Procedure INITIALISE

3.3.16.1 Global Variables

3.3.16.1.1 NOISY_PIXEL_AUTOMATISM
defines whether to perform check of PICSIT noisy pixel.
NOISY_PIXEL_AUTOMATISM is ON:When generating HK the PICSIT HK data field is
checked anda possibly over-countrate pixel is switched off.
NOISY_PIXEL_AUTOMATISM is OFF:PICSIT HK are not touched.

Remark: This variable is global but should be set only by load task
parameter access.

3.3.16.1.2 MIN_VALID_RATE_THRESHOLD
the minimal event rate of valid events which must occur in science mode
when HEPI must not be resynchronized. The event rate is defined by number
of events per 8 seconds (housekeeping period).

3.3.16.1.3 MAX_INVALID_RATE_THRESHOLD
the maximal event rate of invalid events which might occur in science mode
before HEPI will be resynchronized. The event rate is defined by the
numberof events per 8 seconds (housekeeping period).

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 67 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.16.2 Exceptions

3.3.16.3 Procedure INITIALISE

3.3.16.3.1 Use/Constraints
Must be called when the system is initialised.

3.3.16.3.2 Description
The HK task waits HK_DELAY RTC's from last BCP1 and starts then to read in
the Hk from detectors, then acquire the IASW HK data and send it to CSSW.
Finally a sort of pixel monitoring will be performed.

3.3.17 MODULE HSL_INTERFACE

3.3.17.1 Global Variables

3.3.17.2 Exceptions

3.3.18 MODULE IASW_COMMON

3.3.18.1 Global Variables

3.3.18.1.1 LUT_VERSION_NO
the current version number of all look-up tables used within the IASW for
data processing.The number could be changed with a patch. It must not be
changedby any software access. It's address is $2000, AS 0, operandpages.
(see link file also)

3.3.18.1.2 CONTEXT_VERSION_NO
the current version number of all context tables used for peripheral
instruments.The number could be changed with a patch. It must not be
changedby any software access. It's address is $2001, AS 0, operandpages.
(see link file also).

3.3.18.2 Exceptions

3.3.19 MODULE IASW_STACKS

3.3.19.1 Global Variables

3.3.19.2 Exceptions

3.3.20 MODULE INSTRUMENT_CONTEXT
• Procedure CSF

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 68 of: 119

University of
Tübingen

IAAT
Astronomy

• Procedure CRF
• Procedure SET_CSF
• Procedure SET_CRF
• Procedure DOWNLOAD_CONTEXT
• Procedure UPLOAD_CONTEXT

3.3.20.1 Global Variables

3.3.20.2 Exceptions

3.3.20.3 Procedure CSF

3.3.20.3.1 Output
Returns: a list of flags which are true when context of certain instrument
was saved successfully in DPE.

3.3.20.3.2 Use/Constraints
Call for report in housekeeping.

3.3.20.3.3 Description
Reports flags inside module. A context save was successfull if 1.) transfer
did not fail 2.) Checksum computed after transfer both of DPE and
instrument does not differ. The flags are set by procedure SET_CSF.

3.3.20.4 Procedure CRF

3.3.20.4.1 Output
Returns: a list of flags which are true when context of certain instrument
was uploaded successfully from DPE into instruments

3.3.20.4.2 Use/Constraints
Call for report in housekeeping.

3.3.20.4.3 Description
Reports flags inside module. A context restore was successfull if 1.)
transfer did not fail 2.) Checksum computed after transfer both of DPE and
instrument does not differ. The flags are set by procedure SET_CRF.

3.3.20.5 Procedure SET_CSF

3.3.20.5.1 Input
FLAG - which instrument belongs to flag to be set. TO - State of flag
which has to be set: TRUE : context save successfull. FALSE: context save
non-successfull. A context save was is considered to be successfull if:-
1.) transfer did not fail 2.) Checksum computed after transfer both of DPE
and instrument does not differ.

3.3.20.5.2 Use/Constraints
Must be used by context saving procedures only which have to obey
definition above.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 69 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.20.5.3 Description
sets flags inside module to be reported by CSF.

3.3.20.6 Procedure SET_CRF

3.3.20.6.1 Input
FLAG - which instrument belongs to flag to be set. TO - State of flag
which has to be set: TRUE : context restore successfull. FALSE: context
restore non-successfull. A context restore was is considered to be
successfull if: 1.) transfer did not fail 2.) Checksum computed after
transfer both of DPE and instrument does not differ.

3.3.20.6.2 Use/Constraints
Must be used by context restoring procedures only which have to obey
definition above.

3.3.20.6.3 Description
sets flags inside module to be reported by CRF.

3.3.20.7 Procedure DOWNLOAD_CONTEXT

3.3.20.7.1 Use/Constraints
Call this procedure when the context of all instruments must be saved in
DPE (Eclipse).

3.3.20.7.2 Description

- for each instrument download table into DPE
- if successfully done -> compare CRC
- set context saving flags according result.
- if false -> generate on event message.
- set context restore flags (CRF) false.

3.3.20.8 Procedure UPLOAD_CONTEXT

3.3.20.8.1 Use/Constraints
Call this procedure when the context of all instruments must be restored
from DPE to instruments. (after Eclipse)

3.3.20.8.2 Description

- for each instrument upload table into DPE if context save flag for the
instrument is true.
- if successfully done -> compare CRC
- set context restoring flags according result.
- if false -> generate on event message.

3.3.21 MODULE ISGRI
• Procedure SWITCH_BIAS_OFF
• Procedure COMMAND_ISGRI
• Procedure READ_ISGRI
• Procedure GET_SEQ_COUNT

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 70 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.21.1 Global Variables

3.3.21.2 Exceptions

3.3.21.3 Procedure SWITCH_BIAS_OFF

3.3.21.3.1 Use/Constraints
Must be called when radiation increases or context- is saved.

3.3.21.3.2 Description
Sets ISGRI to standby and sends ISGRI bias 0 commands according ECR state.

3.3.21.4 Procedure COMMAND_ISGRI

3.3.21.4.1 Input

- ISGRI_COMMAND - the command to be send to ISGRI according command ID
above.
- PARAMETER - The parameter necessary for this command
- MCE - the Module Control Electronics number

3.3.21.4.2 Output
: ok is true when transfer successfully done

3.3.21.4.3 Use/Constraints
Call the procedure with given command ID and parameter for that command to
set given MCE NO PARAMETER CHECK WILL BE DONE THERE IS NO INTERNAL
BLOCKING OF THE LSL

3.3.21.4.4 Use/Constraints
THE LINE MANAGER MUST BE USED BY THE CALLER OF THIS PROCEDURE
The ISGRI Dump or HK command MUST NOT be used with this procedure for these
commands return a response.

3.3.21.4.5 Description
Command_Isgri transmits the command via the LSL to ISGRI. The control will
return when transmission is over. The length of the command is set
internally according parameter block length.

3.3.21.5 Procedure READ_ISGRI

3.3.21.5.1 Input
ISGRI_COMMAND - The read command to be sent to ISGRI PARAMETER - The
parameter necessary for this MCE - the Module Control Electronics number
command

3.3.21.5.2 Output
ISGRI_RESPONSE : The data read out from ISGRI. This array must be set
properly at the expected data size from ISGRI. ok : true when
transfer successfully done

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 71 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.21.5.3 Use/Constraints
Call Read_Isgri with a command which requests data from ISGRI, and
necessary parameters. The procedure will return the isgri response data
according the command sent into response buffer. NO PARAMETER CHECK WILL
BE DONE ALSO NO COMMAND ID CHECK IS APPLIED THERE IS NO INTERNAL
BLOCKING OF THE LSL

3.3.21.5.4 Use/Constraints
THE LINE MANAGER MUST BE USED BY THE CALLER OF THIS PROCEDURE

3.3.21.5.5 Description
Command_Isgri transmits the command via the LSL to ISGRI into given MCE.
Then the ISGRI will send the data requested via LSL to DPE . The control
will return to caller when transmission is over. The length of the command
to send is derived from the parameter block length; that of the response
from the response block length.

3.3.21.6 Procedure GET_SEQ_COUNT

3.3.21.6.1 Output
Returns: 13-bit value containing current number of commands sent to any
ISGRI MCE. Value wraps around at 2^13.

3.3.21.6.2 Use/Constraints
In HK for setting the ISGRI sequence count field. returns 13-Bit value

3.3.21.6.3 Description
Reflects counter status.

3.3.22 MODULE ISGRI_CONTEXT_TABLE

3.3.22.1 Global Variables

3.3.22.2 Exceptions

3.3.23 MODULE LINE_MANAGER
• Procedure INITIALISE
• Procedure LSL_IS_BLOCKED
• Procedure GET_LSL
• Procedure RELEASE_LSL
• Procedure GET_HSL
• Procedure RELEASE_HSL
• Procedure ANNOUNCE_LSL
• Procedure LSL_CONFIRMED

3.3.23.1 Global Variables

3.3.23.2 Exceptions

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 72 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.23.2.1 EX_NESTED_BLOCKING
for a certain task double allocation of a line (lsl/hsl) must not occur for
the task would blockentirely. Therefore an exception will be raised.The
exception remains at line manager task.

3.3.23.3 Procedure INITIALISE

3.3.23.3.1 Use/Constraints
Must be called when starting up.

3.3.23.3.2 Description
Connects internal interrupt routine Handle_HSSL to interrupt 13 which sends
a signal to task which blocked the HSL.

3.3.23.4 Procedure LSL_IS_BLOCKED

3.3.23.4.1 Output
RETURNS Boolean value: FALSE when LSL is currently not blocked, TRUE when
LSL is blocked.

3.3.23.4.2 Use/Constraints
This function could be used for checking before accessing the low speed
line whether the line is actually blocked.

3.3.23.4.3 Description
Returns module flag LSL_Blocked.

3.3.23.5 Procedure GET_LSL

3.3.23.5.1 Use/Constraints
This procedure (or ANNOUNCE_LSL,s.b.) must be called before the LSL is to
be used.

3.3.23.5.2 Description
IF lsl free THEN block lsl ELSE wait till lsl free.

3.3.23.6 Procedure RELEASE_LSL

3.3.23.6.1 Use/Constraints
This procedure must be called after a LSL transfer- was finished
(successfully or not). The transfer end will be signalled by events. It is
allowed to call this procedure even when not a GET_LSL is performed; so the
LSL access state could be reseted by this procedure (eg. in exception
cases).

3.3.23.6.2 Description
Sends a message to all tasks which are waiting for the lsl free and
releases blocking flag. If a former announcement was performed by another
task this task gets the LSL. If the current task made the announcement it
will be cleared.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 73 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.23.7 Procedure GET_HSL

3.3.23.7.1 Use/Constraints
This procedure must be called before the HSL is to be used.

3.3.23.7.2 Description
IF hsl free THEN block hsl ELSE wait till hsl free.

3.3.23.8 Procedure RELEASE_HSL

3.3.23.8.1 Use/Constraints
This procedure must be called after a HSL transfer- was finished
(successfully or not). The transfer end will be signalled by events.

3.3.23.8.2 Description
Sends a message to all tasks which are waiting for the hsl free and
releases blocking flag.

3.3.23.9 Procedure ANNOUNCE_LSL

3.3.23.9.1 Description
The serial line manager stores the task id of the one who called
announce_lsl and gives access to the lsl for this task when the currently
lsl using

3.3.23.10 Procedure LSL_CONFIRMED

3.3.23.10.1 Use/Constraints
Call this function to inquire whether a lsl announcement was confirmed.

3.3.23.10.2 Description
returns true when calling task has the lsl access.

3.3.24 MODULE LSL_INTERFACE

3.3.24.1 Global Variables

3.3.24.2 Exceptions

3.3.25 MODULE MODE_DISPATCHER

3.3.25.1 Global Variables

3.3.25.2 Exceptions

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 74 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.26 MODULE OBT_OPERATIONS

3.3.26.1 Global Variables

3.3.26.2 Exceptions

3.3.27 MODULE OEM_INTERFACE
• Procedure REPORT_OEM
• Procedure EXCEPTION_OEM
• Procedure PERIPHERAL_OEM
• Procedure GET_OEM_STATE

3.3.27.1 Global Variables

3.3.27.2 Exceptions

3.3.27.3 Procedure REPORT_OEM

3.3.27.3.1 Input

- OEM_ID : The on event message ID which defines on event message class and
identifier.
- OEM_PARAM : The 6 bit parameter in first field of on event message.
- MESSG1 : first word of on event message.
- MESSG2 : second word of on event message.

3.3.27.3.2 Use/Constraints
Should be called in defined situations with OEM ID according this context;
Parameter should be set to provide information fo the on event.

3.3.27.3.3 Use/Constraints
EXCEPTIONS ANOTHER ON-EVENT FUNCTION MUST BE USED.

3.3.27.3.4 Description
Writes on event according oem_id and parameter into if it is not full.
Otherwise set on event flag. On event message counter will be increased.

3.3.27.4 Procedure EXCEPTION_OEM

3.3.27.4.1 Input
Exception ID

3.3.27.4.2 Use/Constraints
Call this function each time when an exception was trapped with a unique
Identifier according Exception_ID.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 75 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.27.5 Procedure PERIPHERAL_OEM

3.3.27.5.1 Input
ON event message field containing given on event message.

3.3.27.5.2 Use/Constraints
Call this function when receiving a housekeeping packet from external
instruments (HEPI, ISGRI, PICSIT, VETO) with given On event message.

3.3.27.6 Procedure GET_OEM_STATE

3.3.27.6.1 Output
Returns : record T_OEM_STATE which contains:
- A flag OEM_SKIPPED which is true when on event messages are tried to
generate but the OEM buffer is already full. This flag will be reset when-
calling this function (this is explicitely a SIDE EFFECT)
- OEM_COUNTER - the number of generated on event messages modulo maximum.

3.3.27.6.2 Use/Constraints
Should be called from housekeeping task when generating HK-TM to insert the
OEM status. KEEP CARE OF RESETING OEM_SKIPPED FLAG BY CALLING THIS FUNCTION

3.3.27.6.3 Description
A counter is increased each OEM generated. The OEM_SKIPPED flag is set each
time a on event message could not be written into the ICB buffer. It will
be reset by calling this functioin.

3.3.28 MODULE PICSIT
• Procedure COMMAND_PICSIT
• Procedure READ_PICSIT
• Procedure GET_SEQ_COUNT

3.3.28.1 Global Variables

3.3.28.2 Exceptions

3.3.28.3 Procedure COMMAND_PICSIT

3.3.28.3.1 Input
PICSIT_COMMAND - The command to be send to PICSIT PARAMETER - The
parameter for that command.

3.3.28.3.2 Output
: ok is true when transfer successfully done

3.3.28.3.3 Use/Constraints
Call the procedure with given command ID and parameter for that command.
NO PARAMETER CHECK WILL BE DONE THERE IS NO INTERNAL BLOCKING OF THE LSL

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 76 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.28.3.4 Use/Constraints
THE LINE MANAGER MUST BE USED BY THE CALLER OF THIS PROCEDURE

3.3.28.3.5 Description
Command_Picsit transmits the command via the LSL to PICSIT. The control
will return when transmission is over. The length of the command is set
according the length of the parameter array.

3.3.28.4 Procedure READ_PICSIT

3.3.28.4.1 Input
PICSIT_COMMAND - The read command to be sent to PICSIT PARAMETER - The
parameter necessary for this command

3.3.28.4.2 Output
PICSIT_RESPONSE : The data read out from PICSIT. This array must be set
properly at the expected data size from PICSIT. ok : true when
transfer successfully done

3.3.28.4.3 Use/Constraints
Call Read_Picsit with a command which requests data from PICSIT, and
necessary parameters. The procedure will return the picsit response data
according the command sent into response buffer. NO PARAMETER CHECK WILL
BE DONE ALSO NO COMMAND ID CHECK IS APPLIED THERE IS NO INTERNAL
BLOCKING OF THE LSL

3.3.28.4.4 Use/Constraints
THE LINE MANAGER MUST BE USED BY THE CALLER OF THIS PROCEDURE

3.3.28.4.5 Description
Command_Picsit transmits the command via the LSL to PICSIT. Then the PICSIT
will send the data requested via LSL to DPE . The control will return to
caller when transmission is over. The length of the command to send is
derived from the parameter block length; that of the response from the
response block length.

3.3.28.5 Procedure GET_SEQ_COUNT

3.3.28.5.1 Output
Returns: 13-bit value containing current number of commands sent to PICSIT.
Value wraps around at 2^13.

3.3.28.5.2 Use/Constraints
In HK for setting the PICSIT sequence count field. returns 13-Bit value

3.3.28.5.3 Description
Reflects counter status.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 77 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.29 MODULE PICSIT_CONTEXT_TABLE

3.3.29.1 Global Variables

3.3.29.2 Exceptions

3.3.30 MODULE READ_HISTOGRAM
• Procedure WAIT
• Procedure INITIALISE
• Procedure BUFFER_IS_EMPTY
• Procedure START
• Procedure STOP
• Procedure RESUME
• Procedure RESUME_TIMED
• Procedure DISCARD_HISTOGRAMS
• Procedure GET_BLOCK_RATE
• Procedure GET_BLOCK_INFO
• Procedure GET_FILLED_AREA

3.3.30.1 Global Variables

3.3.30.2 Exceptions

3.3.30.2.1 EX_BUFFER_NOT_EMPTY
this exception will be raised when it will be tried to start reading out a
certain histogrambuffer though the former is not read out entirely.

3.3.30.3 Procedure WAIT

3.3.30.3.1 Use/Constraints
Call when using Read Histogram Blocks and wait for next RTC.

3.3.30.3.2 Use/Constraints
BE USED IN READ_HISTOGRAM_TASK ONLY

3.3.30.3.3 Description
Waits for next RTC or occurrence of Stop signal.

3.3.30.4 Procedure INITIALISE

3.3.30.4.1 Use/Constraints
Must be called by the init-read-task routine. This is the entry point of
the read histogram task.

3.3.30.4.2 Description

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 78 of: 119

University of
Tübingen

IAAT
Astronomy

- Waits till start signal occurs.
- When occurs -> perform read histogram task by fetching blocks from HEPI
and process them internally by linking data down as TM.
- Terminate itself when stop signal occurs
- Starts where it stopped after RESUME (below)

3.3.30.5 Procedure BUFFER_IS_EMPTY

3.3.30.5.1 Input
HISTOGRAM_TYPE - the type of histogram to be checked (science or
calibration)

3.3.30.5.2 Output
Returns true if last started buffer of given histogram type is empty,
otherwise false.

3.3.30.5.3 Use/Constraints
Should be called before starting read out of new histogram buffer to avoid
read out interferences.

3.3.30.5.4 Description
Returns empty-Value of histogram buffer according given type.

3.3.30.6 Procedure START

3.3.30.6.1 Input

- HISTOGRAMS : The histogram buffers which are inte- grated and now ready
to be read out. The buffer might be of type SCIENCE or CALIBRATION.
- READ_TIME : the time (in OBT units = 2^-19 sec) the reading of given
buffers should last. From this time the period will be computed.

3.3.30.6.2 Use/Constraints
This function should be called when integration of a certain buffer
(science or calibration) has finished. Then the read histogram task starts
reading out of the buffer. READ TASK MUST HAVE FINISHED, I.E. READ BUFFER
MUST BE EMPTY. OTHERWISE AN EXCEPTION WILL BE RAISED.

3.3.30.6.3 Description
If current read buffer of given type is empty it will- be overridden by the
argument HISTOGRAMS. Otherwise exception BUFFER_NOT_EMPTY will be raised.
The the read out time will be computed and finally read out task be
signalled to start reading out.

3.3.30.7 Procedure STOP

3.3.30.7.1 Use/Constraints
Call when histogram acquisition must stop but later on continue (with
Procedure RESUME). Especially when leaving science mode but desiring to
continue later on.

3.3.30.7.2 Description
Signals the read task to terminate itself.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 79 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.30.8 Procedure RESUME

3.3.30.8.1 Use/Constraints
Call this procedure after STOP was called and rest of histograms should be
read out. Do not call when STOP was not performed.

3.3.30.8.2 Description
Starts histogram reading task again.

3.3.30.9 Procedure RESUME_TIMED

3.3.30.9.1 Input

- READ_TIME : the time (in OBT units = 2^-19 sec) the reading of given
buffers should last. From this time the period will be computed.

3.3.30.9.2 Use/Constraints
Call this procedure after STOP was called and rest of histograms should be
read out in given time (the time is the upper margin). Do not call when
STOP was not performed.

3.3.30.9.3 Description

- Sets reading time for both science/calibration histograms.
- Starts histogram reading task again.

3.3.30.10 Procedure DISCARD_HISTOGRAMS

3.3.30.10.1 Use/Constraints
Call this procedure when current read histogram should not be read out due
non-valid data. Could be used when new histogram should be read out
imminent.

3.3.30.10.2 Description
sets all histograms to be read empty and forces immediate read by reseting
read counters.

3.3.30.11 Procedure GET_BLOCK_RATE

3.3.30.11.1 Output
Returns positive number of long integer. Defines number- of blocks read via
HBR B.

3.3.30.11.2 Use/Constraints
Must be called periodically by HK function to read current rate of blocks
read via HBR B.

3.3.30.11.3 Description
A counter is increased each time a block is success- fully read out. The
counter will be reseted after returning the value. The counter also will be
reseted when read histogram task is started.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 80 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.30.12 Procedure GET_BLOCK_INFO

3.3.30.12.1 Output

- HBR_B_BLOCK_CAL : current block number read of calibration histogram.
- HBR_B_BLOCK_POLAR: current block number read of polarimetry histogram.
- HBR_B_BLOCK_SINGLE: current block number read of CsI single histogram.
- HBR_B_BLOCK_MULTI: current block number read of CsI single histogram.

3.3.30.12.2 Use/Constraints
To report histogram read block status in Science HK.

3.3.30.12.3 Description
Extracts block numbers read for histograms according address currently
used for reading.

3.3.30.13 Procedure GET_FILLED_AREA

3.3.30.13.1 Output
Returns 8-bit number representing the histogram buffers as follows: 0 - CsI
single, buffer 0 1 - CsI multiple, buffer 0 2 -
Polarimetry, buffer 0 3 - CsI calibration histogram buffer 0
4 - CsI single, buffer 1 5 - CsI multiple,
buffer 1 6 - Polarimetry, buffer 1 7 - CsI calibration
histogram, buffer 1

3.3.30.13.2 Use/Constraints
May be used for HK information.

3.3.30.13.3 Description
Defines, which science/calibration buffer currently are not empty. These
are the buffers also which is read from.

3.3.31 MODULE S1 (CDTE PHOTON BY PHOTON)
• List of Contents:
 Procedure PROCESS_EVENT
 Procedure CLOSE_TM
 Procedure RESET

 Function GET_SEQUENCE_COUNTER return
CSSW_IF_TYPES.T_Source_Seq_Count.

• Global Variables:

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 81 of: 119

University of
Tübingen

IAAT
Astronomy

HIGH_RISETIME_THRESHOLD: threshold value for CdTe PPM risetime selection. The
default value of HIGH_RISETIME_THRESHOLD = 128 (default value corresponds to no
selection).
Could be set via TC(5,3)(TID=16, FID=0). Could be read out via TC(5,4)(TID=16,
FID=0). Parameter is reported in additional housekeeping TM packet H2.

CDTE_E_MAX: threshold value for CdTe PPM amplitude selection. The default value
of CDTE_E_MAX = 65535 (in units of [keV], default value corresponds to no
selection).
Could be set via TC(5,3)(TID=16, FID=1). Could be read out via TC(5,4)(TID=16,
FID=1). Parameter is reported in additional housekeeping TM packet H2.

3.3.31.1 Procedure PROCESS_EVENT

• Input: 80 bit event of type Hex(24) according to HEPI Interface Document
from module HBR_A_IF

• Output: TM(1,0) packet to module TM_INTERFACE

• Called by modules: SCIENCE_MODE

• Description:
 This procedure contains all working steps to pack a CdTe photon by photon event
into a TM packet. First it is checked whether the scientific function S1 (CdTe PPM)
has been restarted by module TM_INTERFACE. In case of restart a dummy event is
written into the TM packet.
 Then the amplitude correction function AMPLITUDE_CORRECTION.
ISGRI_AMP_CORR is called to correct the CdTe event amplitude and risetime. It is
checked whether the corrected risetime and amplitude are smaller than the
corresponding threshold values. The limiting values CDTE_E_MAX and
HIGH_RISETIME_THRESHOLD are configurable via TC(5,3), could be read out via
TC(5,4) and can be verified via the additional IASW HK (H2). If the corrected
risetime and amplitude are in defined ranges the event is packed into 40 bits and
written into the TM packet. From the first event of the TM packet the 24 MSB of 32
bit time information are written into the data field header. The 8 LSB are written into
the time field of the first TM event record. So the whole 32 bit time information of the
first event of a TM packet can be reconstructed. From all other events inside the TM
packet only the 8 LSB of the time information are carried over.

 Amplitude (11 bit) MSB Risetime (7 bit)
 Rt.
LSB

 Y_position (7 bit) Z-position (7 bit)

 Event time (8 bit = 8 LSB of 32 bit)

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 82 of: 119

University of
Tübingen

IAAT
Astronomy

 Event time (8 bit = 8 LSB of 32 bit)
 Amplitude (11 bit) MSB Risetime (7 bit)
 Rt.
LSB

 Y_position (7 bit) Z-position (7 bit)

Figure 1: Formats of 40 bit event records

 If the time difference between the previous event and the current event is more than
the maximum value of the 8 bit time field of the TM event record then a 40 bit
dummy event record will be written into the TM packet before the current event. The
dummy record has got the same structure like the TM event record, but all values
are set to a defined pattern except the time field. The time field keeps a dummy
counter of 8 bit length which shows how often the 8 bit event time field has
overflowed.

 Amplitude (11 bit) = 2047 MSB Risetime (7 bit) = 0
 Rt.
LSB

 Y_position (7 bit) = 127 Z-position (7 bit) = 0

 Dummy counter

 Dummy counter
 Amplitude (11 bit) = 2047 MSB Risetime (7 bit) = 0
 Rt.
LSB

 Y_position (7 bit) = 127 Z-position (7 bit) = 0

Figure 2: Formats of 40 bit dummy records

 The maximum value allowed for this dummy counter is Hex(FF-2). The value
Hex(FF-1) for the dummy counter is used as flag that the data processing is
restarted, the maximum value Hex(FF) is used as a flag that the counter itself has
overflowed. In this case of counter overflow two dummy records are written into the
TM packet before the current event. The first dummy keeps the counter with the flag
value Hex(FF). The second dummy keeps the 32 bit time information of the current
event inside the event record partitions of Amplitude, Risetime, Y_Pos and Z_Pos.
The dummy counter inside the time field is set to Hex(FF). If the TM packet is filled it
will be given to the TM_INTERFACE module by calling the procedure
TM_INTERFACE.PUT_TM .

• Constraints: None.

• Efficiency: Not applicable

• Verification Requirement: TBD

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 83 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.31.2 Procedure CLOSE_TM

• Input: None

• Output: TM(1,0) packet to module TM_INTERFACE

• Called by modules: SCIENCE_MODE

• Description:
 When ending the science mode the partial filled TM(1,0) packet must be filled with
defined values Hex(FFFF) and sent away via the procedure
TM_INTERFACE.PUT_TM out of the module TM_INTERFACE. If the current TM
packet contains no event the TM packet is not filled and is not sent away.

• Constraints: None.

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.31.3 Procedure RESET

• Input: None

• Output: None

• Called by modules: SCIENCE_MODE

• Description:
 When starting the science mode the variables for the current position inside the
TM packet of the processing procedure S1.PROCESS_EVENT must be reset to
initialisation values to make sure that the routine begin with correct start values.

• Constraints: None

• Efficiency: Not applicable

• Verification Requirement: TBD

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 84 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.31.4 Function GET_SEQUENCE_COUNTER return
CSSW_IF_TYPES.T_Source_Seq_Count

• Input: None

• Output: Sequence Counter of the current TM(1,0) packet

• Called by modules: SCIENCE_HK

• Description:
 This function returns the sequence counter of the TM(1,0) packet, which currently is
to fill by procedure S1.PROCESS_EVENT. That means the returned value is the
sequence counter of the next TM(1,0) packet that will be given to the
TM_INTERFACE.

• Constraints: None

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.32 MODULE S2 (CDTE CALIBRATION)
• List of Contents:
 Procedure PROCESS_EVENT
 Procedure CLOSE_TM
 Procedure RESET

 Function GET_SEQUENCE_COUNTER return
 CSSW_IF_TYPES.T_Source_Seq_Count.

• Global Variables: None.

3.3.32.1 Procedure PROCESS_EVENT

• Input: 80 bit event of type Hex(34) according to HEPI Interface Document
from module HBR_A_IF

• Output: TM(2,0) packet to module TM_INTERFACE

• Called by modules: SCIENCE_MODE

• Description:

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 85 of: 119

University of
Tübingen

IAAT
Astronomy

 This procedure contains all working steps to pack a CdTe calibration event into a
TM packet.
 First it is checked whether the scientific function S2 (CdTe calibration) has been
restarted by module TM_INTERFACE. In that case one 32 bit dummy event
consistent out of Hex(FFFF) is written into the TM packet. Then the CdTe calibration
event is compressed to 32 bit and written into a TM(2,0) packet.

 Amplitude (11 bit) MSB Risetime (7 bit)
 Rt.
LSB

 Y_position (7 bit) Z-position (7 bit)

Figure 3: Formats of 32 bit event records

 The time information of the event is not considered. Only the 24 MSB of the 32 bit
time information of the first event of the TM packet are written into the data field
header. If the TM packet is filled it will be given to the TM_INTERFACE module by
calling the procedure TM_INTERFACE.PUT_TM.

• Constraints: None

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.32.2 Procedure CLOSE_TM

• Input: None

• Output: TM(2,0) packet to module TM_INTERFACE

• Called by modules: SCIENCE_MODE

• Description:
 When ending the science mode the partial filled TM(2,0) packet must be filled with
defined values Hex(FFFF) and sent away via the procedure
TM_INTERFACE.PUT_TM out of the module TM_INTERFACE. If the current TM
packet contains no event the TM packet is not filled and is not sent away.

• Constraints: None.

• Efficiency: Not applicable

• Verification Requirement: TBD

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 86 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.32.3 Procedure RESET

• Input: None

• Output: None

• Called by modules: SCIENCE_MODE

• Description:
 When starting the science mode the variable for the current position inside the TM
packet of the processing procedure S2.PROCESS_EVENT is reset to initialisation
value to make sure that the routine begins with correct start value.

• Constraints: None

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.32.4 Function GET_SEQUENCE_COUNTER return
CSSW_IF_TYPES.T_Source_Seq_Count

• Input: None

• Output: Sequence Counter of the current TM(2,0) packet

• Called by modules: SCIENCE_HK

• Description:
 This function returns the sequence counter of the TM(2,0) packet, which currently is
to fill by procedure S2.PROCESS_EVENT. That means the returned value is the
sequence counter of the next TM(2,0) packet that will be given to the
TM_INTERFACE.

• Constraints: None

• Efficiency: Not applicable

• Verification Requirement: TBD

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 87 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.33 MODULE S3 (COMPTON)
• List of Contents:
 Procedure PROCESS_S_EVENT,

 Procedure PROCESS_M_EVENT
 Procedure CLOSE_S_TM,

 Procedure CLOSE_M_TM
 Procedure RESET
 Function GET_S_SEQUENCE_COUNTER return System.Unsigned
 Function GET_M_SEQUENCE_COUNTER return System.Unsigned
 Function C_SELECT return Boolean

• Global Variables:
E_COMPTON_THRESHOLD: threshold value for performing compton computation. The
default value of E_COMPTON_THRESHOLD = 1000 (in units of [keV]).
Could be set via TC(5,3)(TID=16, FID=2). Could be read out via TC(5,4)(TID=16,
FID=2). Parameter is reported in additional housekeeping TM packet H2.

MINIMUM_COMPTON_ANGLE: threshold value for compton selection. The default value
of MINIMUM_COMPTON_ANGLE = 0,968 (corresponds to cos(14,5°).
Could be set via TC(5,3)(TID=16, FID=6). Could be read out via TC(5,4)(TID=16,
FID=6). Parameter is reported in additional housekeeping TM packet H2.

S_CALIBRATION_FACTOR: scaling factor of CsI single event amplitude to get the
amplitude in units of keV. The default value of S_CALIBRATION_FACTOR = 5,0.
Could be set via TC(5,3)(TID=16, FID=4). Could be read out via TC(5,4)(TID=16,
FID=4). Parameter is reported in additional housekeeping TM packet H2.

M_CALIBRATION_FACTOR: scaling factor of CsI multiple event amplitude to get the
amplitude in units of keV. The default value of M_CALIBRATION_FACTOR = 10,0.
Could be set via TC(5,3)(TID=16, FID=5). Could be read out via TC(5,4)(TID=16,
FID=5). Parameter is reported in additional housekeeping TM packet H2.

3.3.33.1 Procedures PROCESS_S_EVENT

• Input: 160 bit event of type Hex(A4, B4) according to HEPI Interface
Document from module HBR_A_IF.

• Output: TM(3,0) packet to module TM_INTERFACE

• Called by modules: SCIENCE_MODE

• Description:
 This procedures contains all working steps to pack a compton single photon by
photon event or a compton single calibration event into a TM packet. First it is

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 88 of: 119

University of
Tübingen

IAAT
Astronomy

checked whether the scientific function S3.0 (Compton PPM/calibration) has been
restarted by module TM_INTERFACE. In case of restart a dummy event is written
into the TM packet.
 Then it is checked whether the event is a PPM or a calibration event. For compton
single calibration events there are no selection mechanisms. If the not scaled CsI
event amplitude of a compton single PPM event is not higher than the threshold
value E_COMPTON_THRESHOLD then the CsI amplitude is scaled using
S_CALIBRATION_FACTOR to keV and the amplitude correction function
AMPLITUDE_CORRECTION.COMPTON_AMP_CORR is called to correct the CdTe
event amplitude. Then it is checked whether the input event is a real compton event
by calling the compton selection function C_SELECT. The function C_SELECT
returns a boolean value, true means real compton event, false means no compton
event. If the event is no real compton event then it is rejected and not processed. If
the event is a real compton event then it is compressed to 64 bits and written into a
TM packet. The event format is the same for compton single PPM events and
compton single calibration events. Calibration events are signed with calibration flag
field = 0, photon by photon events are signed with calibration flag field = 1. From the
first event of the TM packet the 24 MSB of 32 bit time information are written into the
data field header. The 8 LSB are written into the time field of the first TM event
record. So the whole 32 bit time information of the first event of a TM packet can be
reconstructed.

 CsI amplitude (8 MSB of 10 bit) CdTe amplitude (8 MSB of 11 bit)
 CdTe risetime (7 bit) CsI Y-position (6 bit) MSB CsI Z-
 position (6
bit)

 CdTe Y-position (7 bit) MSB CdTe Z-position (7 bit)

 LS
B

 CF Dummy counter (6 bit) Event time (8 LSB out of 32 bit)

Figure 4: Formats of 64 bit event records

 From all other events of the TM packet only the 8 LSB of the time information are
carried over. If the time difference between the previous event and the current event
is more than the maximum value of the 8 bit time field of the TM event record then
 the dummy field of the event record keeps a counter of 6 bit length which shows
how often the 8 bit event time field has overflowed. The maximum value allowed for
this dummy counter is Hex(3F-2). The value Hex(3F-1) for the dummy counter is
used as flag that the data processing is restarted, the maximum value Hex(3F) is
used as a flag that the counter itself has overflowed. In this case a dummy record is
written into the TM packet before the current event. The dummy keeps the 32 bit
time information of the current event inside the first 32 bit of the event record. The
dummy field is set to maximum value Hex(3F), the calibration flag is set to 1 and all
other bits are set to zero.

 MSB 32 bit event time (16 MSB)

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 89 of: 119

University of
Tübingen

IAAT
Astronomy

 32 bit event time (16 LSB)
LSB
 16 bit set to zero
 0 1 Dummy counter = 62 (6 bit) 8 bit set to zero

Figure 5: Formats of 64 bit dummy records

 If the TM packet is filled it will be given to the TM_INTERFACE module by calling
the procedure TM_INTERFACE.PUT_TM .

• Constraints: None.

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.33.2 Procedures PROCESS_M_EVENT

• Input: 160 bit event of type Hex(A8) according to HEPI Interface Document
from module HBR_A_IF.

• Output: TM(3,1) packets to module TM_INTERFACE

• Called by modules: SCIENCE_MODE

• Description:
 The performed sequences are similar to description of procedure
PROCESS_S_EVENT. There are no compton multiple calibration events, the
calibration flag field is always set to 1. The event format and dummy format is the
same as in procedure PROCESS_S_EVENT. The scaling factor for CsI multiple
amplitude to get amplitude in keV is M_CALIBRATION_FACTOR.

• Constraints: None.

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.33.3

3.3.33.4 Procedures CLOSE_S_TM / CLOSE_M_EVENT

• Input: None

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 90 of: 119

University of
Tübingen

IAAT
Astronomy

• Output: TM(3,0) / TM(3,1) packets to module TM_INTERFACE

• Called by modules: SCIENCE_MODE

• Description:
 When ending the science mode the partial filled TM(3,0) / TM(3,1) packets must be filled
with defined values Hex(FFFF) and sent away via the procedure PUT_TM out of the
module TM_INTERFACE. If the current TM packets contain no event the TM packet is
not filled and is not sent away.

• Constraints: None.

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.33.5 Procedure RESET

• Input: None

• Output: None

• Called by modules: SCIENCE_MODE

• Description:
 When starting the science mode variables for the current position inside the TM
packet of the processing procedures S3.PROCESS_S/M_EVENT are reset to
initialisation values to make sure that the routines begin with correct start values.

• Constraints: None.

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.33.6 Functions GET_S3_HK_DATA return T_S3_Hk_Data

• Input: None

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 91 of: 119

University of
Tübingen

IAAT
Astronomy

• Output: Sequence Counter of the current TM(3,0) / TM(3,1) packet

• Called by modules: SCIENCE_HK

• Description:
 This functions returns the sequence counters of the TM(3,0) / TM(3,1) packets,
which currently are to fill by procedures S3.PROCESS_S/M_EVENT. That means
the returned values are the sequence counters of the next TM(3,0) / TM(3,1)
packet that will be given to the TM_INTERFACE. Type T_S3_Hk_Data is a global
record type built of two components of CSSW_IF_TYPES.T_Source_Seq_Count.

• Constraints: None

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.33.7 Function C_SELECT return Boolean

• Input: CsI amplitude scaled to [keV], CsI Y/Z-positions, corrected CdTe
amplitude, CdTe Y/Z-positions

• Output: Boolean: true = real compton - process event, false = no compton -

reject event

• Called by modules: S3

• Description:
 First all input parameter are converted from integers into floats. To take account the
gaps between the detector modules, ISGRI is imagined as a matrix with 134x130
elements and PICsIT as a matrix of 67x65 elements. The conversions of the
positions is done as followed. The multiplication by 2 is to put CsI pixel in units of
CdTe pixels.

 Y(CdTe) = ((Yin(CdTe) / 64) * 2) + Yin(CdTe) Y(CsI) = ((Yin(CsI) / 32) + Yin(CsI))
* 2
 Z(CdTe) = ((Zin(CdTe) / 32) * 2) + Zin(CdTe) Z(CsI) = ((Zin(CsI) / 16) + Zin(CsI))
* 2

There is no algorithm to calculate the exact distance of the pixels in y - z plane. All
position calculations are done in units of CdTe pixels. The units of CdTe pixel is
calculated to 4,6mm taking in account the - size of a CdTe pixel = 4x4mm2 and

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 92 of: 119

University of
Tübingen

IAAT
Astronomy

- 0,6mm distance between two pixels.
The distance between the two detector layers (10 cm) is therefore 21,739 units of
CdTe pixels.

For the compton selection the formula of doc. IN-IB-Sap-RP-045 (P.Laurent, 09/98)
is implemented.:

 cDC1 = ECdTe * mc2 / (ECsI / (ECsI + ECdTe))
 cDC2 = ECsI * mc2 / (ECdTe / (ECsI + ECdTe))
 rDC = sqrt[(YCsI - YCdTe)

2 + (ZCsI - ZCdTe)
2]

 oDC1 = {H*(1-cDC1) + rDC * sqrt[cDC1 * (2-cDC2)]} / sqrt[rDC2+H2]
 oDC2 = {rDC*sqrt[cDC2*(2*cDC2)] – H*(1*cDC2)} / sqrt[rDC2+H2]

 If [(oDC1<1) and (oDC1>cmin)] OR [(oDC2<1) and (oDC2>cmin)] then Compton=True

 with
 cDC1, CdC2 = 1 – cosine of compton angles (1: first interaction in CdTe,
 2: first interaction in CsI)
 rDC = geometrical projected distance between the 2 points of interaction.
 ODC1, oDC2 = reconstructed source angle (1: first interaction in CdTe,
 2: first interaction in CsI)
 mc2 = 511 keV
 H = distance between CdTe-layer and CsI-layer.
 sqrt[] = square root (imported from IASW module SQRT)
 cmin = cosine of the acceptance angle

 To calculate the square roots the algorithm out of TLD standard RTX module MATH
is used.
 This square root algorithm is explained in description of IASW module SQRT.

• Constraints: None

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.34 MODULE S4 (CSI PHOTON BY PHOTON)
• List of Contents:
 Procedure PROCESS_SINGLE_EVENT,

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 93 of: 119

University of
Tübingen

IAAT
Astronomy

 Procedure PROCESS_MULTIPLE_EVENT
 Procedure CLOSE_SINGLE_TM,

 Procedure CLOSE_MULTIPLE_TM
 Procedure RESET
 Function GET_S4_HK_DATA return T_S4_Hk_Data.

• Global Variables:

3.3.34.1 Procedures PROCESS_SINGLE_EVENT /
PROCESS_MULTIPLE_EVENT

• Input: 80 bit event of type Hex(64, 68) according to HEPI Interface Document
from module HBR_A_IF

• Output: TM(4,0) / TM(4,1) packets to module TM_INTERFACE

• Called by modules: SCIENCE_MODE

• Description:
 This procedures contain all working steps to pack a CsI single/multiple photon by
photon event into a TM packet. First it is checked whether the scientific function
S4.0 (CsI single PPM)/ S4.1 (CsI multiple PPM) has been restarted by module
TM_INTERFACE. In case of restart a dummy event is written into the TM packet.
Then the CsI single/multiple PPM event is compressed to 32 bits and written into a
TM packet. From the first event of the TM packet the 24 MSB of 32 bit time
information are written into the data field header. The 8 LSB are written into the time
field of the first TM event record. So the whole 32 bit time information of the first
event of a TM packet can be reconstructed. From all other events of the TM packet
only the 8 LSB of the time information are carried over.

 Amplitude (10 bit) Y-Position (6 bit)
 DF (2
bit)

 Z-Position (6 bit) Event time (8 LSB out of 32 bit)

Figure 6: Formats of 32 bit event records

 For CsI single PPM event the dummy flag field (DF) is always set to zero.
 If the time difference between the previous event and the current event is more than
the maximum value of the 8 bit time field of the TM event record then a 32 bit
dummy event record will be written into the TM packet before the current event. The
dummy record has got the same structure like the TM event record, but Amplitude
and both y/z-position partitions are set to zero and the dummy flag field is set from
zero to Hex(3). The time field keeps a counter of 8 bit length which shows how often
the 8 bit event time field has overflowed.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 94 of: 119

University of
Tübingen

IAAT
Astronomy

 Amplitude (10 bit) = 0 Y-Position (6 bit) = 0
 DF = 3 Z-Position (6 bit) = 0 Dummy Counter

Figure 7: Formats of 32 bit dummy records

 The maximum value allowed for this dummy counter is Hex(FF-2). The value
Hex(FF-1) for the dummy counter is used as flag that the data processing is
restarted, the maximum value Hex(FF) is used as a flag that the counter itself has
overflowed. In this case two dummy records are written into the TM packet before
the current event. The first dummy keeps the dummy flag field with Hex(3) and the
counter with the flag value Hex(FF). The second dummy keeps the 32 bit time
information of the current event inside the event record. If the TM packet is filled it
will be given to the TM_INTERFACE module by calling the procedure
TM_INTERFACE.PUT_TM.

• Constraints: None

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.34.2 Procedures CLOSE_SINGLE_TM / CLOSE_MULTIPLE_TM

• Input: None

• Output: TM(4,0) / TM(4,1) packets to module TM_INTERFACE

• Called by modules: SCIENCE_MODE

• Description:
 When ending the science mode the partial filled TM(4,0) / TM(4,1) packets must be
filled with defined values Hex(FFFF) and sent away via the procedure PUT_TM out
of the module TM_INTERFACE. If the current TM packets contain no event the TM
packet is not filled and is not sent away.

• Constraints: None.

• Efficiency: Not applicable

• Verification Requirement: TBD

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 95 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.34.3 Procedure RESET

• Input: None

• Output: None

• Called by modules: SCIENCE_MODE

• Description:
 When starting the science mode variables for the current position inside the TM
packet of the processing procedures PROCESS_SINGLE/MULTIPLE_EVENT are
reset to initialisation values to make sure that the routines begin with correct start
values.

• Constraints: None.

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.34.4 Functions GET_S4_HK_DATA return T_S4_Hk_Data

• Input: None

• Output: Sequence Counter of the current TM(4,0) / TM(4,1) packet

• Called by modules: SCIENCE_HK

• Description:
 This functions returns the sequence counters of the TM(4,0) / TM(4,1) packets, which
currently are to fill by procedures S4.PROCESS_SINGLE/MULTIPLE_EVENT. That means
the returned values are the sequence counters of the next TM(4,0) / TM(4,1) packet that
will be given to the TM_INTERFACE. Type T_S4_Hk_Data is a global record type built
of two components of CSSW_IF_TYPES.T_Source_Seq_Count.

• Constraints: None

• Efficiency: Not applicable

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 96 of: 119

University of
Tübingen

IAAT
Astronomy

• Verification Requirement: TBD

3.3.35 MODULE S5 (CSI-CALIBRATION)

• List of Contents:
Procedure PROCESS_HISTOGRAM

 Procedure CLOSE_TM
 Procedure RESET

 Function GET_SEQUENCE_COUNTER return
 CSSW_IF_TYPES.T_Source_Seq_Count.

• Global Variables: None.

• Exceptions: EX_ADDRESS_NOT_CONTINUOUS

3.3.35.1 Procedures PROCESS_HISTOGRAM

• Input: - one block (1026 byte) of histogram data interface according to HEPI
Interface Document from module READ_HISTOGRAM,

 - Histogram ID,
 - Start time of integration [OBT],
 - Integration time [seconds]

• Output: TM(5,0) packets to module TM_INTERFACE

• Called by modules: READ_HISTOGRAM

• Description:
 The input data block consists out of 2 byte of block address and 1024 byte
histogram data. This data corresponds to 1024 histogram cells each with size of one
byte. First it is checked whether the start address of the histogram data block is
continuous to previous blocks. If it was the first block, the check is omitted. If the
address is not continuous the current TM packet is closed and sent away and the
exception EX_ADDRESS_NOT_CONTINUOUS is raised.

 S5 histogram TM packets have a 5 word data field header. The data field header
will be filled before the first histogram data cell is written into the TM packet. The TM

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 97 of: 119

University of
Tübingen

IAAT
Astronomy

packet data field header contains all information about the histogram integration
and the memory address of the histogram data:

 Type/Subtype (8 bit) = Hex(50) MSB Start time of histogram
integration

 Start time of histogram integration [seconds] (24 bit)
LSB
 Real integration time of the histogram [seconds]
 MSB Start address of the reference histogram data cell (first data cell inside the
TM packet)
 Start address of reference cell (24 bit)
LSB

 Histogram ID

Figure 8: Format of 80 bit histogram data field header.

 Compression algorithm:
 The compression algorithm tries to reduce the size of a 8 bit histogram cell into a 4
bit TM packet data cell using a “count difference method”. The TM packet data field
is built out of an array [1..848] of 4 bit data cells. When starting a new TM packet all
data cells are initialised with flag value (-8).
 The 24 bit histogram memory address given inside the TM packet data field header
is the memory address of the first histogram cell which is written into the first two
data cells of the TM packet. This first two TM packet data cells are equivalent to a
uncompressed 8 bit histogram cell containing the origin count values for the
corresponding pixel and energy channel. For the second histogram cell the
difference of counts to the first histogram cell is calculated. This ∆(counts) of
[histogram cell (1) – histogram cell (2)] is written as a 4 bit integer value into third
TM packet data cell. The forth data cell contains the ∆(counts) of [histogram cell (2)
– histogram cell (3)], the fifth data cell contains the ∆(counts) of [histogram cell (3)
– histogram cell (4)] and so on. For ∆(counts) the range –7..+7 of a 4 bit integer
type is used. The value –8 is used as a flag.

 ∆(count
s)

 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

 Bit code 100
0

 100
1

 101
0

 101
1

 110
0

 110
1

 111
0

 111
1

 000
0

 000
1

 001
0

 001
1

 010
0

 010
1

 011
0

 011
1

Table 8: Bitcode of 4 bit integer values

 If ∆(counts) is not in range of –7..+7 then the flag value (-8) is written into the TM
packet data cell followed by the origin 8 bit histogram cell. The following example
shows the working method of the histogram compression algorithm:

 Histogram cells (origin data from HEPI) (8 bit) TM packet data cells(4
bit)

 23 21 22

 First →
 data cell
= 8 bit
keeping
the
origin
count
value

 23 (8 bit) -2

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 98 of: 119

University of
Tübingen

IAAT
Astronomy

 16 19 14 +1 -6 +3
 9 2 2 -5 -7 0

 24 25 23 -8 24 (8 bit)
 18 20 17 +1 -2 -5
 17 +2 -3 0

Figure 9: Example of histogram compression algorithm.

 The last 3 data cells of the TM packet are reserved for a position counter, therefore
the maximum number of available data cells is 845. The value inside this position
counter indicates the first data cell which contains no data. If the position counter =
846 all data cells are valid, if position counter = 845 then the last data cell is invalid.

 To make sure that no histogram TM packet will be lost during short timed high data
rate to ICB TM sub buffer the procedure repeats up to ten times the sending of the
TM packet to the TM_INTERFACE in intervals of 125 milliseconds. If the TM packet
could not be sent an on-event message is generated that the TM packet is lost.
 As long as the satellite is changing ground stations the processing and sending of
histogram TM packets is interrupted.

• Constraints: None

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.35.2 Procedures CLOSE_TM

• Input: None

• Output: TM(5,0) packets to module TM_INTERFACE

• Called by modules: READ_HISTOGRAM

• Description:
 When finishing the histogram read out and processing the partial filled TM(5,0)
packets sent away to the module TM_INTERFACE. If the current TM packets
contain no data the TM packet is not sent away.

• Constraints: None.

• Efficiency: Not applicable

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 99 of: 119

University of
Tübingen

IAAT
Astronomy

• Verification Requirement: TBD

3.3.35.3 Procedure RESET

• Input: None

• Output: None

• Called by modules: READ_HISTOGRAM

• Description:
 When starting the histogram read out and processing variables of the processing
procedure PROCESS_HISTOGRAM are reset to initialisation values to make sure
that the routines begin with correct start values.

• Constraints: None.

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.35.4 Function GET_SEQUENCE_COUNTER return
CSSW_IF_TYPES.T_Source_Seq_Count

• Input: None

• Output: Sequence Counter of the current TM(5,0) packet

• Called by modules: SCIENCE_HK

• Description:
 This function returns the sequence counter of the TM(5,0) packet, which currently is
to fill by procedure S5.PROCESS_HISTOGRAM. That means the returned value is
the sequence counter of the next TM(5,0) packet that will be given to the
TM_INTERFACE.

• Constraints: None

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 100 of: 119

University of
Tübingen

IAAT
Astronomy

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.36 MODULE S6 (CSI POLARIMETRIC)

• List of Contents:
Procedure PROCESS_HISTOGRAM

 Procedure CLOSE_TM
 Procedure RESET

 Function GET_SEQUENCE_COUNTER return
 CSSW_IF_TYPES.T_Source_Seq_Count.

• Global Variables: None.

• Exceptions: EX_ADDRESS_NOT_CONTINUOUS

3.3.36.1 Procedures PROCESS_HISTOGRAM

• Input: - one block (1026 byte) of histogram data interface according to HEPI
Interface Document from module READ_HISTOGRAM,

 - Histogram ID,
 - Start time of integration [OBT],
 - Integration time [seconds]

• Output: TM(6,0) packets to module TM_INTERFACE

• Called by modules: READ_HISTOGRAM

• Description:
 The input data block consists out of 2 byte of block address and 1024 byte
histogram data. This data corresponds to 1024 histogram cells each with size of one
byte. First it is checked whether the start address of the histogram data block is
continuous to previous blocks. If it was the first block, the check is omitted. If the
address is not continuous the current TM packet is closed and sent away and the
exception EX_ADDRESS_NOT_CONTINUOUS is raised.

 S6 histogram TM packets have a 5 word data field header. The data field header
will be filled before the first histogram data cell is written into the TM packet. The TM

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 101 of: 119

University of
Tübingen

IAAT
Astronomy

packet data field header contains all information about the histogram integration
and the memory address of the histogram data:

 Type/Subtype (8 bit) = Hex(60) MSB Start time of histogram
integration

 Start time of histogram integration [seconds] (24 bit)
LSB
 Real integration time of the histogram [seconds]
 MSB Start address of the reference histogram data cell (first data cell inside the
TM packet)
 Start address of reference cell (24 bit)
LSB

 Histogram ID

Figure 10: Format of 80 bit histogram data field header.

 Compression algorithm:
 The compression algorithm tries to reduce the size of a 8 bit histogram cell into a 4
bit TM packet data cell using a “count difference method”. The TM packet data field
is built out of an array [1..848] of 4 bit data cells. When starting a new TM packet all
data cells are initialised with flag value (-8).
 The 24 bit histogram memory address given inside the TM packet data field header
is the memory address of the first histogram cell which is written into the first two
data cells of the TM packet. This first two TM packet data cells are equivalent to a
uncompressed 8 bit histogram cell containing the origin count values for the
corresponding pixel and energy channel. For the second histogram cell the
difference of counts to the first histogram cell is calculated. This ∆(counts) of
[histogram cell (1) – histogram cell (2)] is written as a 4 bit integer value into third
TM packet data cell. The forth data cell contains the ∆(counts) of [histogram cell (2)
– histogram cell (3)], the fifth data cell contains the ∆(counts) of [histogram cell (3)
– histogram cell (4)] and so on. For ∆(counts) the range –7..+7 of a 4 bit integer
type is used. The value –8 is used as a flag.

 ∆(count
s)

 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

 Bit code 100
0

 100
1

 101
0

 101
1

 110
0

 110
1

 111
0

 111
1

 000
0

 000
1

 001
0

 001
1

 010
0

 010
1

 011
0

 011
1

Table 9: Bitcode of 4 bit integer values

 If ∆(counts) is not in range of –7..+7 then the flag value (-8) is written into the TM
packet data cell followed by the origin 8 bit histogram cell. The following example
shows the working method of the histogram compression algorithm:

 Histogram cells (origin data from HEPI) (8 bit) TM packet data cells(4
bit)

 23 21 22

 First →
 data cell
= 8 bit
keeping
the
origin
count
value

 23 (8 bit) -2

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 102 of: 119

University of
Tübingen

IAAT
Astronomy

 16 19 14 +1 -6 +3
 9 2 2 -5 -7 0

 24 25 23 -8 24 (8 bit)
 18 20 17 +1 -2 -5
 17 +2 -3 0

Figure 11: Example of histogram compression algorithm.

 The last 3 data cells of the TM packet are reserved for a position counter, therefore
the maximum number of available data cells is 845. The value inside this position
counter indicates the first data cell which contains no data. If the position counter =
846 all data cells are valid, if position counter = 845 then the last data cell is invalid.

 To make sure that no histogram TM packet will be lost during short timed high data
rate to ICB TM sub buffer the procedure repeats up to ten times the sending of the
TM packet to the TM_INTERFACE in intervals of 125 milliseconds. If the TM packet
could not be sent an on-event message is generated that the TM packet is lost.
 As long as the satellite is changing ground stations the processing and sending of
histogram TM packets is interrupted.

• Constraints: None

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.36.2 Procedures CLOSE_TM

• Input: None

• Output: TM(6,0) packets to module TM_INTERFACE

• Called by modules: READ_HISTOGRAM

• Description:
 When finishing the histogram read out and processing the partial filled TM(6,0)
packets is sent away to the module TM_INTERFACE. If the current TM packets
contain no data the TM packet is not sent away.

• Constraints: None.

• Efficiency: Not applicable

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 103 of: 119

University of
Tübingen

IAAT
Astronomy

• Verification Requirement: TBD

3.3.36.3 Procedure RESET

• Input: None

• Output: None

• Called by modules: READ_HISTOGRAM

• Description:
 When starting the histogram read out and processing variables of the processing
procedure PROCESS_HISTOGRAM are reset to initialisation values to make sure
that the routines begin with correct start values.

• Constraints: None.

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.36.4 Function GET_SEQUENCE_COUNTER return
CSSW_IF_TYPES.T_Source_Seq_Count

• Input: None

• Output: Sequence Counter of the current TM(6,0) packet

• Called by modules: SCIENCE_HK

• Description:
 This function returns the sequence counter of the TM(6,0) packet, which currently is
to fill by procedure S5.PROCESS_HISTOGRAM. That means the returned value is
the sequence counter of the next TM(6,0) packet that will be given to the
TM_INTERFACE.

• Constraints: None

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 104 of: 119

University of
Tübingen

IAAT
Astronomy

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.37 MODULE S7 (SPECTRAL IMAGING, CSI SINGLE/MULTIPLE
HISTOGR.)

• List of Contents:
Procedure PROCESS_S_HISTOGRAM
Procedure PROCESS_M_HISTOGRAM

 Procedure CLOSE_S_TM
 Procedure CLOSE_M_TM
 Procedure RESET

 Function GET_SEQUENCE_COUNTER return
 CSSW_IF_TYPES.T_Source_Seq_Count.

• Global Variables: None.

• Exceptions: EX_ADDRESS_NOT_CONTINUOUS

3.3.37.1 Procedures PROCESS_S_HISTOGRAM / PROCESS_M_HISTOGRAM

• Input: - one block (1026 byte) of histogram data interface according to HEPI
Interface Document from module READ_HISTOGRAM,

 - Histogram ID,
 - Start time of integration [OBT],
 - Integration time [seconds]

• Output: TM(7,0) / TM(7,1) packets to module TM_INTERFACE

• Called by modules: READ_HISTOGRAM

• Description:
 The input data block consists out of 2 byte of block address and 1024 byte
histogram data. This data corresponds to 1024 histogram cells each with size of one
byte. First it is checked whether the start address of the histogram data block is

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 105 of: 119

University of
Tübingen

IAAT
Astronomy

continuous to previous blocks. If it was the first block, the check is omitted. If the
address is not continuous the current TM packet is closed and sent away and the
exception EX_ADDRESS_NOT_CONTINUOUS is raised.

 S7 histogram TM packets have a 5 word data field header. The data field header
will be filled before the first histogram data cell is written into the TM packet. The TM
packet data field header contains all information about the histogram integration
and the memory address of the histogram data:

 Type/Subtype (8 bit) = Hex(70 / 71) MSB Start time of histogram
integration

 Start time of histogram integration [seconds] (24 bit)
LSB
 Real integration time of the histogram [seconds]
 MSB Start address of the reference histogram data cell (first data cell inside the
TM packet)
 Start address of reference cell (24 bit)
LSB

 Histogram ID

Figure 12: Format of 80 bit histogram data field header.

 Compression algorithm:
 The compression algorithm tries to reduce the size of a 8 bit histogram cell into a 4
bit TM packet data cell using a “count difference method”. The TM packet data field
is built out of an array [1..848] of 4 bit data cells. When starting a new TM packet all
data cells are initialised with flag value (-8).
 The 24 bit histogram memory address given inside the TM packet data field header
is the memory address of the first histogram cell which is written into the first two
data cells of the TM packet. This first two TM packet data cells are equivalent to a
uncompressed 8 bit histogram cell containing the origin count values for the
corresponding pixel and energy channel. For the second histogram cell the
difference of counts to the first histogram cell is calculated. This ∆(counts) of
[histogram cell (1) – histogram cell (2)] is written as a 4 bit integer value into third
TM packet data cell. The forth data cell contains the ∆(counts) of [histogram cell (2)
– histogram cell (3)], the fifth data cell contains the ∆(counts) of [histogram cell (3)
– histogram cell (4)] and so on. For ∆(counts) the range –7..+7 of a 4 bit integer
type is used. The value –8 is used as a flag.

 ∆(count
s)

 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

 Bit code 100
0

 100
1

 101
0

 101
1

 110
0

 110
1

 111
0

 111
1

 000
0

 000
1

 001
0

 001
1

 010
0

 010
1

 011
0

 011
1

Table 10: Bitcode of 4 bit integer values

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 106 of: 119

University of
Tübingen

IAAT
Astronomy

 If ∆(counts) is not in range of –7..+7 then the flag value (-8) is written into the TM
packet data cell followed by the origin 8 bit histogram cell. The following example
shows the working method of the histogram compression algorithm:

 Histogram cells (origin data from HEPI) (8 bit) TM packet data cells(4
bit)

 23 21 22 23 (8 bit) -2
 16 19 14 +1 -6 +3
 9 2 2 -5 -7 0

 24 25 23 -8 24 (8 bit)
 18 20 17 +1 -2 -5
 17

 First →
 data cell
= 8 bit
keeping
the
origin
count
value +2 -3 0

Figure 13: Example of histogram compression algorithm.

 The last 3 data cells of the TM packet are reserved for a position counter, therefore
the maximum number of available data cells is 845. The value inside this position
counter indicates the first data cell which contains no data. If the position counter =
846 all data cells are valid, if position counter = 845 then the last data cell is invalid.

 To make sure that no histogram TM packet will be lost during short timed high data
rate to ICB TM sub buffer the procedure repeats up to ten times the sending of the
TM packet to the TM_INTERFACE in intervals of 125 milliseconds. If the TM packet
could not be sent an on-event message is generated that the TM packet is lost.
 As long as the satellite is changing ground stations the processing and sending of
histogram TM packets is interrupted.

• Constraints: None

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.37.2 Procedures CLOSE_S_TM / CLOSE_M_TM

• Input: None

• Output: TM(7,0) / TM(7,1) packets to module TM_INTERFACE

• Called by modules: READ_HISTOGRAM

• Description:

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 107 of: 119

University of
Tübingen

IAAT
Astronomy

 When finishing the histogram read out and processing the partial filled TM(7,0) /
TM(7,1) packets are sent away to the module TM_INTERFACE. If the current TM
packets contain no data the TM packets are not sent away.

• Constraints: None.

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.37.3 Procedure RESET

• Input: None

• Output: None

• Called by modules: READ_HISTOGRAM

• Description:
 When starting the histogram read out and processing variables of the processing
procedure PROCESS_S/M_HISTOGRAM are reset to initialisation values to make
sure that the routines begin with correct start values.

• Constraints: None.

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.37.4 Functions GET_S7_HK_DATA return T_S7_Hk_Data

• Input: None

• Output: Sequence Counter of the current TM(7,0) / TM(7,1) packet

• Called by modules: SCIENCE_HK

• Description:

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 108 of: 119

University of
Tübingen

IAAT
Astronomy

 This functions returns the sequence counters of the TM(7,0) / TM(7,1) packets, which
currently are to fill by procedures S7.PROCESS_S/M_EVENT. That means the returned
values are the sequence counters of the next TM(7,0) / TM(7,1) packet that will be given to
the TM_INTERFACE. Type T_S7_Hk_Data is a global record type built of two
components of CSSW_IF_TYPES.T_Source_Seq_Count.

• Constraints: None

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.38 MODULE S8 (SPECTRAL TIMING)
• List of Contents:
 Procedure PROCESS_EVENT
 Procedure CONFIGURE_COMPRESSION
 Function REPORT_COMPRESSION return Integer
 Procedure CLOSE_TM
 Procedure RESET
 Function GET_SEQUENCE_COUNTER return System.Unsigned

• Global Variables:
FREQUENCY: integration time of spectral timing histograms in units [61,035 µsec.]
This variable is set automatically by IASW when starting science mode. It is
translated out of the hardware register HEPI register type II.

• Exceptions: None

3.3.38.1 Procedure PROCESS_EVENT

• Input: 160 bit event of type Hex(E6) according to HEPI Interface Document
from module HBR_A_IF

• Output: TM(8,0) packet to module TM_INTERFACE

• Called by modules: SCIENCE_MODE

• Description:

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 109 of: 119

University of
Tübingen

IAAT
Astronomy

 This procedure contains all working steps to pack a spectral timing histogram event into a
TM packet. The 32 bit time information of the first event of the TM packet is written into the
data field header. The event is compressed and written into the TM packet. If the TM
packet is filled it will be given to the TM_INTERFACE module by calling the procedure
TM_INTERFACE.PUT_TM.

 Data field header:
 The TM(8,0) has got a data field header with size of 48 bit. Next to a type/subtype field
there is the cell status flag with size of 1 byte. It indicates how much and which of the 8
spectral timing histogram cells / energy channels are active. Then there is the 32 bit time
information of the first histogram event inside the TM packet and because the integration
time is known the event times of all spectral timing histograms inside the TM packet can be
reconstructed.

 Type/subtype (8 bit) = Hex(80) Cell status flag (8 bit)
 MSB Event time of first spectral timing histogram inside the TM packet (32 bit)
 Event time of first spectral timing histogram inside the TM packet (32 bit)
LSB

Figure 14: Data field header of TM(8,0).

 Compression algorithm:
 The HEPI output are 8 histogram cells each with 8 bit length. Instead of using 8 bits for
each histogram cell it is sufficient to reduce the length of each histogram cell to 4 bits. In
case that a 8 bit cell histogram cell could not be reduced to a 4 bit cell, the whole 8 bit cell
is copied into the TM packet behind a flag cell. The flag is a 4 bit cell with the maximum
value of Hex(F). Therefor the maximum value allowed for compressed 4 bit histogram cells
is Hex(E). All cells of one histogram are packed into the same TM packet. If there is no
more place at the end of a TM packet for the complete histogram, the end of data is
marked with flag Hex(F02), the TM packet is filled with flags Hex(F) and sent away. Then
the histogram is packed into a new TM packet.
 Proceed from an event rate of 28000 events per second the whole histogram keeps about
28 events using minimal integration time of 0,976 mseconds. Then the average value of
each histogram cell is about 4. For a random distribution this 4 bit cells are able to keep
values with 5 sigma deviation.

 Histograms not in time frequency:
 The time difference between two following histograms is FREQUENCY. If the time difference
of two following spectral timing events is not the defined FREQUENCY, then behind a flag
Hex(F00) the 32 bit absolute time information of the event is written into the TM packet,
followed by the compressed histogram. The written absolute time is the new time base for
the following spectral timing events. The flag is the not possible cell sequence Hex(F00).
This flag is unequivocal because behind a flag Hex(F) must follow a 8 bit cell including a
value greater than Hex(E). The 32 bit absolute time must not be word / byte aligned. The
defined FREQUENCY for the spectral timing events could be verified by the additional IASW
HK (H2).

 Data processing was restarted:

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 110 of: 119

University of
Tübingen

IAAT
Astronomy

 If the data processing was disabled by TM_INTERFACE because of exceeded ICB
TM sub buffer thresholds and is restarted again an additional flag Hex(F01) is
written into the TM packet.

• Constraints: None

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.38.2 Procedure CONFIGURE_COMPRESSION

• Input: Cell status flag.

• Output: None.

• Called by modules: TASK_PARAMETER

• Description:
This procedure configures the selection of active spectral timing histogram cells
inside procedure S8.PROCESS_EVENT.
 A spectral timing histogram consist out of 8 energy channels / histogram cells. It is possible
to define how much and which of 8 histogram cells are to process using a cell status flag of
1 byte length. This selection of active histogram cells of spectral timing histograms
can be set via TC(5,3)(TID=16, FID=10) and reported via TC(5,4)(TID=16, FID=10). The
cell status flag is also part of the TM(8,0) data field header. The MSB (C7) inside the cell
status flag corresponds to the highest energy channel, the LSB (C0) corresponds to the
least energy channel. Per default only cell C0 and C2 are active histogram cells.

 Histogram Cell C7 C6 C5 C4 C3 C2 C1 C0
 Cell status 1=activ

e,
 0 =

OFF

 1=activ
e,

 0 =
OFF

 1=activ
e,

 0 =
OFF

 1=activ
e,

 0 =
OFF

 1=activ
e,

 0 =
OFF

 1=activ
e,

 0 =
OFF

 1=activ
e,

 0 =
OFF

 1=activ
e,

 0 =
OFF

Table 11: Status flag of spectral timing histogram

• Constraints: None

• Efficiency: Not applicable

• Verification Requirement: TBD

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 111 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.38.3 Function REPORT_COMPRESSION return Integer

• Input: None.

• Output: Cell status flag.

• Called by modules: TASK_PARAMETER

• Description:
This procedure reports the selection of active spectral timing histogram cells inside
procedure S8.PROCESS_EVENT.
 A spectral timing histogram consist out of 8 energy channels / histogram cells. It is possible
to define how much and which of 8 histogram cells are to process using a cell status flag of
1 byte length. This selection of active histogram cells of spectral timing histograms
can be set via TC(5,3)(TID=16, FID=10) and reported via TC(5,4)(TID=16, FID=10). The
cell status flag is also part of the TM(8,0) data field header. The MSB (C7) inside the cell
status flag corresponds to the highest energy channel, the LSB (C0) corresponds to the
least energy channel. Per default only cell C0 and C2 are active histogram cells.

 Histogram Cell C7 C6 C5 C4 C3 C2 C1 C0
 Cell status 1=activ

e,
 0 =

OFF

 1=activ
e,

 0 =
OFF

 1=activ
e,

 0 =
OFF

 1=activ
e,

 0 =
OFF

 1=activ
e,

 0 =
OFF

 1=activ
e,

 0 =
OFF

 1=activ
e,

 0 =
OFF

 1=activ
e,

 0 =
OFF

Table 12: Status flag of spectral timing histogram

• Constraints: None

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.38.4 Procedure CLOSE_TM

• Input: None

• Output: TM(8,0) packet to module TM_INTERFACE

• Called by modules: SCIENCE_MODE

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 112 of: 119

University of
Tübingen

IAAT
Astronomy

• Description:
 When ending the science mode the partial filled TM(8,0) packet must be filled with defined
values (zeros) and sent away via the procedure PUT_TM out of the module
TM_INTERFACE. The end of data is marked with flag Hex(F02). This flag is unequivocal
because behind a flag Hex(F) must follow a 8 bit cell including a value greater than Hex(E).
If there is no more place inside the TM packet to write the flag Hex(F02) the TM packet is
just filled with flags Hex(F). If the current TM packet contains no data the TM packet is
not sent away.

• Constraints: None.

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.38.5 Procedure RESET

• Input: None

• Output: None

• Called by modules: SCIENCE_MODE

• Description:
 When starting the science mode variables for the current position inside the TM packet
of the processing procedure PROCESS_EVENT are reset to initialisation values to make
sure that the routine begin with correct start values.

• Constraints: None

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.38.6 Function GET_SEQUENCE_COUNTER return System.Unsigned

• Input: None

• Output: Sequence Counter of the current TM(8,0) packet

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 113 of: 119

University of
Tübingen

IAAT
Astronomy

• Called by modules: SCIENCE_HK

• Description:
 This function returns the sequence counter of the TM(8,0) packet, which currently is to fill
by procedure S8.PROCESS_EVENT. That means the returned value is the sequence
counter of the next TM(8,0) packet that will be given to the TM_INTERFACE.

• Constraints: None

• Efficiency: Not applicable

• Verification Requirement: TBD

3.3.39 MODULE SCIENCE_FUNCTIONS

3.3.39.1 Global Variables

3.3.39.2 Exceptions

3.3.40 MODULE SCIENCE_HK

3.3.40.1 Global Variables

3.3.40.2 Exceptions

3.3.41 MODULE SCIENCE_MODE

3.3.41.1 Global Variables

3.3.41.2 Exceptions

3.3.42 MODULE SQRT

3.3.42.1 Global Variables

3.3.42.2 Exceptions

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 114 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.43 MODULE TABLE_HANDLER

3.3.43.1 Global Variables

3.3.43.2 Exceptions

3.3.44 MODULE TASK_PARAMETER

3.3.44.1 Global Variables

3.3.44.2 Exceptions

3.3.45 MODULE TASKS

3.3.45.1 Global Variables

3.3.45.2 Exceptions

3.3.46 MODULE TC_DECODER
• Procedure START
• Procedure EXECUTED_TC
• Procedure REJECTED_TC

3.3.46.1 Global Variables

3.3.46.1.1 LAST_TC
last received (valid or invalid) telecommand:

3.3.46.2 Exceptions

3.3.46.3 Procedure START

3.3.46.3.1 Use/Constraints
must be called by the tc starting task stump.

3.3.46.3.2 Description
Gets TC, checks parameters, supplies the tc + parameter to other tasks and
generates on-events for not recognized/rejected TC.

3.3.46.4 Procedure EXECUTED_TC

3.3.46.4.1 Output

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 115 of: 119

University of
Tübingen

IAAT
Astronomy

Number of successfully performed Telecommands. If the Telecommand number
exceeds T_TC_COUNTER'LAST it will be reset at zero.

3.3.46.4.2 Use/Constraints
No restrictions.

3.3.46.4.3 Description
Each executed telecommand increases a counter which value will be returned.

3.3.46.5 Procedure REJECTED_TC

3.3.46.5.1 Output
Number of rejected Telecommands If this number exceeds T_TC_COUNTER'LAST it
will be reset at zero.

3.3.46.5.2 Use/Constraints
No restrictions.

3.3.46.5.3 Description
Each rejected or non-successfully executed telecommand increases a counter
which value will be returned.

3.3.47 MODULE TM_INTERFACE

3.3.47.1 Global Variables

3.3.47.2 Exceptions

3.3.48 MODULE TRANSPARENT

3.3.48.1 Global Variables

3.3.48.2 Exceptions

3.3.49 MODULE VETO
• Procedure SWITCH_VETO_OFF
• Procedure COMMAND_VETO
• Procedure READ_VETO
• Procedure GET_SEQ_COUNT

3.3.49.1 Global Variables

3.3.49.2 Exceptions

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 116 of: 119

University of
Tübingen

IAAT
Astronomy

3.3.49.3 Procedure SWITCH_VETO_OFF

3.3.49.3.1 Use/Constraints
Must be called in emergency case when veto high voltage is to be turned
off. LSL MUST BE BLOCKED

3.3.49.3.2 Description
Sends Veto standby command.

3.3.49.4 Procedure COMMAND_VETO

3.3.49.4.1 Input
VETO_COMMAND - The command to be send to VETO. PARAMETER - The parameter
for that command.

3.3.49.4.2 Output
: ok is true when transfer successfully done

3.3.49.4.3 Use/Constraints
Call the procedure with given command ID and parameter for that command.
NO PARAMETER CHECK WILL BE DONE THERE IS NO INTERNAL BLOCKING OF THE LSL

3.3.49.4.4 Use/Constraints
THE LINE MANAGER MUST BE USED BY THE CALLER OF THIS PROCEDURE

3.3.49.4.5 Description
Command_Veto transmits the command via the LSL to VETO. The control will
return when transmission is over. The length of the command is set
according the length of the parameter array.

3.3.49.5 Procedure READ_VETO

3.3.49.5.1 Input
VETO_COMMAND - The read command to be sent to VETO PARAMETER - The
parameter necessary for this command

3.3.49.5.2 Output
VETO_RESPONSE : The data read out from VETO. This array must be set
properly at the expected data size from VETO. ok : true when
transfer successfully done

3.3.49.5.3 Use/Constraints
Call Read_Veto with a command which requests data from VETO, and necessary
parameters. The procedure will return the veto response data according the
command sent into response buffer. NO PARAMETER CHECK WILL BE DONE ALSO
NO COMMAND ID CHECK IS APPLIED THERE IS NO INTERNAL BLOCKING OF THE LSL

3.3.49.5.4 Use/Constraints
THE LINE MANAGER MUST BE USED BY THE CALLER OF THIS PROCEDURE

3.3.49.5.5 Description

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft
Date: June 2000

IMAGER IBIS Page: 117 of: 119

University of
Tübingen

IAAT
Astronomy

Command_Veto transmits the command via the LSL to VETO. Then the VETO will
send the data requested- via LSL to DPE . The control will return to caller
when transmission is over. The length of the command to send is derived
from the parameter block length; that of the response from the response
block length.

3.3.49.6 Procedure GET_SEQ_COUNT

3.3.49.6.1 Output
Returns: 13-bit value containing current number of commands sent to veto.
Value wraps around at 2^13.

3.3.49.6.2 Use/Constraints
In HK for setting the VETO sequence count field. returns 13-Bit value

3.3.49.6.3 Description
Reflects counter status.

3.3.50 MODULE VETO_CONTEXT_TABLE

3.3.50.1 Global Variables

3.3.50.2 Exceptions

4 ANNEX

4.1.1 GENERAL DESCRIPTION OF IBIS IASW TC
TC TABLE: TBW

Table 13: Table of accepted IASW TC

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft

Date: June 2000
IMAGER IBIS Page: 118 of: 119

University of
Tübingen

IAAT
Astronomy

4.1.2 IASW BROADCAST PACKET PROCESSES

A] On-Board generated Data:

Fl
ag

Description IBIS IASW Reaction

A1 OTF: On Target Flag Start/Stop of Histogram Integration
A2 ESAM Emergency Safe

Acquisition
Go to standby, VETO HV off

A3 AOCS Modes:
3.1 Inactive Mode n.u.
3.2 Standby Mode n.u
3.3 ISA Initial Sun
Acquisition

n.u

3.4 SSA Sun Sensor
Acquisition

n.u

3.5 STA Star Tracker
Acquisition

n.u.

3.6 IPM Inertial Pointing
Mode

Science Mode

3.7 TCM Thrust Control
Mode

n.u.

A4 AOCS Submodes used
A5 Radiation Monitor Count Rate

#1
Go to stand by, Switch off VETO HV

A6 Radiation Monitor Count Rate
#2

Go to stand by, Switch off VETO HV

A7 Radiation Monitor Count Rate
#3

Go to stand by, Switch off VETO HV

B] Orbital Data

B1 Radiation Belts Entry Time Switch to Standby, VETO HV off
B2 Radiation Belts Exit Time used
B3 Eclipse Entry time Switch to Standby, Save peripheral context
B4 Radiation Monitor Data

Validity Flag
monitored

B5 Eclipse Exit Time Restore of peripheral context

C] Operational Data

C
1

SPI Telemetry Share n.u.

INTEGRAL Doc: IN-IM-TUB-SDD-001

Software Design
Document

Issue: 7.0 draft

Date: June 2000
IMAGER IBIS Page: 119 of: 119

University of
Tübingen

IAAT
Astronomy

C
2

IBIS Telemetry Share n.u.

C
3

JEM-X1 Telemetry Share n.u.

C
4

JEM-X2 Telemetry Share n.u.

C
5

OMC Telemetry Share n.u.

C
6

All Instrument Switch-off
Imminent

switch to standby, VETO HV off, save peripheral
context

C
7

Ground Station Hand-Over
Flag

Stop sending histograms

C
8

Pointing ID pointing/slew switching

C
9

Pointing Duration pointing/slew switching

