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Abstract—The matching of oriented local image feature de-
scriptors like SIFT, SURF or ORB often includes the refinement
and filtering of matches based on the relative orientation of
the features. This is important since the computational cost for
subsequent tasks like camera pose estimation or object detection
increases dramatically with the number of outliers. Simple 2D
orientation descriptions are unsuitable for omnidirectional images
because of image distortions and non-monotonic mapping from
camera rotations to image rotations. In this work we introduce
3D orientation descriptors which, unlike 2D descriptors, are
suitable for match refinement on omnidirectional images and
improve matching results on images from cameras and camera
rigs with a wide field of view. We evaluate different match
refinement strategies based on 2D and 3D orientations and show
the fundamental advantages of our approach.

I. INTRODUCTION

The extraction of local image features is a key task in
many algorithms such as image classification, object recog-
nition, camera pose estimation, camera calibration and many
others. Many local feature extraction techniques like SIFT [1],
SURF [2] or GLOH [3] achieve rotation invariance in the
image plane by assigning an orientation to each feature before
extracting a feature descriptor from the image patch relative
to this orientation.

The feature orientations are not only useful for feature
extraction but also for refining the matches that are found for a
pair of images based on the feature descriptors: For “normal”
2D images with a decent field of view (FoV) (usually < 40◦),
it is a legitimate assumption that all features in an image pair
have the same rotation behavior: inverse to the camera roll.

For wider FoVs, the scene is mapped to the image plane
quite differently in different image regions (see Figure 1). This
effect gets even worse for strong image distortions.

Fig. 1. Inconsistent feature rotations on wide field of view images. Note how
the orientation of the feature at the bottom left/right of the left/right image
changes while the central image areas keep their orientation.

Omnidirectional camera rigs can provide FoVs of virtually
360◦, which are usually handled as a set of individual images
or mapped to a cylindrical, spherical or other representation for
feature extraction. In all those types of images, the rotation of
matched features does not monotonically map to the camera’s
orientation (see Figure 2): Tilting and rolling of the rig results
in features rotating in opposite directions.

To overcome both issues, we propose a 3D orientation
descriptor that can be inferred from its 2D counterpart and
the intrinsic camera calibration (per pixel view direction in
camera space): In principle, our orientation descriptor defines
an orthonormal space for each feature whose base axes are
given by (1) the 2D feature orientation transformed to camera
space, (2) the view direction towards the feature in camera
space and (3) the cross product of (1) and (2) (see Figure 3).

This 3D orientation frame allows for significantly more
robust matching of features between omnidirectional and wide-
angle camera images. The number of spurious matches is
significantly reduced using our 3D orientation while positive
matches are essentially detected unhindered. Subsequent pro-
cessing tasks such as Structure from Motion (SfM) become
significantly more robust and more efficient after this simple
outlier removal based on 3D orientation.

In the following sections, we introduce related work con-
sidering the handling of wide FoVs as well as omnidirectional
cameras with local image features. We present our 3D ori-

Fig. 2. Omnidirectional images with straight (top) and rolled (bottom) camera.
Note how the image areas in the back facing part rotate inverse to the front,
so there is no common 2D feature rotation.



entation descriptor in detail, describe our match refinement
strategies and evaluate and compare our work to the common
use of 2D feature orientations.

II. RELATED WORK

All local image feature frameworks discussed in this sec-
tion contain the following steps: during the extraction of
features from the images, remarkable feature keypoints are
detected and some basic properties including orientation and
scale are determined. At the keypoints, feature descriptors
are calculated from image patches relative to the keypoints’
orientation and scale to achieve scale and rotation invariance.
Feature descriptors may not always be extracted from the
image data directly but also from an image pyramid, e.g., for
better performance, or filtered versions of the image, e.g., for
higher distinctiveness.

Matching the features of an image pair starts with finding
the best matches based on some similarity metric on the feature
descriptor. Usually, thresholding is applied to accept only
matches deemed more certain for the subsequent processing.
This matching usually treats all features individually. Frame-
works such as SIFT [1] refine the set of matches by analyzing
keypoint properties, e.g. feature orientations, of all matches
in common for consistency. By dropping inconsistent matches,
the number of outliers is reduced. This match refinement stage
is what we analyze and improve in this work.

We can apply our improvements to all image features based
matching frameworks that contain an orientation: SIFT [1],
SURF [2] and GLOH [3] determine feature orientations based
on the (smoothed) gradient at the feature’s location. Newer
binary descriptors assign orientations more sophistically and
robustly. ORB [4] uses intensity centroids [5]: it calculates
moments for all pixels of a patch and obtains the orientation
based on their gradients. BRISK [6] and FREAK [7] use the
sum of gradients obtained from special sample pairs of patches
around a keypoint. Scaramuzza et al. [8] extract vertical line
features which are oriented by definition. Lu and Wu [9]
do quasi-dense matching of omnidirectional and perspective
images using an affine model for local transformations which
can be reduced to a rotation.

There are several SIFT extensions which target wide FoV
and omnidirectional cameras during feature extraction: Arican
and Frossard [10] focus on calculating the scale space pyramid
used for keypoint detection correctly for parabolic mirrors by
solving the heat equation using Riemannian geometry. Hansen
et al. [11] and Cruz-Mota et al. [12] make features invariant
against distortions by projecting the images to a sphere and
then back to planes tangential to the sphere at the feature’s
location. Lourenço et al. [13] implement scale space construc-
tion and feature extraction without image resampling by using
adaptive filtering that compensates image distortion. All those
publications focus on feature extraction and do not concern
match refinement. Our approach of match refinement based
on feature orientation is orthogonal to the above techniques
and can be applied on top of those for further improvement.

A. Applications

Our match refinement provides advantages on all cameras
with a large field of view or distorted images, e.g., currently
emerging action cams like the GoPro Hero Series.

The greatest improvements can however be observed on
omnidirectional camera systems, e.g. custom camera rigs, pro-
fessional devices such as the various Point Grey’s Ladybugs,
commercial omnidirectional camera systems like the 360◦

camera in the new Mercedes E-Class or the Panono Panoramic
Ball Camera. Beside one shot solutions, many smartphones are
able to capture panoramas, e.g. using Photo Sphere (Google)
or Photosynth (Microsoft).

III. 3D ORIENTATION DESCRIPTOR

Our 3D orientation descriptor V which can be calculated
for each feature defines an orthonormal 3D space. For each
match with its features’ 3D orientation descriptors V1, V2, one
can find the rotation r3D = V2 ∗ V −1

1 which transforms from
one feature space to the other. The orientation descriptors are
designed in a way that the match rotation r3D is roughly the
inverse of the camera rotation and therefore similar for all
correct matches of an omnidirectional image pair.

The 3D orientation descriptor is calculated based on the
2D orientation ω of a feature in the image plane, its position
p ∈ R2 in the image and the intrinsic calibration of the camera
(or camera rig) (C(p) = dc) ∈ {R2 → R3} that maps
image coordinates to directions in camera space. Note that
calculating the 3D descriptor works the same way for single
images, spherical or cylindrical mappings or sets of images
that represent an omnidirectional view.

The 3D orientation descriptor is defined by V = (~v1 ~v2 ~v3)
(see also Figure 3):

~v1 =
C(px + cos(ω), py + sin(ω))− C(px, py)

‖C(px + cos(ω), py + sin(ω))− C(px, py)‖
(1)

~v2 = C(px, py) (2)
~v3 = ~v1 × ~v2 (3)

A. Properties

By design, the rotation r3D obtained from two matched
features is the inverse of the camera (or camera rig) rotation
(see Figure 4). In contrast to 2D orientations, all our 3D orien-
tation descriptors rotate the same way under arbitrary camera
transformations. This allows for analyzing a set of feature
matches for consistent rotations and discarding inconsistent
matches.

Another benefit is that we incorporate the features’ viewing
directions dc into the orientation descriptors. This enables us

Fig. 3. 3D orientation descriptor. The red, green and blue vectors represent
the axes of the orthonormal descriptor frame defined by the orientation and
position of each feature.



Fig. 4. Descriptor behavior under camera rotation. If the camera is rotated,
all 3D feature orientations perform an inverse rotation.

to distinguish between features with similar appearance and
2D orientation but different viewing direction.

IV. FEATURE MATCHING

The proposed 3D orientation helps in refining matches by
analyzing the rotations between their features for consistency
and removing inconsistent matches. We do not propose any
new method on how to find matches. Instead our approach
can work with any pre-selection of matches.

The general procedure for analyzing matches given 3D
feature orientations is the same as for 2D feature orientations.
The steps are as follows:

1) Calculate a rotation ri from the first to the second
feature’s orientation of each match.

2) Find a representative rotation r̂ for the rotations ri of
all matches.

3) Remove all matches whose feature’s rotations ri
differ from the representative r̂ by more than a certain
threshold.

The next two subsections for 2D and 3D descriptor match
refinement first describe how to obtain a rotation from an
orientation (step 1) and how to calculate differences in rotation
(step 3). Then we present different strategies for finding a
representative rotation r̂ (step 2) in both subsections.

A. 2D Descriptor Match Refinement

For 2D feature orientations ω1, ω2 which are scalar rotation
angles, we obtain the scalar rotation for a match r2D = ω2−ω1

by simple subtraction. The results are mapped to the range
(−π, π) to have the identity rotation in the middle of the
interval.

We implemented and tested the following strategies for
obtaining r̂2D from a set of rotations r2Di :

1) Histograms: This idea is borrowed from SIFT [1] and
sorts all r2Di into histogram bins. To avoid problems at the bin
boundaries, the bins overlap by 50%, so each r2Di is assigned
to two bins. The center of the bin with the most rotations is
used as r̂2D.

2) Mean: Using the average of all rotations is expected to
lead to good results for evenly distributed outlier rotations but
is prone to error for multimodal distributions which can arise
from rotated omnidirectional cameras (see Figure 11).

3) Cosine fit: We select the r̂2D that fits a shifted cos2

function to the relative rotations r2Di by maximizing

E(r̂2D) =
∑
i

(
1

2
cos(r2Di − r̂2D) +

1

2

)2

(4)

with a gradient ascent method using a Levenberg-
Marquardt [14] inspired step size. This method should
nicely fit to a peak in the rotation distribution - it might
however not be the global optimum.

4) K-Means: K-Means clustering is applied to all r2Di . K-
Means cluster centers will converge to the peaks in the rotation
distribution, so the center of the largest cluster can be selected
as r̂2D. Based on tests with 2-10 clusters we decided that
three clusters lead to the best k-Means results for all of our
test scenes. This corresponds to up to trimodal 2D rotation
distributions of our data (see Figure 11).

B. 3D Descriptor Match refinement

For a match’s 3D feature orientations V1, V2 which are
orthonormal matrices, we obtain the match’s rotation matrix
r3D = V2 ∗ V −1

1 . This r3D can be interpreted as the inverse
camera rotation matrix (compare with Section III-A). As
distance associated with a rotation we will use the shortest
rotation angle α(r3D) = arccos(Tr(r3D) − 1) according
to [15].

We implemented the following strategies for obtaining r̂3D
from a set of rotations r3Di :

1) Mean: Using the average of all matches’ rotations is
promising for 3D orientations since the rotation distribution
won’t get multimodal for omnidirectional setups by design
(compare to Section IV-A2) and outlier rotations can be
expected to be more randomly distributed since we incorporate
scene information plus viewing direction information into the
feature orientations. The mean of rotations for all matches is
obtained by the orthonormalized sum of all r3Di :

(U,Σ, V T ) = SVD

(∑
i

r3Di

)
(5)

r̂3D = U ∗ V T (6)

Singular Value Decomposition (SVD) is employed for
orthonormalization to keep the rotational parts U, V T while
setting the scaling part Σ to identity. This generates the optimal
solution in a least squares sense [16].

2) Cosine fit: r̂3D is selected like in the 2D case (see
Section IV-A3) by maximizing

E(r̂3D) =
∑
i

(
1

2
cos(α((r̂3D)−1 ∗ r3Di )) +

1

2

)2

(7)

where α((r̂3D)−1 ∗ r3Di ) is the angular difference between the
representative rotation r̂3D and the rotation r3Di of a match.
As in Section IV-A3, this will fit to a peak in the rotation
distribution which will typically be the global optimum since
we expect an unimodal distribution.

3) K-Means: We proceed as in the 2D case (see Sec-
tion IV-A4) and use α(r3Dj ∗ (r3Dk )−1) as distance metric for a
pair of rotations. As before, three clusters already lead to the
best k-Means results for all our test scenes. This strategy was
mainly implemented to have a counterpart to the 2D version.
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Fig. 5. Selecting a good rotation threshold for 2D features using the cosine
fit strategy. We chose e2D = 35◦ because this threshold selects almost all
correct feature matches while the match/outlier ratio is still high.
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Fig. 6. Selecting a good rotation threshold for 3D features using the cosine
fit strategy. We chose e3D = 35◦ because this threshold selects almost all
correct feature matches while the match/outlier ratio is still high.

C. Match Selection

All matches whose deviation from r̂ is smaller than a
certain error threshold e are selected; the others are discarded.
For a fair comparison, we selected a common threshold e.

To select a good e, we sampled the thresholds in steps of
five degrees on our test scenes using the cosine fit strategies
from Section IV-A3 and IV-B2 (see Figures 5 and 6). It turns
out that setting e = 35◦ is high enough to select most good
matches while a higher threshold gives overproportional rise
to the outliers.

Note that the original SIFT matching [1] uses 30◦ bins for
2D features. For the 2D case, our higher threshold is justified
by the fact that our cameras have more radial distortion.
The 3D match refinement strategies are invariant to image
distortion because we use the intrinsic camera calibration, but
we incorporate the viewing direction into the descriptors which
will cause more variance (Section III).

V. EVALUATION

Our proposed 3D orientation descriptor and all match
refinement strategies are evaluated on datasets captured with
a Point Grey Ladybug 3 omnidirectional camera system and a
GoPro Hero 3 wide angle camera.

The Ladybug 3 system has 5 equatorially aligned and one
up-facing cameras, each shipped with calibration data. The six
individual images have a resolution of 1616x1232 pixels each.
Six scenes were captured with the omnidirectional camera
taking two shots each (see Figure 7): for stairway, cafe1 and

Fig. 7. Ladybug test shots used for evaluation. From left to right: stairway,
cafe1 (small baseline), cafe2 (wider baseline), office*, forest* and parking*
(cloudy non static sky blackened). * scenes include camera roll and tilt.

cafe2 the camera was moved but not rotated. In office*, forest*
and parking*, the camera was rolled and tilted, so that there is
no uniform 2D image feature rotation. Features were extracted
by a standard SIFT-like implementation [1] as the FoV for each
camera is moderate.

The two scenes office’ and parking’ were acquired with
a wide angle GoPro Hero 3 camera (Figures 12 and 13 right
part only) for which we performed intrinsic calibration. Images
were scaled down to 1600x1200 pixels. For dealing with the
wide FoV, SIFTS [12] was applied for feature extraction.

For all scenes, the feature descriptor based matches were
classified manually to obtain ground truth for refinement.

A. Runtime Discussion

Let us first discuss the runtime to be expected by the
different refinement strategies, namely histogram, mean, cosine
fit and k-Means clustering.

The non-iterative histogram based and the mean strategies
have O(n) runtime complexity: Histogram bin assignment
transforms each rotation to two bin indices (because we have
overlapping bins) while the mean strategies basically sum up
all rotations.

The iterative methods of cosine fitting and k-Means cluster-
ing exhibit O(n) runtime per iteration: The cosine fit strategies
compute the gradient contribution of each match’s rotation
with finite differences while the k-Means strategies obtain the
distance of each rotation to the cluster centers.

Given that cosine fitting and k-Means clustering need a few
iterations to converge, we can expect the mean strategy to be
the fastest among the 3D orientation based methods.

B. Results

We first compare results of the de-facto standard SIFT-like
histogram-based 2D refinement (Section IV-A1) with the fast
mean-based 3D refinement (Section IV-B1). Figure 9 shows
selected and discarded matches in the office* scene. Note how
our approach discards most false matches while keeping almost
all inliers. Similar rotations of 2D feature orientations can only
be found in a small image region. Therefore the 2D approach
cannot discern positive and false matches except for one small
image region. Figures 8 and 10 shows a random set of selected
and discarded feature patches for both strategies. Note that the
2D strategy discards too many features because of inconsistent
2D image (and patch) rotations while our approach almost
always classifies matches correctly.

In Figure 11, we visualize the rotations ri of the matches
for all scenes with all strategies. It is obvious that with
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Fig. 8. Poor match refinement performance with 2D orientation based
strategy. Randomly selected matched patches of the office* dataset refined
with the 2D histogram approach. Selected (top) and discarded (bottom)
patches. Green borders indicate correct classification. Many correct matches
are discarded because they don’t exhibit a similar 2D rotation behavior.

Fig. 9. Failing 2D orientation vs. nicely separating 3D orientation based
match refinement. 2D histogram based (top, Section IV-A1) vs. 3D mean
(bottom, Section IV-B1) strategy. White lines represent selected, red lines
discarded features. Our 3D refinement discards false matches selectively in
the entire omnidirectional image while the 2D refinement only succeeds for a
compact region of viewing directions, discarding lots of inliers.

the 2D strategies, the rotations are only similar for the first
three scenes where the camera orientations don’t change. The
3D strategies can handle all scenes correctly. In particular,
the 2D mean strategy must fail by design in the * scenes
(see Figure 2), while the 3D mean strategy produces similar
rotations given the 3D feature orientations.

In Figure 11, we visualize the rotations ri of the matches
for all scenes with all strategies. It is obvious that with
the 2D strategies, the rotations are only similar for the first
three scenes where the camera orientations don’t change. The
3D strategies can handle all scenes correctly. In particular,
the 2D mean strategy must fail by design in the * scenes
(see Figure 2), while the 3D mean strategy produces similar
rotations given the 3D feature orientations.

We present the number of the selected matches compared
to the number of included outliers for all our test sets in
Figure 12. As a baseline, we also present all found matches
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Fig. 10. Good match refinement performance with 3D orientation based
strategy. Randomly selected matched patches of the office* dataset refined with
the 3D mean approach. Selected (top) and discarded (bottom) patches. Green
borders indicate correct classification. This refinement classifies similarly
looking patches correctly even if they don’t exhibit a similar 2D rotation.

Fig. 11. Visualization of the relative feature rotations of matches. Long
bars visualize the representatives r̂. Bright bars show selected matches and
representatives while dark bars show discarded ones. 3D visualizations show
the axes of the 1st camera in the 2nd camera’s coordinate system based on
the feature rotations of the matches. Omnidirectional camera rotations lead to
multimodal 2D rotation distributions that cannot be separated correctly. 3D
rotations distribute unimodal and are therefore easy to separate into inliers
and outliers.

including all outliers without refinement. It can be clearly seen
that our 3D refinement strategies perform better in terms of
outliers per match in all scenes. In the rolled and tilted * scenes
almost all correct matches survive while the 2D strategies fail
as they only select about 50% of the correct inlier matches. In
the other scenes, the 2D strategies keep most inliers whereas
our 3D approach removes significantly more outliers.

One possible subsequent task for feature matching is rela-
tive camera pose estimation using the 8-point algorithm [17]
together with RANSAC [18] for robustness against the remain-
ing outliers. The minimum number of iterations i necessary to
pick m correct samples from a set of n samples polluted with
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Fig. 13. Computational cost reduction by 3D orientations for exemplary
subsequent RANSAC task. We show the number of iterations theoretically
necessary for 8-point relative pose estimation desiring 99.9% success rate.
3D orientation based match refinement reduces the computational cost of this
subsequent task by about 50%.

an outlier fraction of a0 is approximately

i ≥ log(pmax)

log(1− (1− ao)m)n
, (8)

given that error fraction pmax = 0.001 is tolerated. Figure 13
shows the number of RANSAC iterations that would theoreti-
cally be necessary for 8-point relative pose estimation based on
the refined matches: our 3D orientation descriptor reduces the
costs for that task by more than 50% on average by improving
the input data.

VI. CONCLUSION

In this paper we propose a novel 3D orientation descriptor
for local image features which is particularly designed for
omnidirectional and wide FoV camera systems. Simple match
refinement based on our 3D orientation descriptor outperforms
refinement based on 2D orientations not only in cases where
image features rotate differently in omnidirectional shots, but
also for wide FoV and distorted images where we can exploit
intrinsic camera calibration and viewing direction.

A limitation of our method is that an intrinsic camera
calibration has to be provided. Beside that constraint, the 3D

orientation descriptors can be built on top of any local image
feature framework that extracts feature orientations. Our match
refinement’s computational overhead is low compared to other
tasks in feature extraction, but the use of the 3D orientation
descriptor can dramatically speed up subsequent tasks because
of the reduced number of outliers while keeping almost all
correct inliers. In some cases subsequent processing stages
only succeed with the use of the 3D orientation based features.
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