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72076 Tübingen, Germany
Email: jian.wei@graphics.uni-tuebingen.de, {benjamin.resch∣hendrik.lensch}@uni-tuebingen.de

Abstract—We present an efficient multi-view stereo system
for dense reconstruction of homogeneous areas from videos
with arbitrary camera trajectories. Most techniques have
difficulties in recovering textureless areas, weak robustness for
occlusion, and low efficiency on the massive redundant data
provided by densely sampled frames. Our key idea is to use
the measurable depth at object edges to recover the enclosed
geometries assuming smooth surfaces, which is appropriate
for most scenes. The depth values at edges are calculated by
considering individual viewing rays to allow for sharp disconti-
nuities. Then we employ perspective diffusion to create smooth
surfaces between edges. The wrong interpolants between fore-
and background edges are effectively invalidated by detecting
large depth standard deviation which is approximated using
the edge depth from other views. For reliable invalidation,
the accuracy of edge depth is improved by advanced score
evaluation and two-scale image sampling. Finally, we fill up
holes and correct the wrongly sunken surfaces by propagating
the closest valid depth across views. The pixel-level operations
throughout support high parallelism, and our high-quality
depth maps allow dense scene representation by point clouds.

Keywords-multi-view stereo; depth map; homogeneous sur-
face; dense reconstruction; diffusion; occlusion; GPU; video;

I. INTRODUCTION

Multi-View Stereo (MVS) aims at 3D reconstruction from
image sets. There have been considerable strides in mod-
eling from sparse images with significantly view-dependent
content [1]. As camera hardware improved, capturing a high-
frame-rate video stream by arbitrarily moving a camera has
received more attention since acquisition got simpler and
faster. Light-field-based approaches [2] have been developed
that exploit the data redundancy much better than classic
MVS and are able to process the heavily increased amount
of data. However, these techniques struggle on homogeneous
areas which are ubiquitous in urban environments.

Because planar geometry is very common in the real
world, we solve the problem by fitting the smoothest possible
surface for textureless areas, even for curved surfaces (recov-
ery of the correct shading is beyond the scope of this paper).
We do not rely on high-level techniques like segmentation
(e.g., [3]) but concentrate on image operations which are
most often evaluated per pixel. Hence, our approach can be
efficiently implemented on GPUs.

Our pipeline is separated into two parts: First we calculate
depth for the reliably detectable regions by advancing [2]
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Figure 1. Points reconstructed by different methods. The proposed pipeline
can recover dense and smooth surfaces in large homogeneous areas. We
invalidate the unreliable surfaces by cross-view constraints, and merge the
consistent subpixel-accuracy results from multiple views. Since the bottom
edge on the back of the foreground box is invisible in almost all images,
we fail to get correct interpolants for the table’s surface behind thus getting
a hole. Kim et al. [2] produce wrong surfaces for most unmeasurable areas.

towards higher depth resolution and more robustness on
arbitrary camera paths. Next we diffuse edge depth to fill up
homogeneous areas with perspectively correct interpolants,
and afterwards we handle inconsistent surfaces.

Depth diffusion per view probably produces interpolants
that connect fore- and background edges but occlude the
real surfaces (see Fig. 2). As the occluded surfaces can be
seen by another view, we invalidate these incorrect values
by comparing their projected depth and corresponding edge
depth (if available) in other views. Since the edge depths are
sparse, we need to spread the reliably detected invalid pixels
to the whole wrong surfaces between discontinuous objects.
We achieve this using a diffusion-based approximation of
the depth standard deviation. The invalidation stage creates
holes where edge depths have been wrongly interpolated.
However, it fails to remove the interpolants behind the real
surfaces (see Fig. 8). We produce the final depth maps with
both high completeness and high consistency by propagating
the closest valid depth from other views.

Since our method requires reliable edge depth to avoid re-
moving too many of the surfaces estimated by diffusion, we
first focus on improving [2] (Sec. III) and then describe the
individual steps of recovering homogeneous areas (Sec. IV).

II. RELATED WORK

Fast reconstruction from videos. Recently a fast scalable
Structure-from-Motion (SfM) pipeline [4] was designed that
exploited the strong internal coherence in video data instead
of traditionally used large image baselines. Simultaneous
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Figure 2. Depth maps of one
view (the top row) after individ-
ual steps of our reconstruction
pipeline, and the corresponding
point clouds viewed from the front
(middle) and top (bottom) per-
spectives. The proposed approach
successfully produces smooth and
dense surfaces, with the wrong
interpolants occluding the real sur-
faces removed.

Localization and Mapping (SLAM) algorithms are aimed
at video input, but like SfM, most of them (e.g., [5]) merely
generated sparse detectable points, conveying little seman-
tics. Some video-based MVS techniques [6], [7] realized
fast or interactive reconstruction but they are only usable
for object modeling or yield low coverage for homogeneous
surfaces. Other methods [8], [9] have been introduced for
fast and dense recovery of 3D scenes from video streams.
Optical flow was also used to guide the reconstruction [9].

Dense 3D recovery. Advanced dense SLAM methods re-
placed [10], [11] or combined [3], [12] point features with
planes. The segmentation effect can only be confined for
initialization followed by refining the estimates using bundle
optimization [13]. Some MVS pipelines [7], [14], [15] gen-
erated dense surfaces using energy minimization constrained
by a smoothness term. Diffusion [16] or domain transform
filter [17], [18] can be performed on the sparse, reliable esti-
mates, like our approach. However, their depth interpolation
methods are not perspective. Matching ambiguities in ho-
mogeneous areas can be solved by restricting computations
in a multi-resolution manner [2], [15], [19], but might still
produce depth discontinues for large homogeneous regions.
Especially when occlusion occurs, the reconstructions of
these techniques are not completely visibility-consistent.

Visibility consistency. Kim et al. [2] accounted for oc-
clusion by propagating foreground depth to other views
only if similar colors are exhibited. Consistent models can
be obtained by simply removing the estimates which are
inconsistent among small-baseline neighboring views or
violate the occlusion consistency across large-baseline non-
neighbors [7], [20]. To produce both dense and consistent
reconstruction, bundle optimization [13], tetrahedra carv-
ing [21], or cross-view depth filtering [18], [19] has been
adopted. In contrast, we propose a more parallelizable frame-
work to handle visibility conflicts and global inconsistency.

III. EDGE DEPTH ESTIMATION

Object edges are typically aligned with color disconti-
nuities, and thus easy to detect and to reconstruct from
images by imposing the photometric constraints. Therefore,
we first subsample the small-baseline image sequence for

sufficient triangulation angles. Then the high-contrast edges
are reconstructed for individual image samples, producing a
set of edge depth maps De.1 For each primary image, we
determine the edge depth using 100 neighboring images2

(50 preceding and 50 following, respectively), and we also
calculate a corresponding standard deviation (SD) map of
the edge depth. The set of edge SD maps Se is used for our
depth invalidation (Sec. IV-B).

Sec. III-A first investigates the influence of unconstrained
camera paths upon depth estimation using pixel-dependent
color and score maps. We accordingly introduce a careful
score aggregation method in Sec. III-B and a two-scale im-
age sampling scheme in Sec. III-C for occlusion-robustness.
Sec. III-D presents how we achieve subpixel precision and
remove outliers. The SD of each edge depth estimate is
calculated in Sec. III-E.
Pre-processing. We execute the SfM algorithm [4] to obtain
the camera poses and feature points with inferred visibility
constraints. Images are pre-smoothed by a 7×7 Gaussian
filer with standard deviation of 0.5 to remove noise and
aliasing. Edges are extracted if the color gradient magnitude
calculated using a 3×3 Sobel operator is larger than 2.5.

A. Pixel-Wise Color and Score Maps
To attain precise depth estimates, we have to carefully deal

with occlusion and out-of-image projection particularly for
arbitrary camera trajectories. Our edge depth calculation is
based on an analysis of color and score maps for each pixel.
These maps are built in depth-view space (see Fig. 3), that
enables us to easily visualize the appearance of the projected
point in each secondary image with a certain depth. They
help us define a depth score that distinguishes the correct
depth more robustly (see the score profiles in Fig. 3).

Let us consider the ith image Ivi ∈ Iv as a primary image.
We calculate scores for 1024 depth hypotheses2 by selecting
its 100 neighborhoods

N(i,Iv) = {Ivi−50, . . . , I
v
i+50}/{Ivi } (1)

as the secondary images. Considering a pixel p in Ivi , let q
be its projection in the jth secondary image Nj using the kth

1Throughout, we use normal capitals for images and bold for image sets.
2See Sec. V-B for our parameter settings.
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Figure 3. Depth-view-space analysis. For each marked pixel (top left,
the 15×15 pixel patch is enlarged), we present its color and score maps
once with densely sampled and once with sparsely distributed secondary
images (see Sec. III-C for image sampling), as well as the profiles of
per-depth aggregated scores by averaging (red) and our robust method
(blue, Sec. III-B) on the sparse image samples. In cases of out-of-image
projection, the corresponding areas are marked magenta. The maps are
widened for better visualization.

depth dk. To ensure that all projections have constant density
along the epipolar line, the hypotheses are distributed evenly
in inverse depth along the viewing ray. Using each pair of
(dk,Nj) on p, we build a 1024×100 size color map with
the projection color Nj(q) in depth-view space, i.e., the
vertical axis represents depth values and the horizontal axis
secondary views, as well as a corresponding score map with
the depth score calculated using the Gaussian kernel2:

S(p, Ivi , dk,Nj) = exp(− 1

2σc2
∣Ivi (p) −Nj(q)∣2) . (2)

Fig. 3 shows the generated maps for four representative
pixels. Overall, there should exist a cross shape in each
map: Significantly more same colors and score peaks are
distributed around the center view and a certain hypothesis
which is typically the real depth. The clarity of this property
depends on image contrast, the image sampling scheme,
and visibilities in secondary views. Pixel p1 gains a wide
score peak distribution due to weak color contrast. Higher
contrast (e.g., p2 and p3) or sparser image sampling (i.e., the
image set covers a wider range of viewing directions) results
in a more recognizable distribution. The cross shape is
interrupted in view direction where occlusion (p3) or out-of-
image projection (p4) occurs. These desirable features are
well-incorporated in our edge depth calculation.

B. Robust Score Aggregation
Edge depth is determined by aggregating for a certain

hypothesis the per-secondary-image depth scores (i.e., the

scores in one row of the proposed score map) and finding
the depth receiving the highest sum. As Fig. 3 shows, simple
averaging leads to score profiles with ambiguous peaks for
the pixels that are occluded (e.g., p3) or out-of-image (p4) in
some views. Kim et al. [2] handle this problem with mean-
shift iterations but at the expense of computation time.

We define a robust and faster scheme by more carefully
adding up the scores while moving from the nearest to outer
views (preceding and following, respectively). This way, we
can more reliably distinguish different cases (e.g., occlusion,
out-of-boundary projection, or the same surface point) and
accordingly treat the remaining projections. This aggregation
process equates to accumulating the scores from the center
to left and right within a line of the pixel’s score map.

Specifically, let the 100 depth scores of pixel p for
hypothesis dk be aggregated to SΣ ← 0, nm ← 0 be the
number of measurable images, and nh ← 0 the number
of out-of-image projections. When we sequentially test dk
in the preceding secondary images {Ivi−1, . . . , I

v
i−50}, three

cases are motivated in the jth image Nj :
1) If the projection moves out of the image, we halluci-

nate the minimum score Smin found so far, which is
initialized with Smin ← 1, for the remainder by

SΣ = SΣ +(50−j)Smin and nh = nh+(50−j). (3)

This produces a lower score average than as if the
projections were available but still high enough to be
reasonable for the same surface point.

2) If the projection is available and the depth score S ∶=
S(p, Ivi , dk,Nj) is acceptable2, we update Smin by

Smin =min((1 + α)Smin,S) with α < 1. (4)

We use (1 + α)Smin to approximate a relatively bad
match by allowing a score decrease of αSmin along a
noisy score profile2. Then the score is aggregated by

SΣ = SΣ +Smin and nm = nm + 1. (5)

We add up Smin instead of S to avoid adding higher
scores for the remaining images if the actual score is
low. Because this low score might be introduced by
a depth discontinuity and the remaining projections
might be on a foreground surface with the same color.

3) If the depth score is unacceptable, it represents a dis-
continuity. We stop aggregating because the surfaces
of the remaining projections can be arbitrary.

The aggregation is then performed on the following sec-
ondary images {Ivi+1, . . . , I

v
i+50} in the same way. We let

SΣ = 0 if nm ≤ 2, and normalize it otherwise by

SΣ = f SΣ /(nm + nh), (6)

where f =√nm is a correction factor to prefer the hypothe-
ses generating more promising matches. Fig. 3 shows that
our score aggregation creates more distinctive score profiles
for pixel p3 and even more correct for p4 than averaging.
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Figure 4. Homogeneous
area depth estimation for
the ith image (bottom right).
With all edge depth maps
De and the corresponding
SD maps Se, we produce
the dense and consistent
depth map Df

i ∈ Df via
three stages: diffusion, in-
validation, and propagation.
See Sec. IV for details. The
values in the SD maps and
the error maps (E, C, and
Cd) have the same scale. To
visualize the errors, the SD
maps are very dark.

C. Two-Scale Image Sampling

A dense set of neighboring images has less chances of a
surface point being occluded or projected outside the view
(e.g., p3 and p4 in Fig. 3) but might provide narrow baselines
leading to imprecise depth estimate. We increase triangula-
tion angles by introducing a second set that samples the
frames more sparsely and more widely-spread. Hereby we
can refine the depth range at the dense scale and determine
depth more reliably at the sparse scale (see Sec. III-D).

To this end, we sample the video frames into a dense
subset Id, and then further sample Id into a sparse subset Is

with a four times wider spacing (i.e., Isi ∈ Is corresponds to
Id4i ∈ Id). Our depth estimation is performed on Is. Our goal
is to guarantee that the sparse secondary image sampling of
each primary image features approximately the same change
in view direction of about 90° in total. This means, each pair
of neighboring dense samples should have a viewing angle
no smaller than 90°

4×100
. This is achieved using the visibility

constraints of the SfM points from [4]. In the following,
we introduce how we obtain subpixel depth precision via
iterative depth range refinement on both image subsets.

D. Subpixel-Level Depth Sweeping

We get subpixel precision by iteratively testing 1024 depth
hypotheses within the gradually refined depth range based
on the score profile (visualized in Fig. 3), until convergence
or bad matching is reached. This process is done per pixel.

For an edge pixel in the ith sparse image sample, we
initialize its depth range using the depth values of the nearest
and farthest visible SfM points in that view. We first refine
the depth range in one pass by referring to the dense images
N(4i,Id) and then iteratively refine it by using the sparse
samples N(i,Is) (see (1)). Particularly, in the tth iteration,
we first determine the optimal depth d̂ within the current
depth range. If d̂ generates only a few measurable matches,
i.e., nm < 10 in (6), we stop sweeping and leave the pixel
assigned no depth. Otherwise, let the corresponding aggre-
gated score of d̂ be SΣ

t . If ∣SΣ
t −SΣ

t−1 ∣ < 0.001, the sweeping
is converged and this pixel is assigned d̂. Otherwise, we
update the depth range with the minimum and maximum of

all the hypotheses whose aggregated score is high enough,
i.e., higher than 0.9SΣ

t .
Depth refinement. The pixel-level operation probably re-
sults in outliers due to insufficient contrast, aliasing artifact,
or reflection. To detect the unreliable depth, we shift the
pixel projections in all sparse-scale secondary images along
the epipolar lines by one pixel and calculate a new aggre-
gated score. If this value is higher or close to the score of
the depth estimate, the optimal depth is ambiguous and thus
removed. We use 0.02 as the threshold. We also eliminate the
isolated points with large 3D distance from neighborhoods
and then perform a 7×7 median filter for smoothness.

E. Depth Standard Deviation

We calculate the standard deviation, SD, of an edge
depth to measure its imprecision, which will be reused for
adjusting tolerances when depth inconsistencies are searched
in homogeneous areas (Sec. IV-B). The score profile of a
confident depth should have a sharp peak (e.g., pixel p2 in
Fig. 3). Thus, we define the SD of the depth estimate d as

σsd =
√
∑
k

(d − dk)2 SΣ
k /1024. (7)

SΣ
k is the aggregated score of the kth depth dk after the first

depth range refinement pass. Each SD map is also smoothed
by a 7×7 median filter.

IV. HOMOGENEOUS AREA DEPTH ESTIMATION

In many scenes, object edges already capture the main
characteristic structures of the scene. Thus we propose to
handle remaining homogeneous areas by diffusing those
sparse depth estimates, assuming flat surfaces in between. In
addition to completeness, we also favor visibility consistency
of the interpolated surfaces.

For this purpose we adopt the workflow depicted in Fig. 4,
that begins by diffusing each edge depth map De

i ∈De to a
complete depth map Dd (Sec. IV-A). In Sec. IV-B the wrong
interpolants occluding the real surfaces are invalidated from
Dd to create a corresponding valid depth map Dv

i ∈Dv . In
Sec. IV-C, we improve the completeness and consistency of
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Figure 5. Depth diffusion from
pixels p1 and p2 to the mid-pixel
p. Point Pw is the projected inter-
polant using the classic isotropic
method, which defines the dif-
fused depth as dw = 1

2
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the final depth map Df
i ∈Df by propagating the front-most

valid depth values over views.

A. Depth Diffusion

This section first investigates the problem of the classic
diffusion scheme on depth data [16]. Next, we propose a
modified method to correct surfaces perspectively.

1) Classic diffusion: The classic approach performs it-
erative convolution with a 4-point stencil. Let the diffused
result of edge depth map De

i in the tth iteration be Dd
t ,

and Dd
0 ← De

i for initialization. For a pixel p = (x, y), the
diffusion problem is solved with the Jacobi iterations

Dd
t+1(p) =

1

δΣ ∑(u,v)
δ(Dd

t (u, v))Dd
t (u, v) (8)

if p has no edge depth, and Dd
t+1(p) =Dd

t (p) otherwise to
preserve the depth discontinuity. (u, v) ∈ {(x − w,0), (x +
w,0), (0, y − w), (0, y + w)} and w is the stencil size. The
indicator function δ(⋅) is evaluated to 1 for a known depth
and 0 for others. δΣ = ∑(u,v) δ(Dd

t (u, v)) is used for
normalization. If no available depth is found for diffusion,
i.e., δΣ = 0, the result at p remains unchanged.

Fig. 5 illustrates the horizontal diffusion for p from two
pixels p1 = (x−w,y) and p2 = (x+w,y) with depth values
d1 and d2, respectively. By using the isotropic diffusion in
(8), p would be assigned the average depth dw = 1

2
(d1+d2).

However, due to the perspective distortion the corresponding
3D interpolant Pw lies behind the point Pr, which is on a flat
surface connecting the 3D points of p1 and p2, i.e., P1 and
P2. This is because the 2D pixel grid is not exactly projected
to an uniform grid on the slanted surface. A solution to this
problem is adopting an anisotropic strategy.

2) Perspective diffusion: Instead of finding a weighting
function, we employ a simpler method by extending (8) to
the viewing ray space. We note in Fig. 5 that, since Pr is the
intersection of the viewing ray

ÐÐ→
OPr and the 3D line P1P2,

both can be calculated, p can get its depth G(p1,p2,D
d
t ) ∶=

dr by back-projecting Pr onto the image plane.
Therefore, we first formulate this perspective strategy to

allow for that the initial depths are scattered. Then we in-
corporate the interpolants respectively obtained in horizontal
and vertical directions into the 2D diffusion task.

In order to assign p the only available depth if one of p1

and p2 has no estimate, we include the indicator function

Edge points Classic diffusion Our diffusion

Figure 6. Points reconstructed by depth diffusion. The bottom of the roof is
viewed parallel in the second row and the bounded region is enlarged. The
classic method produces slight oscillations while ours obtains flat surfaces.

δ(⋅) to denote the horizontally diffused depth as

dx = δ1δ2 G(p1,p2,D
d
t )

+(1 − δ1δ2)(δ1Dd
t (p1) + δ2Dd

t (p2)),
(9)

where δ1 = δ(Dd
t (p1)) and δ2 = δ(Dd

t (p2)).
The vertically diffused value dy is calculated similarly by

using p1 = (x, y − w) and p2 = (x, y + w). We incorporate
these two depths for each non-edge pixel p using

Dd
t+1(p) = (δ(dx)dx + δ(dy)dy)/δΣ (10)

with δΣ = δ(dx) + δ(dy) for normalization.
Thereby, a small stencil size w might slow down the depth

transportation. We use the stencil-shrinking solver [22] by
initializing w for each interpolated pixel with the Euclidean
distance from the nearest edge pixel.

Fig. 6 indicates that our perspective diffusion recovers flat
surfaces while the classic method produces slight oscillations
on large homogeneous surfaces. Videos for more convincing
comparisons can be found on our project webpage.

B. Depth Invalidation

Depth discontinuities with homogeneous areas in the
background exhibit the occlusion problem, as illustrated in
Figs. 2 and 7. Filling unreconstructed areas by diffusing the
known edge depth (Sec. IV-A) leads to interpolating between
fore- and background edges. This introduces incorrect inter-
polants which would occlude real surfaces. We solve these
visibility conflicts in a sparse-to-dense manner (see Figs. 4
and 7). In each complete depth map, Sec. IV-B1 first presents
how we distinguish a set of definitely invalid depth values.
Then we make these sparse invalid pixels grow to larger
areas as described in Sec. IV-B2.

1) Local depth invalidation: We find invalid interpolants
in the diffused depth map Dd by checking for consistence
with the edge depth calculated in other views. This process
generates an error map E.

In particular, let us consider an interpolated pixel p in Dd

as shown in Fig. 7. We back-project its corresponding point
Pw to the edge depth map De

j of another view j. Let the
pixel projection be q and the projected depth be dj . If the
depth estimate of q is available, it means that an edge (Pr
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Figure 7. Occlusion problem and our solution. For the view at Oi,
diffusing the depths of the foreground edge Pf and the background texture
edge Pb produces the interpolants (dashed line) occluding the real surfaces.
We use the detected edge Pr at pixel q in another view (at Oj ) to invalidate
the interpolant Pw and then grow the invalid area towards Pb and Pf .

in Fig. 7) is reconstructed at q. Since it is impossible to see
an edge behind a surface in the same view, the considered
depth Dd(p) is theoretically invalid in case dj <De

j(q). For
more robustness to the accuracy of De

j , we respect the depth
imprecision in the corresponding edge SD map Se

j ∈ Se (see
Fig. 4) by comparing with a shortened depth:

dj <De
j(q) − 3Se

j (q). (11)

If we find enough edges in other views that disagree with
the interpolant, i.e., (11) holds for no ≥ 3 views, we define
Dd(p) as a bad depth and store the average depth difference:

E(p) = 1

no
∑
j

(De
j(q) − dj). (12)

2) Invalid area growing: Because the edge depths are
sparse, the above process only removes a few isolated depth
areas (see Fig. 4, E). These information has to be spread to
all remaining pixels that most likely have bad interpolants
as well (e.g., in Fig. 7, p should grow towards pixels pb

and pf to invalidate the whole surface between points Pb

and Pf ). Our thought is that, for each pixel with uncertain
validity in the diffused depth map Dd, we can calculate two
SD values, one expected only based on the measured Se

i

including SD values at edges, and the other approximated
based on the calculated E including invalidation errors at a
few interpolated pixels. If the latter SD value is larger, the
interpolant is indicated invalid.

Hereby, as shown in Fig. 4, we first calculate the expected
SD map Sd by diffusing Se

i . On the other hand, a combined
map C is calculated by summing up the values in Se

i and E,
which is subsequently also diffused to get the approximated
SD map Cd. To maintain consistent data transportation
between the depth diffusion (Sec. IV-A) and these two SD
diffusions, we use the same number of iterations. If Cd(p) >
1.2Sd(p), we label Dd(p) incorrect by setting M(p) = 0,
M being a validity mask initialized by M(p) ← 1. We
use M to remove those invalid interpolants, producing the
corresponding valid depth map Dv

i ∈Dv .
Figs. 2 and 8 show the reconstructions before and after

invalidation. A failure would occur when some low-contrast
foreground edges fail to be reconstructed in one view (see

Edge points After diffusion

After invalidation After propagation

Figure 8. Points pro-
duced for one view.
The depth propagation
corrects the sunken
surfaces (red) due to
lost edge points (see
the top row) and fills
the holes (blue) arising
from invalidation.

Pabellon Boxes Building
Figure 9. Image samples of the Pabellon, Boxes, and Building datasets.

Fig. 8). This case would generate sunken surfaces behind
the real surfaces. These wrong areas cannot be invalidated
because they are deeper than the corresponding edges cor-
rectly recovered in other views, i.e., (11) fails. This problem,
together with the holes reliably created for all occlusion
problems, will be solved by the information from other views
as introduced in Sec. IV-C.

C. Depth Propagation

Object edges probably have view-dependent image con-
trast (i.e., thus an unreconstructed edge in one view might be
recovered in another image) and different views reconstruct
the depth discontinuities at various places, so both depth
values and holes in the valid depth maps Dv are not con-
sistent. Because all interpolants occluding the real surfaces
have been invalidated and the final depth maps Df should
contain the front-most surfaces, we improve each depth map
by taking the closest depth projected from other views.
Trivial propagation might also project background surfaces
into the holes. So we only fill holes with the data which
agree with the hole boundary by thresholding the normalized
color differences along the edge of the propagated area.
Fig. 8 shows that the propagated data effectively overwrite
the sunken surfaces and increase the completeness.

V. EXPERIMENTAL RESULTS

A. Datasets and Compared Algorithms

We have tested our approach on four datasets with large
homogeneous surfaces and arbitrary camera trajectories:
Bathroom (Fig. 4), Pabellon, Boxes, and Building (Fig. 9).
The first two are synthetic with ground truth, and the others
real-world. Each type includes both indoor and outdoor
scenes. All images have resolution of 1920×1080. We com-
pare our results with other depth-map-based methods: [20]
(BAI), [19] (WEI), [2] (KIM), and [5] (ENG). We also
evaluate the depth propagation (Sec. IV-C) by testing our
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Figure 10. Comparisons against the ground truth. For each scene, we present the depth maps (the first row), the relative error maps (the second row, the
white pixels having no estimate or no ground truth data), and the curves (right) measuring how much of the estimated depth has a smaller relative error
than a given threshold. Our approach only recovers the reliable surfaces, and invalidates the noisy or inconsistent reconstructions (see Fig. 11).

pipeline without this step.3 Our experiments were run on
NVIDIA GeForce GTX 680 (KIM) and Titan (others) GPUs.

The classic MVS algorithms BAI and WEI use Patch-
Match on a few secondary images, region growing, and post-
checking to remove inconsistent outliers. WEI incorporates
cross-view depth filtering for high consistency.

KIM performs ray-oriented depth sweeping at edges like
ours, but only probing 256 hypotheses in single pass. The
homogeneous surfaces are recovered by detecting edges in
gradually downscaled images. We used the new results with
1024 depth values from the authors for fair evaluation.

The recent SLAM system ENG only produces semi-dense
depth maps and its depth quality relies largely on the cal-
culated camera poses. We obtained bad camera tracking on
the Pabellon and Boxes scenes using this method. Because
the dimensions of the images input to its source code must
be multiples of 16, we cropped the images into 1920×1072
and thus cannot compare its results to the ground truth.

B. Parameter Settings

Since we sparsely sample the secondary images for about
90° movement around the scene, experiments demonstrated
that using 100 secondary images together with two-scale
image sampling provides just enough angular resolution on
the surface points for reconstruction.

256 depth values are sufficient for visualizing depth maps
as in [2]. But we need more robust estimates for surface
invalidation. We use 1024 hypotheses to avoid skipping the
correct estimates in the depth-sweeping process. We found
that this setting best compromises on quality and speed.

In (2), we set σc = 8 for synthetic scenes and 15 for real-
world, i.e., a larger value leads to better noise-robustness. In
case 2) of our score aggregation, we utilized a stricter score

3 In this section, we use w/o for without and DP for depth propagation.

Measurement (Bathroom) BAI WEI KIM Ours w/o DP3 Ours
Completeness (%) ↑ 47.499 60.368 100.000 70.221 92.503
Mean Rel. Error (×10−3) ↓ 4.467 4.150 9.867 3.695 3.275

Measurement (Pabellon) BAI WEI KIM Ours w/o DP Ours
Completeness (%) ↑ 26.886 35.697 100.000 28.221 56.255
Mean Rel. Error (×10−3 ↓ 69.616 91.890 216.955 7.248 34.065

Table I
STATISTICAL COMPARISONS OF THE RESULTS PRESENTED IN FIG. 10.

THE ARROWS INDICATES PREFERRED DIRECTIONS.

threshold s1 for dense image samples to greatly refine the
initial depth range and a looser threshold s2 at sparse scale.
Specifically, we used s1 = 0.8 and s2 = 0.4 for synthetic
scenes but smaller values s1 = 0.4 and s2 = 0.2 for real-
world to have higher noise-tolerance. In (4), we set α =
0.05. With more noisy score profiles due to image noise,
increasing it can improve the depth completeness.

C. Evaluation

Synthetic scenes. Fig. 10 presents the depth map compar-
isons using the ground truth, and the completeness curves for
varying relative error thresholds. Table I lists the quantitative
evaluation in terms of completeness and mean relative
error. It can be seen that, BAI and WEI both eliminate
most of homogeneous surfaces by removing all inconsistent
outliers, although WEI improves the depth consistency. KIM
reconstructs complete scenes but generating discrete artifacts
and wrong geometries in textureless areas. In contrary, we
only aim to reconstruct the data which is captured and do
not guess where the surfaces are most likely. The depth
propagation introduces both correct (e.g., the refrigerator
corner in Bathroom) and wrong (e.g., the roof in Pabellon)
surfaces, but it significantly improves the completeness and
we still yield the highest accuracy (see Table I). Fig. 11
shows how bad the KIM’s points are which we do not
recover, and that ENG only reconstructs noisy edges.



KIM

Ours ENG Ours
Figure 11. Comparisons of the reconstructed points on synthetic scenes.
ENG’s points exhibit no color due to grayscale input of the source code.

Method Bathroom Pabellon Boxes Building
BAI 68.12 63.28 71.29 75.92
WEI 34.02 35.14 32.84 35.30
KIM (256) 33.72 33.27 31.74 35.77
KIM (1024) 121.55 117.12 119.76 125.39
Ours 10.21 12.53 11.67 11.07

Table II
RUNTIME (SEC.) FOR
CALCULATING ONE

DEPTH MAP. THE TIME
OF KIM TESTING 256

AND 1024 DEPTHS
ARE BOTH LISTED.

Real-world scenes. We compare the real-world reconstruc-
tions in Fig. 1. Although the captured images suffer from
noise and compression artifact, we can still recover dense
and smooth surfaces without generating wrong interpolants
(e.g., the surface of the table recovered by KIM occludes the
bottom of the background boxes) or noisy points (e.g., due
to the reflection on the windows of the building).
Runtime. Table II provides the GPU runtimes for recon-
structing one view. We achieve the fastest reconstruction
even compared with the KIM testing 256 depth hypotheses.
The reason is that, we only sweep depth values on edges and
our robust score calculation avoids the mean-shift iterations
employed by KIM, although we iteratively test 1024 depths.
Moreover, our diffusion-based technique is more paralleliz-
able than the region growing strategy of BAI and WEI.

VI. CONCLUSION

We proposed an efficient approach for dense recovery of
textureless surfaces from videos. We have discovered that
the depth estimates at object edges are sufficient to infer
dense reasonable surfaces for the enclosed areas which are
assumed to be smooth. Our edge depth calculation is inves-
tigated in a novel depth-view space and the incorporated
techniques are robust to unstructured camera trajectories.
Homogeneous surfaces are reconstructed by diffusing the
scattered depth while occlusions are solved effectively. The
results demonstrate the superior performance of our algo-
rithm in terms of completeness, accuracy, and consistency.
Our methods for edge or homogeneous area depth estimation
can be plugged into other reconstruction techniques.
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