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I. I NTRODUCTION

Most of the fundamental questions in complexity theory
hinge on the relationship between deterministic and nonde-
terministic computation. The intermediate notion ofsymmet-
ric computation was introduced by Lewis and Papadimitriou
[18] primarily as a tool to characterize the complexity
of the graph accessibility problem for undirected graphs;
they showed that this problem is complete for Symmetric
Logspace2 (SL). The question of the relationship between
SL and deterministic logspace (L) was finally answered by
Reingold [20], who showed that SL= L.

In contrast to the situation with space-bounded computa-
tion, where symmetric computation coincides with determin-
ism, in the case of time bounded computation symmetry is
as powerful as unrestricted nondeterminism ([18]). Briefly,
this is because if there is no space restriction a machine
can keep track of the entire sequence of nondeterminis-
tic choices, which makes the computation graph tree-like.
Hence, walking “backwards” along edges in the computation
graph does not introduce new (erroneous) paths from the
start configuration to an accepting state.

In this paper, we consider the role of symmetry in another
setting that highlights the potential difference in power
between deterministic and nondeterministic computation:
Log(CFL) (a nondeterministic class) and Log(DCFL) (the
corresponding deterministic class). Our main result is that
symmetry and nondeterminism coincide in this setting. Let
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2Observe that this holds true for the pure reachability problem only. The
shortest path problem for undirected graphs is complete for nondetermin-
istic logspace (NL)! (See, e.g., [25].)

us briefly review some of the most important results that
motivate interest in these classes.

Log(CFL) was defined by Sudborough [24] to be the
class of problems logspace-reducible to context-free lan-
guages. Venkateswaran [26] gave a circuit-based character-
ization of Log(CFL); Log(CFL) coincides with SAC1: the
class of problems computable by polynomial-sized “semi-
unbounded” circuits of logarithmic depth, where a circuit is
said to be “semiunbounded” if the AND gates have bounded
fan-in and the OR gates have no restriction on the fan-
in. Borodin et al. showed that Log(CFL) is closed under
complement [5]. One of the contributions of Sudborough’s
original paper on Log(CFL) was to give an automata-
theoretic characterization of Log(CFL), as the class of
languages recognized by logspace-bounded nondeterministic
auxiliary pushdown automatathat run in polynomial time.

An auxiliary pushdown automatonis a (deterministic
or nondeterministic) logspace-bounded Turing machine,
that also has a pushdown store that is not subject to the
space bound. (In this paper, we only consider auxiliary
pushdown automata that are logspace-bounded; thus our
notation will not mention the space bound explicitly.)
Deterministic and nondeterministic auxiliary pushdown
automata were introduced by Cook [7], who showed
that these automata recognize precisely the languages
in P, when no restriction is placed on the running time
(equivalently, when the running time is bounded by2nO(1)

).
(We use the following notation to express this equality:P =
DAuxPDA-TIME

(
2nO(1)

)
= NAuxPDA-TIME

(
2nO(1)

)
.)

Summarizing, we have:

Proposition 1: [24], [26]

NAuxPDA-TIME
(
nO(1)

)
= Log(CFL)= SAC1.

The class Log(DCFL) (the class of problems reducible to
deterministiccontext-free languages) was also defined by
Sudborough [24], who showedDAuxPDA-TIME

(
nO(1)

)
= Log(DCFL). Subsequently, Log(DCFL) was studied by
Dymond and Ruzzo, who showed that Log(DCFL) consists



precisely of the problems solvable in logarithmic time
on a CROW-PRAM [10]. Cook showed that deterministic
context-free languages can be recognized in polynomial
time by machines usingO(log2 n) space, and thus lie in
the class SC2 [9]. Summarizing, we have:

Proposition 2: [24], [10], [9]

DAuxPDA-TIME
(
nO(1)

)
= CROW− TIME(log n)

= Log(DCFL)⊆ SC2.

Symmetry is just one of several intermediate notions
between deterministic and nondeterministic computation that
have received attention. Two other such notions areun-
ambiguity and randomness. Unambiguous AuxPDAs, by
definition, never have more than one accepting computa-
tion path on any input. It is known that, if there is any
problem in Dspace(n) that requires circuits of exponential
size, then every problem in Log(CFL) is accepted by an
unambiguous AuxPDA running in polynomial time [3] (and,
unconditionally, every problem in Log(CFL) is reducible
via nonuniform projections to a language accepted by an
unambiguous AuxPDA running in polynomial time [21]). In
contrast, if we require that an AuxPDA havemanyaccepting
paths if it has any at all, then we arrive at the notion of
probabilistic AuxPDAs with one-sided error. Venkateswaran
studied such machines (even in the more powerful two-sided
error model), and argues that all languages accepted by such
machines lie in SC2 [28]. Thus it would be a significant
advance if, say, such machines could be shown to recognize
all problems in NL.

Along similar lines, there has been some speculation
that perhaps Reingold’s deterministic simulation of space-
bounded symmetric computation could be extended to the
model of auxiliary pushdown automata [12]. As a conse-
quence of our results, any such extension would constitute a
significant advance in our understanding of the complexity
of not only NL, but of Log(CFL) as well.

We also need to make use of some of the properties
of reversible computation. Reversibility is a restriction
of both deterministic and symmetric computation. A
Turing machineM is reversible if its configuration graph
has indegree and outdegree at most one. The following
theorem of Lange, McKenzie, and Tapp will be useful for us:

Theorem 3:[16]
Any bijective function computable in space equal to the
input size is computable in the same space bound by a
reversible machine.

Thus, when we build an AuxPDA that carries out a par-
ticular segment of its computationdeterministicallywithout
moving its input head or using the pushdown store, in such
a way that the configuration at the end of the segment

uniquely determines what configuration the AuxPDA was in
when the segment began (so that this segment corresponds
to a bijective function on inputs of lengthm computable in
lengthm, wherem = log n is the size of the worktape), it
follows that the AuxPDA can be programmed so that this
segment is actually reversible. Thus if we add “backward”
moves to the AuxPDA to make it symmetric, the only addi-
tional computations that arise from the original deterministic
segment are computations that correspond to running the
segment backward.

Of course, there will be occasions when our AuxPDA
will have to move its input head (or use its stack), and
Theorem 3 does not directly allow us to conclude that
certain simple deterministic computations can be carried
out reversibly. Thus we appeal to the following proposition.

Proposition 4: The following computations can be per-
formed deterministically and reversibly:

• Start with the input head on the leftmost symbol and
the worktape blank, and end with the input head on the
leftmost symbol and the length of the input recorded
in binary on the worktape.

• Start with the input head on the leftmost symbol and
a numberj on the worktape, and end with the input
head on the leftmost symbol and the pair(j, a) on the
worktape, wherea is the jth input symbol.

• Start with a stringy on a worktape, and end withy
pushed onto the stack with that part of the worktape
empty.

• Start with a blank section of worktape of lengthr and
a stringyz on the stack where|y| = r, and end withy
in that section of the worktape and popped off of the
stack (so that the stack holdsz).

Proof: Note that, by Theorem 3, there is a deterministic
and reversible computation that starts with a numberj
written on the worktape, and increments it (or decrements it
and sets a bit if the number is zero). Thus, in order to prove
the first item in Proposition 4, it suffices to observe that the
following routine can be implemented reversibly: Write “0”
on the blank worktape, and then repeat the following steps
until the input head scans the right endmarker:

1) Move the input head to the right, and
2) Increment the counter on the worktape.

When the loop is exited, move the input head back to the
left end of the tape.

The second item in the proposition is proved with very
similar techniques.

For the third item, consider a machine with states
qpush, qmove, qreturn, andqa for each symbola. A sequence
of moves that starts the process of pushing the buffer onto
the stack starts in stateqpush. In stateqpush, if the machine
scans a worktape symbola other than the end-of-buffer

2



marker, it enters stateqa and replaces thea with a blank
symbol. (If it scans the end-of-buffer marker, it enters state
qreturn.

In stateqa, it replaces a blank on top of the stack with an
a, and moves toqmove. (The only “backward” move from
stateqa is to change a blank on the worktape to ana and
move to stateqpush.)

In stateqmove, it moves the worktape head to the right,
and moves to stateqpush. (The only “backward” move from
stateqmove is to pop some symbola off of the stack, and
move to stateqa. At this point, we can also see that the only
“backward” move fromqpush is to move the worktape head
to the left, and move to stateqmove.)

In stateqreturn, the machine moves the worktape head to
the left end of the buffer. (The only “backward” moves take
the machine back to the right end of the buffer, where it
enters stateqpush.)

The fourth and final item in this proposition is proved
with very similar techniques.

Having established that nondeterminism and symmetry
coincide for polynomial-time bounded AuxPDAs, and re-
calling from Theorem 3 that reversibility coincides with
determinism for space-bounded computation, and recalling
the role that reversibility played in the proof of Theorem
6, it is natural to wonder about the computational power
of reversible AuxPDAs. We are not able to settle this
question, but in Section IV we summarize what we are able
to establish about the power of reversible AuxPDAs, and
present some open questions.

II. PRELIMINARIES AND OVERVIEW

Lewis and Papadimitriou ([18]) introduced the concept of
symmetric computation. A nondeterministic Turing machine
is symmetric if, for any configurationsC and D, we have
that C`D if and only if D`C.

In order to describe the symmetric algorithms that we
present, we will use the following approach. First, we will
present a nondeterministic (non-symmetric) AuxPDA that
clearly accepts a given language. The AuxPDA will be
designed using some conventions that allow us to reason
clearly about its behavior. Then, we will “symmetrize” the
AuxPDA, by introducing new moves, so that ifC`D we
ensure that alsoD`C, and we will argue that this will not
change the language that is accepted.

Here are the conventions that we will follow, in our
AuxPDA algorithms: The logspace-bounded worktape will
have two sections: a storage area, and a buffer. The buffer
is used to push and pop items to and from the pushdown
store; data will be pushed and popped in units of length
m = O(log n), pops will only be initiated when the buffer
is empty, and pushes will have the effect of emptying the
buffer. Since pushes and pops are done deterministically (and
reversibly), it is no loss of generality to treat these multi-step
operations asbasicoperations (since, once begun, either the

entire push (pop) is completed, or else the operation is run
back to the start, as if it had never been begun). In order
to simplify the definitions, we assume that the computation
begins withlog n space marked off on the worktape and the
buffer (with endmarkers) and we assume that the read-only
input tape also has endmarkers, and the bottom of the stack
is marked.

A configuration C of an AuxPDA encodes complete
information about the state of the machine at a given point in
a computation (including positions of all heads, contents of
all tapes, buffers, and pushdowns), and as usual we letC`D
denote the relation on configurations where the machine can
start in configurationC and move in one step to configu-
ration D. A subset of the states is labeled as “accepting”,
and we say that the machineacceptsan input if there is a
computation path starting from the initial configuration and
reaching an accepting state. With symmetric machines, it is
impossible to require that computations halt, and thus we use
the convention that a symmetric AuxPDA runs in timet(n)
if, for every inputx of length n, if there is any accepting
computation path at all on inputx, then there is an accepting
computation path of length at mostt(n).

Definition 5: Let SymAuxPDA-TIME
(
nO(1)

)
denote

the class of languages accepted by symmetric logspace-
bounded AuxPDAs that run for polynomial time.

III. M AIN RESULT

In this section we show that every language in SAC1 is
accepted by some symmetric auxiliary pushdown automaton
in polynomial time. Thus, by Proposition 1, this establishes
our main theorem:

Theorem 6:

NAuxPDA-TIME
(
nO(1)

)
= SymAuxPDA-TIME

(
nO(1)

)
.

Proof: Let L be a language in Log(CFL)= SAC1.
ThusL is accepted by a logspace-uniform family of circuits
{Cn}, where without loss of generality we may assume the
following:

• The gates of the circuitCn are partitioned into lev-
els `0, `1, . . . , `d(n), where the depth of the circuit is
d(n) = O(log n).

• The input level`0 of the circuit Cn consists of input
gates that are connected either to input symbolsxi or
to negated input symbolsxi, 1 ≤ i ≤ n. The wires that
lead out of the input gates feed into AND gates at level
1.

• If i > 0 is even, then all of the gates in level`i are OR
gates. Ifi is odd, then all of the gates in level`i are
AND gates.

• Each AND gateh has fan-in exactly two.
• Wires from any level̀ i are directed toward gates in

level `i+1, and a logspace computation can tell, given
g andh, if there is an edge fromg to h.
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• For eachn, the output gategout of Cn is an OR gate at
leveld(n), and the function that mapsn to (gout, d(n))
is computable in logspace.

We now describe a nondeterministic (non-symmetric)
AuxPDA M acceptingL. We will then create a symmetric
AuxPDA M ′ from M , and argue that it also acceptsL in
polynomial time. We will use the “symbol”[g, i] to denote
the contents of the worktape when our AuxPDAM is
attempting to determine if the gateg in level `i evaluates to
1. We use the “symbol”[g, i] to denote the contents of the
worktape when our AuxPDA has successfully verified thatg
evaluates to 1. In addition, we will use a “protocol symbol”
〈g, h〉 to denote the fact that our AuxPDA is trying to verify
that the OR gateg evaluates to 1, by verifying that the AND
gateh that feeds intog evaluates to1. Observe that all these
“symbols” requireO(log n) bits to write down.

We first create a nondeterministic (non-symmetric) Aux-
PDA M operating as follows: On inputx, with the stack
empty, our AuxPDAM uses deterministic and reversible
computation to record the input lengthn on the worktape,
and then (by appealing to logspace-uniformity) places the
symbol [gout, d(n)] on the worktape. This computation is
deterministic, and can be done via a reversible computation
by Theorem 3 and Proposition 4.

For any configuration where the worktape holds[g, i],
our AuxPDA M checks first to see ifi = 0. If i = 0
then,g is an input gate. Hence by logspace-uniformity,M
can use deterministic, reversible computation to compute an
index j such that gateg is an input gate in level̀ 0 that
depends on bitj of the input. Then, by Proposition 4,M
can record thejth bit of the input on the worktape (via a
deterministic and reversible computation).M then checks
(via a deterministic, reversible computation) ifg evaluates
to 1 and if so, it replaces[g, i] with [g, i]. (If the gateg
evaluates to 0, thenM halts and rejects.)

If i > 0, then via nondeterministic and symmetric moves,
M guesses a stringh, so that the worktape holds([g, i], h).
(Using the “backward” moves of these nondeterministic
steps corresponds to merely erasing some of the guess
“h” and thus involves revisiting an earlier configuration.
This cannot happen in any accepting computation path of
minimal length.) After the worktape holds([g, i], h), M uses
deterministic, reversible computation to verify thath is an
AND gate in level̀ i−1 that feeds in tog, and then computes
the namesg1 andg2 (g1 < g2) of the two OR gates that feed
in to h, and then writes[g1, i−2] on the worktape, and writes
the string[g1, i− 2] / [g2, i− 2]〈g, h〉 onto the buffer, before
pushing this string onto the pushdown. (Note that the initial
part of this deterministic computation isindependentof the
input, and thus can be done reversibly via direct appeal to
Theorem 3. Pushing information onto the pushdown can be
done reversibly by Proposition 4)

For any configuration where the worktape holds[g, i], M
first checks ifg = gout and i = d(n), in which case it will

halt and accept.
Otherwise,M pops a string (of length equal to the buffer)

off of the stack and stores it in the buffer (via a deterministic,
reversible computation). There are two valid cases that allow
the computation to proceed:

• If the buffer is equal to[g, i] / [g′, i]〈g′′, h〉, then M
will put [g′, i] on the worktape, and push the string
[g, i][g′, i] / 〈g′′, h〉, onto the stack (via a deterministic,
reversible computation).

• If the buffer is equal to[g′, i][g, i] / 〈g′′, h〉, where
g′ < g are the two OR gates that feed intoh, then
M will write the tuple([g′′, i + 2], h) on the worktape
and erase the buffer, via a deterministic and reversible
computation (note that no information is lost here, since
h determines the pair(g, g′)), and then it will erase
h, leaving only [g′′, i + 2] on the worktape. Clearly,
this last segment isnot reversible, since it destroys all
information abouth (and with it, all information about
g′ andg). Note that, if we add backward transitions to
makeM symmetric, the new transitions that are added
for this segment correspond to guessing arbitrary values
of h. Thus these moves are dual, in some sense, to the
nondeterministic and symmetric moves ofM that guess
h.)

The moves ofM are summarized in Table 1.
When we create a symmetric AuxPDAM ′ from M by

adding the required “backward” moves, we need to argue
that the new machineM ′ does not accept any strings that
were not already accepted byM . We express this as the
following claim:

Claim: For every even numberi, gateg is a gate in level
`i that evaluates to 1 if and only if there is a computation
path of M ′ that starts with[g, i] on the worktape, with an
empty stack and buffer, and reaches[g, i].

Proof of Claim: The forward direction is obvious, and it
is also obvious that in this case there is a computation path
of polynomial length. We prove the backward direction by
induction oni.

If i = 0, let us assume that there is a computation path
of M ′ that starts with[g, 0] on the worktape, with an empty
stack and buffer, and reaches[g, 0]. If this path consists of
only forward moves ofM , then this clearly implies that
g evaluates to 1 (by construction). We need to show that
(without loss of generality) no backward moves ofM appear
on this path. The onlyforwardmoves ofM that leadinto any
configuration ofM with [g, 0] on the worktape, are moves
that perform a push. Such moves can not be executed in a
backward direction byM ′ when the stack is empty. The only
other backward moves that can occur along the computation
from [g, 0] to [g, 0] correspond to undoing (and re-doing)
part of the deterministic, reversible computation between
these two configurations, and hence will not occur along
any accepting path of minimal length. (Throughout the rest
of the proof, we assume that any deterministic, reversible
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1 worktape [g, 0] → [g, 0]

stack

2 worktape [g, i] ⇔ [g, i], h → [g1, i− 2]

stack [g1, i− 2] / [g2, i− 2]〈g, h〉
3 worktape [g, i] → [g′, i]

stack [g, i] / [g′, i]〈g′′, h〉 [g, i][g′, i] / 〈g′′, h〉
4 worktape [g, i] → [g′′, i + 2], h 7→ [g′′, i + 2]

stack [g′, i][g, i] / 〈g′′, h〉

Table I

FORWARD MOVES OFM . THERE ARE FOUR TYPES OF MOVES(NOT COUNTING THE MOVES THAT DO THE INITIAL SET-UP, AND THE MOVES THAT

DETERMINE IF CONDITIONS HAVE BEEN SATISFIED TO MOVE TO AN ACCEPTING STATE). ONLY MOVES OF TYPE ONE CONSULT THE INPUT TAPE.

TRANSITIONS MARKED⇔ ARE SYMMETRIC.

TRANSITIONS MARKED→ ARE DETERMINISTIC AND REVERSIBLE.

TRANSITIONS MARKED 7→ ARE DETERMINISTIC AND NON-REVERSIBLE.

1 worktape [g, i] ↔ [g, i]

stack

2 worktape [g, i] ⇔ [g, i], h ↔ [g1, i− 2]

stack [g1, i− 2] / [g2, i− 2]〈g, h〉
3 worktape [g, i] ↔ [g′, i]

stack [g, i] / [g′, i]〈g′′, h〉 [g, i][g′, i] / 〈g′′, h〉
4 worktape [g, i] ↔ [g′′, i + 2], h ⇔ [g′′, i + 2]

stack [g′, i][g, i] / 〈g′′, h〉

Table II

MOVES OFM ′ . TRANSITIONS MARKED↔ ORIGINATED FROM DETERMINISTIC AND REVERSIBLE STEPS OFM ,

AND HENCE CONSTITUTE A SUBGRAPH OF THE CONFIGURATION GRAPH HAVING DEGREE TWO.

TRANSITIONS MARKED⇔ ARE SYMMETRIC, AND CONFIGURATIONS IN THESE SEGMENTS TYPICALLY HAVE DEGREE LARGER THAN TWO.

computation segment that is begun is run to completion,
since the only other way the computation can exit the
segment is by revisiting the configuration where it began
the segment.) This completes the proof of the basis step.

If i > 0, then as in the basis step, the computation of
M ′ starting from[g, i] cannot begin using backward moves
of M , because it would involve undoing a push, and the
stack is currently empty. Thus the only way to start is using
symmetric moves ofM to guess some valueh, and then to
use deterministic (reversible) moves ofM that cause us to
push the string[g1, i − 2] / [g2, i − 2]〈g, h〉 onto the stack,
leaving [g1, i − 2] on the worktape. Let us say that this
configuration ofM ′ is reached at timet1.

Similarly, the segment of the computation ofM ′ that
ends with[g, i] on the worktape, cannot end using backward
moves ofM , since this would involve undoing a push while
the pushdown is empty, and thus this segment must consist
of forward deterministic (reversible) moves ofM , starting at

some timetm with some symbol[g′, i− 2] on the worktape,
and a string of the form[g′′, i− 2][g′, i − 2] / 〈g, h′〉 on
top of the stack, for someh′, g′′, g′, and proceeding to a
configuration where the stack is empty and the worktape
contains the tuple([g, i], h′), and ending with somenonre-
versiblemoves that eraseh′. (There may actually be some
alternation between forward and backward moves in this
segment where some ofh′ is erased and re-guessed, but in
a shortest accepting computation there will be only forward
moves in this segment.)

Let us now analyze the portion of the computation ofM ′

that takes place between timest1 andtm. We assume without
loss of generality that this computation is of minimal length,
and thus does not visit any configuration ofM ′ that occurs
at any other time during its computation.

Since some of theO(log n) symbols on top of the stack at
timest1 andtm differ, these symbols must have been popped
off at some intermediate stage. Since, by by construction,M ′
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always completely fills the buffer when it performs a pop,
we conclude that there is a first time aftert1 (call this time
t3), whenM ′ pops the string[g1, i − 2] / [g2, i − 2]〈g, h〉
from the stack. Since all pushes and pops involve moving
data between the stack and the buffer via deterministic
(reversible) steps, we can see that the pop that takes place
at time t3 must correspond to forward moves ofM (since
backward moves ofM would correspond to forward moves
that push[g1, i− 2] / [g2, i− 2]〈g, h〉 onto the stack, which
only happens if the worktape holds[g1, i − 2] – which in
turn means that the computation is retracing its steps back
to the start of this segment, contrary to our assumption).
Since the pop of[g1, i − 2] / [g2, i − 2]〈g, h〉 corresponds
to a forward move ofM , we see that this takes place in a
deterministic (reversible) segment that can only take place
if the worktape ofM ′ holds [g1, i− 2]. Let us denote byt2
the time when this pop begins. Since timet2 is thefirst time
that these symbols have been popped off of the stack, we
can conclude that the computation ofM ′ from time t1 to t2
begins with[g1, i−2] on the worktape, ends with[g1, i− 2]
on the worktape, and can be accomplished with an empty
stack. Thus, by induction, we conclude that gateg1 evaluates
to 1.

Recall that, between timest2 and t3, M ′ is executing
forward moves ofM corresponding to a pop of[g1, i −
2] / [g2, i − 2]〈g, h〉 from the stack, with[g1, i− 2] on the
worktape. This only happens in the middle of a deterministic
(reversible) segment (corresponding to moves of type 3 in
Table 1). There can be no switch to backward moves ofM
during the middle of this segment without revisiting earlier
configurations, contrary to assumption. Thus this segment
executes to completion in a forward direction, resulting in a
configuration at some timet4 with [g1, i− 2][g2, i−2]/〈g, h〉
on the stack, and[g2, i− 2] on the worktape.

There are now two cases:
If there is no intermediate stage betweent4 andtm where

the stack is popped, then we have thath = h′, and hence
g1 = g′′ andg2 = g′ and there is a computation ofM ′ that
begins with[g2, i−2] on the worktape, ends with[g2, i− 2]
on the worktape, and can be accomplished with empty stack.
In this case, by induction, we have that gateg2 evaluates to 1.
Sinceh is the AND of g1 andg2, we have thath evaluates
to 1. Also, since the protocol symbolπ = 〈g, h〉 is only
written onto the stack if the AND gateh feeds into the OR
gateg, we conclude thatg evaluates to 1, as desired.

Otherwise, there is some first timet5, t4 < t5 < tm,
where the string[g1, i− 2][g2, i− 2] / 〈g, h〉 is popped from
the stack. If these symbols are popped via forward moves of
M , it must be the case that the worktape contains[g2, i− 2],
and once again we can conclude thatg evaluates to 1, as
desired. But in fact, this is the only possibility, since if
this pop is accomplished via backward moves, it would
correspond to moves ofM that, if executed in aforward
direction, would push[g1, i− 2][g2, i − 2] / 〈g, h〉 on the

stack, and this only happens from the configuration that
M ′ is in at time t4. That is, if this pop is accomplished
via backward moves, it means thatM ′ is revisiting the
configuration it was in at timet4, contrary to our assumption.

This completes the proof of the inductive step of the
claim, and also completes the proof of the theorem.

We remark that the stack height on the symmetric Aux-
PDA M ′ is O(log2 n) on any accepting computation (since
the valuei is bounded byO(log n)). Thus we conclude:

Corollary 7: Any language that is accepted by a symmet-
ric AuxPDA in polynomial time is accepted by a symmetric
AuxPDA running in polynomial time whose pushdown never
contains more thanlog2 n symbols.

We remark that this implies that languages in NL are
accepted by symmetric machines using spacelog2 n and
running in polynomial time. This generalizes to other space
bounds as well:

Corollary 8: For all k, the class of languages accepted
by nondeterministic polynomial-time Turing machines using
O(logk n) space is accepted by symmetric polynomial-time
Turing machines usingO(logk+1 n) space.

Proof: A straightforward implementation of the con-
struction from the proof of Savitch’s theorem [23] shows that
any language accepted by a nondeterministic Turing machine
in polynomial time andlogk n space is also accepted by
uniform semi-unbounded circuits of size2O(logk n) and
depthO(log n). The argument from the proof of Theorem
6 shows that such circuits can be simulated by symmetric
AuxPDAs that have have a worktape bound oflogk n and
never have more thanlogk+1 n symbols on the pushdown.

It is natural to wonder whetherlogk n space would be
sufficient for this simulation, instead oflogk+1 n space. At
least for the casek = 0 (i.e., for finite automata), it is known
that this is not possible. For a discussion of this, see [14].

Note that Corollary 8 implies that NSC (the nondetermin-
istic analog of Steve’s Class SC) can be defined equivalently
in terms of symmetric machines. (For more results on NSC,
see [1].) This conclusion would also follow from Theorem
10 of [18] – but there is actually a problem with the proof
of Theorem 10 in [18]. We discuss this in the Appendix.

IV. REMARKS ON REVERSIBILITY

The concept of reversibility is related to determinism in
a way that is analogous to the relationship of symmetry
to nondeterminism. The theoretical study of reversibility in
computation was initiated in different contexts by Lecerf
([17]) and Bennett ([4]).

Let us now consider this relationship for auxiliary push-
down automata and thus for languages reducible to context-
free languages.

Definition 9: We call a deterministic auxiliary pushdown
automatonreversible if it is also backdeterministic. That
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is: for each configurationC, there is at most one possible
configurationD such thatD`C.

By RevAuxPDA-TIME
(
nO(1)

)
we denote the class of

languages acceptable by reversible auxiliary pushdown au-
tomata in polynomial time.

Since deterministic and reversible computation have
equivalent computational power both in the setting of space
complexity [16] and time complexity [4]), one might be
tempted to expect that this would hold for time-bounded
auxiliary push-down automata as well. Note however, that
there is an oracle relative to which deterministic computation
is strictly more powerful than reversible computation, for
machines with simultaneous time and space bounds [11].

In the following paragraphs, we survey the relationship of
the classRevAuxPDA-TIME

(
nO(1)

)
to nearby complexity

classes.
The complexity class RUL= RUspace(log n) was defined

by Buntrock et al. [6] and has been studied subsequently
by the authors [2], [15]. A languageL is in RUL if there
is an NL machine acceptingL with the property that, on
every input, the graph of reachable configurations is a tree.
It was shown by Buntrock et al. that RUL and a perhaps
slightly larger class known as ReachFewL is contained in
Log(DCFL). Analysis of their algorithm (which simply
searches through the configuration graph of a ReachFewL
machine) shows that it is a reversible algorithm. Hence we
obtain the following inclusion:

Proposition 10:

ReachFewL⊆ RevAuxPDA-TIME
(
nO(1)

)

(It was shown recently that ReachFewL is also contained in
UL [19].)

We close this section with a list of open questions regard-
ing reversible AuxPDAs. In particular, there are a number of
“nearby” complexity classes which one might hope to relate
in some way toRevAuxPDA-TIME

(
nO(1)

)
:

• The classDAuxPDA-TIME
(
nO(1)

)
was shown by

Dymond and Ruzzo to coincide with the class of
languages accepted by PRAMs obeying the owner-
write restriction working in logarithmic time with a
polynomial number of processors ([10]). Rossmanith
showed that the subclassOROW-TIME (log n) that
results by replacing “concurrent read” by “owner
read” contains L ([22]). Is there a relationship
between RevAuxPDA-TIME

(
nO(1)

)
and OROW-

TIME (log n)?
• Another way to limit CROW-PRAMs is to restrict

the set of arithmetic operations that the PRAMs have
in their instruction set. By imposing this restriction,
Cook and Dymond [8] introducedparallel pointer
machines. (See also [13].) The classPPM-Time(log n)
consisting of languages accepted by parallel pointer
machines in logarithmic time contains not only L,

but also RUL [2]. Is there a relationship between
RevAuxPDA-TIME

(
nO(1)

)
and PPM-Time(logn)?

• We were able to show that symmetric AuxPDAs run-
ning for polynomial time are able to compute with a
pushdown of polylogarithmic height. Is this possible for
reversible machines as well? It might be that the answer
to this question is connected to our questions about the
relation betweenRevAuxPDA-TIME

(
nO(1)

)
and the

PRAM classes mentioned above.

The known relations among these classes are summarized
in Diagram 1.

L = RevSPACE(log n) =SL

OROW-Time(log n)

RUL

PPM-Time(log n)RevAuxPDA-TIME
(

nO(1)
)

UL

Log(DCFL)= CROW-TIME(log n) = DAuxPDA-TIME
(

nO(1)
)

SC2

NAuxPDA-TIME
(

nO(1)
)

=

SymAuxPDA-TIME
(

nO(1)
)

Log(CFL) = SAC1 =

P

NL
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Figure 1. Inclusion relations among various subclasses of Log(CFL).
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V. A PPENDIX

In this Appendix, we discuss some problems with the
proof of Theorem 10 of Lewis and Papadimitriou’s original
paper on symmetric computation [18], the statement of
which implies our Corollary 8. This discussion will not be
self-contained, and we assume that the interested reader will
consult [18] for more details.

In the proof of Theorem 10, on the bottom of page 181
in [18], the authors write: “We leave it to the reader to
confirm that the algorithm is correctly implemented and
that the hypotheses of Lemma 1 are satisfied”. But are the
hypotheses of Lemma 1 really satisfied?

Consider the statement of Lemma 1. Among the hy-
potheses of this lemma, is the requirement saying that,
for any two “special” configurationsA1 and A2, if there
is a computation path fromA1 to A2 that has no other
“special” configurations in between, then there is also such
a path fromA2 to A1. On page 181, we read that, in
the proof of Theorem 10, the set “of special configura-
tions consists of those corresponding to pointα in the

8



flowchart, with configurationC partially guessed, and with
the three worktape-stacks arranged as follows: For some
i ≤ log T (n), worktape 3 contains a stringd0d1 . . . di where
d0 = 0 and d1, . . . , di ∈ {1, 2}; worktape 2 contains a
sequence of configurationsC0, . . . , Ci, where C0 is the
initial configuration; and worktape 2 contains a sequence of
configurationsD0, . . . , Dk, whereD0 is the final configura-
tion.” (Informally, these “special” configurations correspond
to the configurations where the algorithm is attempting to
guess an intermediate configurationC that appears half-way
along a path fromCi to Dk.)

If we examine a trace of their algorithm, we see that
initially it is in a configuration of the following form:

• Pushdown # 1:C0 (the initial configuration).
• Pushdown # 2:D0 (the final configuration).
• Pushdown # 3: 0
• Other workspace: This is where the numberi is stored;

initially i is set to bed = log T (n), whereT is the
running time.

After this initial configuration, their algorithm enters
some “special” configurations, ending up with the following
configuration, which we will denote byX (where we write
the stack top on the right):

• Pushdown # 1:C0

• Pushdown # 2:D0

• Pushdown # 3: 0
• Other workspace:d, C

Note thatX is a “special” configuration, since the guess
of C is nearly complete.

After X , the algorithm decrementsd, pushesC onto Push-
down 2, pushes 1 onto Pushdown 3, verifies thatd− 1 > 0,
and then enters a “special” configurationY , where it is
beginning to guess the midpoint of a path fromC0 to C. Y
has the following format:

• Pushdown # 1:C0

• Pushdown # 2:D0, C
• Pushdown # 3: 01
• Other workspace:d − 1
Note that there is a path fromX to Y without visiting

any “special” configurations in between. Thus, if this were
to satisfy the requirements of Lemma 1, it should also be
possible to get fromY to X .

However, their algorithm does not seem to have this
property.

We hasten to add that there are various ways to repair
their proof, and our intent is not to claim Corollary 8 as
a new result, but merely to observe that our main theorem
provides a correct alternate proof.
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