
Characterizing Unambiguous Augmented Pushdown

Automata by Circuits
(Extended Abstract)

Klaus-Jörn Lange Peter Rossmanith

Institut für Infomatik

Technische Universität München
Arcisstr. 21

D-8000 München 2

Abstract

The notions of weak and strong unambiguity of augmented push-down automata
are considered and related to unambiguities of circuits. In particular we exhibit
circuit classes exactly characterizing polynomially time bounded unambiguous aug-
mented push-down automata.

Introduction

An important object in parallel complexity theory, the class NC , can be characterized
in terms of Parallel Random Access Machines, see e.g. [3, 4, 9], Boolean Circuits [3, 10],
Augmented Pushdown Automata [6, 7], and Alternating Turing Machines [1, 6]. There
are close connections between these concepts, see e.g. [3, 5].

In [5] unambiguous circuits were considered in order to characterize CREW-PRAMs
and to further relate them with the NC -structure. Working with unambiguity we must
distinguish between the notions of unambiguity and uniqueness. While uniqueness uses
the unique existence of a computation path as a tool for acceptance, unambiguity re-
quires this unique existence for all accepting computation pathes. We call this kind of
unambiguity weak unambiguity and additionally consider strong unambiguity. An au-
tomaton M is said to be strongly unambiguous if there is at most one computation path
between two arbitrary configurations of M .

Application of unambiguity to circuits led to the idea of vulnerable gates: Just as
in a CREW-PRAM any multiple access to a memory cell is forbidden, we assume an
unambiguous circuit to avoid any multiple 1-input to OR-gates of unbounded fan-in
(resp. multiple 0-input to AND-gates of unbounded fan-in). This idea in mind, we will

1

use unambiguous versions of AC k and SAC k and additionally UnambRAC k as a subclass
of UnambRAC k, in which even the OR-gates of bounded fan-in are vulnerable.

In [5] CREW-TIME (log n) = UnambRAC 1 was shown in analogy CRCW-
TIME(log n) = AC 1 of [9]. This result works with strongly unambiguous circuits, since
CREW-algorithms do not allow any multiple write-accesses regardless of the influence of
the written memory cell to the final result. In addition we will consider in the following
the misuse of vulnerable gates as long as their results have no influence on the final
results, that is as long as the output evaluates to either 0 or 1 for all inputs. Here our
aim is to extend te equation SAC 1 = NAPDAPT(log n) of [10]. In fact we will show this
for weak and for strong unambiguity!

Preliminaries

We are talking about circuit families of polynomial size and polylogarithmic depth which
are composed of bounded AND- and OR-gates and possibly unbounded ∃- and ∀-gates.
We will use without explanation circuit classes like AC k, SAC k, and NC k, see [3, 7, 9].
A circuit C of n inputs is said to be (strongly) unambiguous if for all 2n assignments of
its inputs no ∃-gate receives a 1 by two or more of its predecessors and no ∀-gate receives
a 0 by two or more predecessors. That is, C might be build up by vulnerable gates and
still for every input the outcome of every gate is well-defined. This corresponds to a
‘strong’ notion of unambiguity.

Applying this notion of unambiguity to the unbounded fan-in classes AC k, k ≥ 1
(see [3, 7, 9]) and to the semi-unbounded fan-in classes SAC k, k ≥ 1, (see [10]), we
obtain the families UnambAC k and UnambSAC k for every k ≥ 1. In addition we consider
UnambSAC k-circuits which do not use robust OR-gates, which means that even the OR-
gates of bounded fan-in are vulnerable. The languages accepted by uniform families of
circuits of this type will be denoted by UnambRAC k. (Clearly (ambiguous)RAC k =
(ambiguous)SAC k). In [5] DSPACE(logn) ⊆ UnambRAC 1 was shown, which is why we
can use the usual log space uniformity condition of [7].

By CREW k we denote the class of languages recognized by some CREW-PRAM in
time O(logk n) using polynomially many processors [3, 4].

By LOGUCFL we denote the class of all languages log space reducible to any unam-
biguous context-free language.

In the following we consider augmented push-down automata (see [2]). We make
the technical assumption that accepting computations always end with an empty stack
and an empty working tape and there is exactly one final state, i.e. there is exactly one
accepting configuration. In addition we require the machine either to push or pop a sym-
bol in every step. This does not restrict the power of nondeterministic or deterministic
automata, but is useful when working with unambiguous automata. NAPDAk (resp.

DAPDAk) is the class of languages recognized in time 2O(logk n) by a nondeterministic
(resp. deterministic) pushdown automaton augmented with a log space bounded work-
ing tape [2]. In the usual way, we call an augmented push-down automaton M (weakly)

2

∧ 0 1 ⊥

0 0 0 0

1 0 1 ⊥

⊥ 0 ⊥ ⊥

∨ 0 1 ⊥

0 0 1 ⊥

1 1 1 1

⊥ ⊥ 1 ⊥

Table 1: Boolean functions extended to domain {0, 1,⊥}

∧! 0 1 ⊥

0 ⊥ 0 ⊥

1 0 1 ⊥

⊥ ⊥ ⊥ ⊥

∨! 0 1 ⊥

0 0 1 ⊥

1 1 ⊥ ⊥

⊥ ⊥ ⊥ ⊥

Table 2: Vulnerable boolean functions

unambiguous if for every input there is at most one accepting computation of M . M is
strongly unambiguous if for every pair of configurations there is at most one computa-
tion path between them (here we do not mean surface-configurations). UnambAPDAk

(resp. StUnambAPDAk) is the class of languages recognized in time 2O(logk n) by an un-
ambiguous (resp. strongly unambiguous) pushdown automaton augmented with a log
space bounded working tape.

Weakly unambiguous circuits

To define weak unambiguity in circuits formally, we extend in the usual way the boolean
functions ∧ and ∨ to domain {0, 1,⊥} (see Table 1). In this context ⊥means “undefined”
which is used as the outcome of a blown gate. Like a (strongly) unambiguous circuit
a weakly unambiguous one consists of ‘robust’ gates of bounded fan-in and vulnerable
gates of unbounded fan-in. But in contrast to the strong case in a weak circuit vulnerable
gates inside the circuit are allowed to blow and to yield the value ⊥, as long as the output
gate always evaluates to either 0 or 1. Here we assume that vulnerable gates forward
any ⊥-input (see Table 2). The resulting weakly unambiguous classes are denoted by
WeakUnambAC k (resp. WeakUnambSAC k, WeakUnambRAC k).

Results

We will now show that LOGUCFL can be recognized by UnambRAC 1-circuits. For un-
ambiguous linear languages this was done in [5] by an exact decomposition of the Savitch-
algorithm. Here we are able to do this for unambiguous context-free languages by exhibit-

3

ing an exact decomposition of the algorithm of Lewis, Stearns, and Hartmanis. Rytter
showed LOGUCFL ⊆ CREW 1 by quite different methods to ours, but we need some of
his ideas. Rytter’s algorithm for a CREW-PRAM can be transfered to unambiguous net-
works with nearly no changes. This was done in [5] yielding LOGUCFL ⊆ UnambAC 1.
The stronger result LOGUCFL ⊆ UnambRAC 1 cannot be shown by this approach be-
cause negations are essentially needed in Rytter’s construction when computing the max-
imal element in a path. We will preserve unambiguity by a simpler but somewhat tricky
approach. A unique tree decomposition will be chosen not only by computations done
by the circuit itself, but also by computations done by the circuit constructor leading to
a special shape of the circuit that prevents any ambiguity.

Let G = (N, T, P, S) be an unambiguous context-free grammar in Chomsky normal
form without useless nonterminals. We denote productions by A → v and derivations
by u

∗

⇒ v. Let w = a1 a2 . . . a3 be an input string of length n. According to Rytter
in [8] we denote the substring ai+1 . . . aj of w by wij. We call (A, i, j), A ∈ N , 0 ≤ i <

j ≤ n a node. A node (A, i, j) is said to be realizable iff A
∗

⇒ wij and a pair of nodes
((A, i, j), (B, k, l)) is said to be realizable iff A

∗

⇒ wikBwjl and (A, i, j) 6= (B, k, l). We
define y, z ⊢ x and z, y ⊢ x iff x = (A, i, j), y = (B, i, k), z = (C, k, j), and A → BC.

To determine whether a node or a pair of nodes is realizable we will characterize them
by recursive equations:

Proposition 1 A node x = (A, i, j) is realizable iff
(i) A → wij and i+ 1 = j

or (ii) There exists a realizable node y and (x, y) is realizable, too.

Proposition 2 A pair of nodes (x, y), x = (A, i, j), is realizable iff
(i) y = (B, i, j − 1), A → BC, and C → wj−1,j

or (ii) y = (B, i+ 1, j), A → CB, and C → wi,i+1

or (iii) There exists a node y1 such that (x, y1), (y1, y) are both realizable.

A node x can be interpreted as a syntactic tree and a pair (x, y) as a tree with a gap,
i.e., all leaves but one are terminals and the nonterminal leaf is y. We will construct
a circuit with gates labeled 〈x〉 that computes whether x is realizable and with gates
labeled 〈x, y〉 computing whether the pair (x, y) is realizable on a given input string w.
This can be done using the recursive equations of Proposition 1 and 2.

If i+ 1 = j then a gate 〈(A, i, j)〉 directly checks the input string. In other cases

〈x〉 ≡ ∃
y,y1,y2

〈x, y〉 ∧ 〈y1〉 ∧ 〈y2〉 (1)

can be used, where y, y1, y2 are nodes such that y1, y2 ⊢ y. Cases (i) and (ii) of
Proposition 2 can directly be used to construct the gate 〈x, y〉. When case (iii) holds,

〈x, y〉 ≡ ∃
y1,y2,y3

〈x, y1〉 ∧ 〈y2, y〉 ∧ 〈y3〉 (2)

will be used. y1, y2, y3 are nodes such that y2, y3 ⊢ y1.

4

The correctness, polynomial size, and uniformity of the circuit constructed by now is
straightforward. However, it is neither unambiguous nor does it have logarithmic depth.
To gain these additional properties, we will use a both unique and balanced decomposition
of syntactic trees.

We denote the number of leaves of a given node x in a binary tree by size(x).
The size of nodes and pairs of nodes is easily computed as size(A, i, j) = j − i and
size((A, i, j), (B, k, l)) = k − i+ j − l.

Lemma 3 Let T be a binary tree with at least two leaves and root x. Then there exists a
unique node y ∈ T with sons y1 and y2 such that size(y) > h and size(y1), size(y2) ≤ h,

where h :=
⌈

size(x)
2

⌉

.

Proof. (sketch) The root x fulfils size(x) > h. If the other two conditions do not hold
for x, the first condition again holds for some son of x. So one can “climb down” the
tree until he finds the desired node. If there is a y and a y′ which fulfils Lemma 3, each
must be predecessor of the other due to the conditions that size(y) and size(y′) must
suffice, so y = y′.

Lemma 4 Let T be a binary tree with at least two leaves, x its root, and y one of its
leaves. Then there exists a unique node y1 ∈ T with sons y2 and y3 such that y1 and y2
lie on the path from x to y and size(y2) ≤

⌈

size(x)
2

⌉

≤ size(y1) holds.

Proof. (sketch) There is a strictly monotone decrease of the size of a node on the path
from x to y yielding both existence and uniqueness of y1.

Lemma 3 and 4 will now be used to restrict the domain of the ∃-gates of 〈x〉
and 〈x, y〉. y, y1, and y2 in (1) are restricted by the additional conditions size(y) > h

and size(y1), size(y2) ≤ h for h =
⌈

size(x)
2

⌉

. From Lemma 3 and the fact that there is at
most one syntactic tree deriving x follows that there exists exactly one y fulfilling the
restricted conditions iff there exists at least one y fulfilling the unrestricted conditions,
what is equivalent to ‘x is realizable’. We can simultaneously make y, y1, and y2 unique
if we additionally claim y1 ≪ y2 where ≪ is some logspace computable total order on
nodes. We are now sure that gates 〈x〉 are unambiguous. Checking the sizes of y, y1,
and y2 shows that 〈x〉 is computed by gates having at most only half the size of x.

In (2) we restrict y1, y2, y3 by size(y2, y) ≤
⌈

size(x,y)
2

⌉

≤ size(y1, y). Lemma 4 yields
correctness because there is at most one syntactic tree with gap y deriving x since the
gap can be closed ny some terminal string which is derived by y (there are no useless
nonterminals). The uniqueness of y1 also follows from Lemma 4 and y2, y3 are unique,
too, because exactly one of the sons of y1 lies on the path from x to y.

Again, we can see that size(x, y1) and size(y2, y) are at most half of size(x, y), but
size(y3) can nearly be as large as size(x, y) itself. However, y3 is not a pair of nodes, so
it will be cut in halfes in the next step (compare this with [7]).

Clearly the circuit has logarithmic depth because the size decreases by a factor of 1
2
at

least every four levels and the output node, labeled (S, 0, n), has a size of n. Unambiguity

5

was also proved and uniformity is straightforward. Since UnambRAC 1 is closed under
logspace reductions [5] we gain:

Theorem 5 Each language logspace reducible to an unambiguous context-free language
can be recognized by an UnambRAC 1-circuit, i.e., LOGUCFL ⊆ UnambRAC 1.

Using the methods used to prove Theorem 5 we will now show UnambAPDA1 ⊆
WeakUnambRAC 1 and StUnambAPDA1 ⊆ UnambRAC 1. By capital letters we will
denote surface configurations of unambiguous augmented pushdown automata. Surface
configurations, we consider, contain the topmost symbol and height of the pushdown
store, the final state, and the contents of the auxiliary tape. Let M be an UnambAPDA1

or StUnambAPDA1. We assume without loss of generality thatM pushes or pops exactly
one symbol during each step and accepts by empty stack. M is time-bounded by some
polynom p(n). We call (A,B, i, j) a node if A and B are surface configurations and
0 ≤ i ≤ j ≤ p(n). A node (A,B, i, j) is realizable iff there exists a computation A ⊢j−i B

from A to B in exactly j − i steps starting with surface configuration A, the head on
the ith symbol of the input tape and the level of the pushdown is the same for A and B

and does not go below this level during the computation. Obviously, M accepts iff some
node (S, F, 0, j) is realizable where S is the start surface configuration and F is a final
surface configuration. We write x, y ⊢ z and y, x ⊢ z iff

(i) x = (C,D, i+ 1, k), y = (E,B, k + 1, j), z = (A,B, i, j)

(ii) The level of the pushdown store is equal for A, E, and B.

(iii) There exists a computation A ⊢1 C from A to C in one step starting with the
input head on the ith symbol of the input tape and pushing a onto the pushdown store
during this step.

(iv) There exists a computation D ⊢1 E from D to E in one step starting with the
input head on the (i+1)-st symbol of the input tape and popping a from the pushdown
store.

The next Lemma is straightforward:

Lemma 6 A node x = (A,B, i, j) is realizable iff A = B and i = j or there exist nodes
y and z such that y, z ⊢ x. If there is only one computation A ⊢j−i B from A to B

starting at the i-th symbol, then there exists at most one y and z with y, z ⊢ x.

We define a set T of binary trees consisting of nodes. A binary tree is contained in T

iff the leaves are of shape (A,A, i, i) and for each x, y, z ∈ T holds y, z ⊢ x if y and z are
the sons of x. A simple consequence of Lemma 6 is

Lemma 7 A node x is realizable iff there is a binary tree in T with root x.

We are now ready to consider pairs of nodes. We call a pair of nodes (x, y), x 6= y

realizable iff there is some binary tree with root x, one leaf is y and all other leaves are
of shape (A,A, i, i) and for each node 〈x〉 in this tree again holds y, z ⊢ x if y and z are

6

the sons of x. These trees are like those in T but with a “gap” y. If size(x) denotes the
number of leaves of a tree with root x, then size(x) = j−i

2
+ 1 for x = (A,B, i, j). If

size(x, y) denotes the number of leaves of a tree with gap y and root x then size(x, y) =
j−i+k−l

2
+ 1 for x = (A,B, i, j) and y = (C,D, k, l). Using these equalities, new recursive

equations can be given for a node x:

Lemma 8 A node x is realizable iff
(i) x = (A,A, i, i)

or (ii) There exists some realizable node y and
(x, y) is also realizable.

Lemma 9 A pair of nodes (x, y) is realizable iff
(i) There exists some realizable node z such that y, z ⊢ x holds.

or (ii) There exists some node y1 such that (x, y1) and (y1, y) are both realizable.

The construction of the simulating circuit can now be given. Gates labeled 〈x〉 will
compute whether x is realizable. If x = (A,A, i, i) then 〈x〉 ≡ 1. Otherwise 〈x〉 is defined
as

〈x〉 ≡ ∃
y,y1,y2

〈x, y〉 ∧ 〈y1〉 ∧ 〈y2〉, (3)

where y, y1, and y2 are nodes such that y1, y2 ⊢ y and y1 ≪ y2 holds. ≪ is again a logspace
computable total order. y1, y2, and y3 are further restricted by size(y1), size(y2) ≤
⌈

size(x)
2

⌉

< size(y). Gates labeled 〈x, y〉 compute whether the pair (x, y) is realizable.
They are definded as follows:

〈x, y〉 ≡ (∃
z
〈z〉) ∨ (∃

y1,y2,y3
〈x, y1〉 ∧ 〈y2, y〉 ∧ 〈y3〉) (4)

y1, y2, y3, and z are nodes restricted by y, z ⊢ x, y1, y2 ⊢ y3 and size(y2, y) ≤
⌈

size(x,y)
2

⌉

≤

size(y1, y). The correctness of this circuit follows from the recursive equations in Lemma
8 and 9 and the fact that consideration only of balanced nodes is no restriction (Lemma
3 and 4). The circuit is uniform since sizes of nodes and pairs of nodes are logspace
computable. It has logarithmic depth because of the same reasons as in Theorem 5.

Suppose there is only one tree in T with root x. Then each of its subtrees is unique,
too. The cases (i) and (ii) are disjoint in Lemma 8 and 9. The ∃-gates in (3) and (4) are
vulnerable because at most one combination of y, y1, y2 in (3), respectively of y1, y2, y3,
and z in (4) holds. If the simulated automaton is strictly unambiguous all trees are unique
and no gate will be blown. Therefore the circuit is itself strictly unambiguous. However,
if the automaton is only weakly unambiguous, then some gates may be blown. The
output of the circuit is ∃

B,i
〈S,B, 0, i〉, where S is the start configuration and 0 ≤ i ≤ p(n)

the number of steps. Since each computation represented by (S,B, 0, i) is an accepting
one, a tree with root (S,B, 0, i) must be unique. So neither 〈S,B, 0, i〉 nor its predecessors
in the circuit can be blown because each predecessor of 〈S,B, 0, i〉 is also contained in
the tree with root (S,B, 0, i) and therefore unique. These results can be summarized as

7

Lemma 10 UnambAPDA1 ⊆ WeakUnambRAC 1, StUnambAPDA1 ⊆ UnambRAC 1

The next two results show that the reverse of Lemma 10 is also true.

Lemma 11 WeakUnambRAC 1 ⊆ UnambAPDA1, UnambRAC 1 ⊆ StUnambAPDA1

Proof. Let M be an UnambAPDA. M checks whether a given circuit accepts an input
string w by evaluating its root 〈x〉. Our construction is similar to the corresponding
one of [6, 10]. But here M has to push idle stack entries in order to work strongly
unambiguously in case of rejection. A gate 〈y〉 is evaluated as follows:

• If 〈y〉 is an ∃-gate or an bounded OR-gate, it is marked “idle” and pushed onto the
pushdown store. Then M guesses a son 〈y′〉 and recursively checks if 〈y′〉 evaluates
to 1.

• If 〈y〉 is an AND-gate, it is marked “idle” and pushed onto the stack, then M

computes its sons 〈y1〉 and 〈y2〉. Let 〈y1〉 be smaller than 〈y2〉 with regard to some
total order. M pushes 〈y2〉 onto the stack and evaluates recursively whether 〈y1〉
evaluates to 1.

• If 〈y〉 is an input to the circuit, M rejects if this input has value 0. If it has value 1,
M accepts if the stack is empty and otherwise pops a gate 〈y′〉 from the pushdown
and checks whether 〈y′〉 evaluates to 1. However, if 〈y′〉 is marked “idle”, M does
not evaluate 〈y′〉 but continues popping gates until it finds one which is not “idle”
or the stack is empty. In the latter case M accepts.

Besides the additional use of “idle” gates our simulation is essentially the same as in [10],
where SAC 1 ⊆ NAPDA1 was shown. The correctness of the algorithm and the poly-
nomial time constraint holds as proved in [10]. All left to do is to show that M is
unambiguous:

1. WeakUnambRAC 1 ⊆ UnambAPDA1:
During an accepting computation, M cannot check a vulnerable gate with more than

one true input. Since the circuit is weakly unambiguous there must be some AND-
gate 〈y〉 that evaluates to 0 on each path from the blown gate to the root. M must
evaluate 〈y〉 and then rejects.

If M accepts it must not guess a false input of any ∃-gate it considers during its
computation, so all guesses have to be correct. However, there is at most one right guess
per gate, so there is at most one accepting computation.

2. UnambRAC 1 ⊆ StUnambAPDA1:
This part of the proof is a little awkward. We call a computation sequence of M an

accepting cycle iff the sequence starts with pushing some ∃-gate that is marked “idle”
onto the stack and it finishes with popping it. Obviously, the first and last configuration
in an accepting cycle are mates and the outcome of some ∃-gate 〈y〉 is 1 iff there is some
accepting cycle starting with pushing 〈y〉. A computation sequence is called a rejecting
cycle iff it again starts with pushing some ∃-gate 〈y〉 that is marked “idle” and it finishes
by rejection before 〈y〉 is popped from the stack.

8

M behaves unambiguously during an accepting cycle because 〈y〉 can be interpreted
as the output gate of a circuit that evaluates to 1. We will now prove that M behaves un-
ambiguously during a rejecting cycle, too: When M rejects, its pushdown store contains
a number of “idle” gates. From these gates the path from 〈y〉 to the input that lead to
rejection can be concluded. M followed this path during its computation. Suppose there
is another rejecting cycle ending in the same configuration. Then both computations
followed the same path P , what is only possible if the guesses at ∃-gates lying in P were
also the same. Let us now take a closer look at some AND-gate 〈x〉 ∈ P (with sons
〈x1〉 and 〈x2〉). One son (e.g., 〈x1〉) lies in P , too. If 〈x1〉 is smaller than 〈x2〉 then 〈x2〉
was checked in neither rejecting cycle. Otherwise 〈x2〉 was checked in both cycles before
the computation continued to check 〈x1〉. 〈x2〉 was evaluated to 1 because otherwise
rejection would take place before M starts to check 〈x1〉. The evaluation of 〈x2〉 is done
in an accepting cycle, so both computations are also identical while checking 〈x2〉. By
now we can say that M is unambiguous during cycles.

Assume that M is in some (not necessarily reachable) configuration. We cannot
foretell how M reacts, but M will behave deterministically until it starts to check some
∃-gate. M enters then a (rejecting or accepting) cycle during which M is unambiguous.
After an accepting cycle M pops some weired content from the stack trying to treat it
like a gate. Again we cannot tell what M will do, but it will do it deterministically until
M again checks some ∃-gate.

A careful inspection of the proof of Lemma 11 shows that circuits of depth greater
than O(logn) can also be simulated. A depth of O(logk n) leads to recognition in

time 2O(logk n):

Corollary 12 WeakUnambRAC k ⊆ UnambAPDAk,
UnambRAC k ⊆ StUnambAPDAk

Lemmata 10 and 11 imply a main result of this paper: The languages recognized by
UnambAPDA (StUnambAPDA resp.) in polynomial time correspond to those recognized
by WeakUnambRAC (UnambRAC resp.) with logarithmic depth.

Theorem 13 WeakUnambRAC 1 = UnambAPDA1,
UnambRAC 1 = StUnambAPDA1

In this context the question arises whether Lemma 10 and thereby Theorem 13 are
also true for arbitrary powers of the log function.

References

[1] A. K. Chandra, D. Kozen, and L. Stockmeyer. Alternation. J. ACM, 28:114–133, 1981.

[2] S. A. Cook. Characterizations of pushdown machines in terms of time-bounded computers.
J. ACM, 18:4–18, 1971.

9

[3] S. A. Cook. A taxonomy of problems with fast parallel algorithms. Inform. and Comp.,
64:2–22, 1985.

[4] P. Dymond and W. Ruzzo. Parallel RAMs withs owned global memory and deterministic
language recognition. In Proc. of 13th ICALP, Number 226 in LNCS, pages 95–164.
Springer, 1987.

[5] K.-J. Lange. Unambiguity in circuits. Submitted, 1989.

[6] W. L. Ruzzo. Tree-size bounded alternation. J. Comput. Syst. Sci., 21:218–235, 1980.

[7] W. L. Ruzzo. On uniform circuit complexity. J. Comput. Syst. Sci., 22:365–383, 1981.

[8] W. Rytter. Parallel time O(log n) recognition of unambiguous context-free languages.
Inform. and Comp., 73:75–86, 1987.

[9] L. Stockmeyer and U. Vishkin. Simulation of parallel random access machines by circuits.
SIAM J. Comput., 13(2):409–422, May 1984.

[10] H. Venkateswaran. Properties that characterize LOGCFL. In Proc. of 19th STOC, pages
141–150, 1987.

10

