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Abstrat

The Cayley Group Membership problem (CGM) is to input a groupoid (bi-

nary algebra) G given as a multipliation table, a subset X of G, and an element

t of G, and to determine whether t an be expressed as a produt of elements

of X. For general groupoids CGM is P-omplete, and for assoiative algebras

(semigroups) it is NL-omplete.

Here we investigate CGM for partiular lasses of groups. The problem for

general groups is in Sym-L, but any kind of hardness result seems diÆult beause

it would require onstruting the entire multipliation table of a group.

We introdue the omplexity lass FOLL = FO(log logn) of problems solvable

by uniform iruit families of polynomial size, unbounded fan-in, and depth O(log

log n). Sine parity is not in FOLL, no problem in FOLL an be omplete for

any lass ontaining parity, suh as NC

1

, L, or SL. But FOLL is not known to

be ontained even in SL.

We show that CGM for yli groups is in FOLL \ L and that CGM for

abelian groups is in FOLL. In a partial extension of the method to solvable

groups, we prove that CGM for groups of onstant solvability lass is in FOLL

and that CGM for nilpotent groups an be solved by iruits of polynomial size

and depth O((log logn)

2

). (Thus the problem for nilpotent groups is provably

not omplete for any lass ontaining parity.)

We also onsider the problem of testing for various properties of a group

input as a table: we prove that yliity and nilpoteny an eah be tested in

FOLL \ L.

Finally, we examine some possible impliations of our results for the om-

plexity of iterated multipliation of integers.
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1 Introdution

1.1 The Problem

One of the most natural omputational problems on groups is that of membership:

input some formal representation of a group and an element (of some supergroup),

and determine whether the group ontains that element. Naturally, the omplexity

of this problem varies dramatially with the format hosen to input the group.

If the group is given by generators and relations, the problem has long been

known to be undeidable (see [22, P. 298℄), and the ase of matrix groups led to the

introdution of Arthur-Merlin games [2, 1℄. When the group is given as a set of gener-

ating permutations (and the target is given as a permutation) we get the permutation

group membership problem, the soure of deep and beautiful work ulminating in an

NC algorithm for the problem that relies on the lassi�ation of �nite simple groups

[23, 12, 7℄.

Here we onsider a simple and very low-omplexity variant of the problem, the

Cayley Group Membership problem, or CGM:

Given: group G presribed by multipliation table, X � G, t 2 G.

Question: does t belong to the subgroup hXi generated by X?

CGM is a speial ase of the more general problem where the multipliation ta-

ble need not be that of a group. With an arbitrary table (for a groupoid, whih

need not even be assoiative) the membership problem was shown to be omplete

for polynomial time by Jones and Laaser [17℄. If the table obeys the assoiative

law (a semigroup), Jones et al. showed the membership problem to be NL-omplete

[18℄. (This ompleteness result holds even if the semigroups are group-free, making

groups the natural domain to explore further.) Barrington and MKenzie �rst inves-

tigated the group version of the problem in 1991 [5℄, noting that CGM redues to

the undireted graph aessibility problem (UGAP) and is thus in the lass SL (the

NC

1

losure of UGAP). They suggested that CGM might be omplete for SL or at

least hard for L, or deterministi logspae. Sine then, there has been no progress

on resolving the preise omplexity of CGM. It is suggestive that some very simple

problems involving permutation representations of groups are L-omplete, suh as

that of determining whether a given permutation on n elements is an n-yle [11℄.

(This shows that under the right irumstanes even yli groups an be L-hard to

analyze.) But so far all attempts to exploit these problems to get a hardness proof

have failed.

In this paper we present and exploit a simple new reursive strategy for parallel

omputation of powers in a group given by a multipliation table. We show that for

ertain groups (abelian, nilpotent, and some solvable groups) the CGM problem an
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be solved very quikly in parallel { more quikly than any parallel algorithm an solve

even the parity problem. Using known lower bounds for the parity problem [25℄ we

then prove, using no unproven assumptions, that CGM for these lasses of groups is

not hard for any standard lass ontaining parity, suh as SL, L, NC

1

, or even ACC

0

.

We onjeture that the problem for solvable groups, and for that matter probably

general groups, also fails to be hard for these lasses.

We also onsider the omplexity of testing a group multipliation table to see

whether the group is yli or nilpotent. Both these problems an be solved in

O(log log n) parallel time, meaning that neither of them an be hard for any lass

ontaining parity.

Finally, if p is a prime number the group of integers modulo p is one where the

binary multipliation operation is easy to alulate but alulation of powers is an

interesting problem (as is its inverse, the disrete logarithm problem). We examine

the impliation of our new strategy for the alulation of powers and disrete logs in

parallel, and the related problems of iterated multipliation and division for arbitrary

integers.

1.2 The Model of Computation

We will be measuring the omplexity of problems primarily as the parallel time re-

quired to solve them with a polynomial number of proessors. This is equivalent

[16, 15, 6, 4℄ to (a) the depth of a boolean iruit of polynomial size and unbounded

fan-in solving the problem, or (b) the quanti�er depth of a formula in �rst-order logi

expressing the problem.

Consider the multipliation table of a group (or semigroup) to be input as an n by

n array of numbers, eah in the range from 1 to n. The number in the (i; j) position

of this array represents the element obtained by multiplying i times j, where elements

of the group are labeled 1 through n. A partiular table represents a group if and

only if it satis�es three familiar properties: it must be assoiative, have an identity,

and have an inverse for eah element. Eah of these properties may be expressed by

a �rst-order formula where variables range over elements in the group and there are

atomi formulas to represent equality of elements and the group operation:

8x : 8y : 8z : ((x � y) � z) = (x � (y � z))

9x : 8y : (x � y) = (y � x) = y

8x : 9y : 8z : ((x � y) � z) = z

As shown in [6℄, a property an be expressed by a �xed �rst-order formula of this

kind if and only if it an be tested by a logtime-uniform iruit family of onstant

depth, unbounded fan-in and polynomial size, i.e., if and only if it is in the iruit
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omplexity lass (logtime-uniform) AC

0

. Thus the three group axioms, as well as

other properties suh as ommutativity, are testable for a multipliation table in

AC

0

.

Immerman [16, 15, 4℄ has developed a formalism whereby families of �rst-order

formulas may be de�ned to express properties outside of AC

0

. Given the neessary

onventions for reusing variables, we an de�ne a formula with a quanti�er blok in

front whih is syntatially iterated d(n) times on input of size n and then followed

by some �xed formula. If the formula ontains a onstant number of variables eah

ranging from 1 to n, it an express a property if and only if it an be tested by

a (logtime uniform) iruit family of polynomial size, unbounded fan-in, and depth

O(d(n)). Suh iruit families are equivalent in power to CRCW PRAMs with a

polynomial number of proessors and depth O(d(n)). For example, quanti�er depth

O(log n) orresponds to the iruit omplexity lass AC

1

, whih ontains suh other

lasses as L, SL, NL, and LOGCFL. In this paper we will be partiularly interested

in the lass FOLL, whih onsists of the languages expressible with quanti�er depth

O(log log n) | this lass ontains AC

0

, is ontained within AC

1

, but is not known to

be omparable to L, SL, or NL.

A onvenient way to prove the existene of a formula with an iterated quanti�er

blok is to give a reursive de�nition of a property and show that it loses within a

ertain number of steps (see [16, 15℄ for more detail on this). For example, onsider

the property \a

i

= b" in a group given as a multipliation table, where i is at most

n, the order of the group. The familiar reursive de�nition of this prediate using

repeated squaring says that \a

i

= b" is true if either:

(i = 0) ^ (b = e);

(i = i) ^ (a = b);

9 : (a = b) ^ (a

i�1

= );

or

9 : ( = b) ^ (a

i=2

= ):

Sine this de�nition is guaranteed to lose in O(log n) iterations, it allows us to

onstrut a iruit of depth O(log n) omputing this prediate for all values of a, b,

and i, where a node on level t is set to true if and only if one of the above onditions

holds for the prediates on level t� 1. (In e�et, we an think of the iruit as �lling

in entries of a dynami programming table for all the values of a, b, and i.)
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2 Preliminaries

2.1 Notation

All groups in this paper will be onsidered to be input as their Cayley representation,

onsisting of an n by n table of numbers, eah number in the range from 1 through n.

(Thus the total size of the input is n

2

logn bits, so all our resoure bounds de�ned in

terms of n apply equally well to the true input size.) In logial terms, our formulas

will have an atomi formula \ab = " whose boolean value indiates whether the

produt of a and b in the group is . (For onveniene, we will represent the group

operation by onatenation as is usual in group theory.)

2.2 FOLL

For the purposes of this extended abstrat, we rely on the intuitive presentation of

desriptive omplexity given in Subsetion 1.2 above. The formal details an be found

in [16, 15, 4℄.

In this paper we show a number of problems to be in the omplexity lass

FO(log log n), and take the liberty of giving this lass the name FOLL. Of ourse, to

add to the proliferation of named omplexity lasses requires some justi�ation. We

believe that interest in FOLL is warranted for the following reasons:

� the present work desribes some non-trivial upper bounds showing natural prob-

lems to be in it,

� membership of a problem in FOLL preludes its being hard for the more on-

ventional small lasses suh as TC

0

(this is justi�ed below),

� the relationship of FOLL to the standard hierarhy of parallel omplexity lasses

(e.g., [10, 4℄) is unlear, so that the inlusion hain

FO(onstant) = AC

0

� FOLL � FO(log n) = AC

1

;

whih follows from [24℄, deserves loser srutiny.

Indeed, AC

1

seems to be the smallest onventional omplexity lass known to

ontain FOLL. In partiular, none of the lasses in the inlusion hain

ACC

0

� TC

0

� NC

1

� L � NL � (LOGCFL [DET) (1)

are known to ontain FOLL.

On the other hand, by the Smolensky bound [25℄, the PARITY funtion is not

omputable by unbounded fan-in iruits of depth d and size o(2

(1=2)n

1=2d

), even if
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the iruit family is non-uniform and we allow mod-3 gates along with ANDs and

ORs. It follows that polynomial-size iruits require depth 
(logn=(log log n)) to

ompute PARITY, and thus that the lass FO(t(n)) does not ontain PARITY unless

t(n) = 
(logn=(log log n)). It follows that

Proposition 2.1 FOLL ontains no well-known lass above AC

0

, and in partiular,

no lass from the inlusion hain (1). The same is true of FO(t(n)) for t(n) =

o(log n=(log log n)).

3 Results

3.1 A double-barrelled reursive strategy

Our entral observation is that the indutive de�nition of the power prediate \a = b

i

"

in terms of repeated squaring an be improved so that it loses in only O(log log n)

steps. We begin by giving the de�nition of this prediate in terms of �rst-order

formulas involving (1) values of the power prediate with exponents smaller than

i, (2) the atomi prediate \ab = " for multipliation in the group, and (3) the

operations of addition and multipliation on numbers in the range from 0 to n:

� a = b

0

i� a = e

� a = b

1

i� a = b

� a = b

i

if 9j; k; ; d suh that i = j + k,  = b

j

, d = b

k

, a = d

� a = b

i

if 9j; k;  suh that i = jk,  = b

j

, a = 

k

.

We must now argue that this �rst-order indutive de�nition loses in O(log log n)

steps if we require i � n. This is beause (a) if i is not a power of two, we an

hoose j and k suh that i = j + k and j and k eah have at most half as many ones

in their binary expansions as does i (rounding up), and (b) if i is a power of two,

we an write i = jk where j and k are eah powers of two and have logs at most

half that of i (rounding up). Sine the logs of both log i and of the number of ones

in i's binary expansion are bounded by log log n, we reah the base ase in at most

2log logn phases.

Using [16, 15, 4℄ we onlude:

Proposition 3.1 For all a and b in the group and all i � n, the prediate \a = b

i

"

an be alulated in FOLL.

Note that this prediate is also easily omputable in L, deterministi logspae, by

suessively omputing b, b

2

, b

3

, . . . up to b

i

and omparing the result to a.
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3.2 Testing group properties

Cayley groups are a speial ase of permutation groups beause the regular repre-

sentation of a group G, i.e. as a permutation group on itself, is expliitly given by

the Cayley table of G. Although permutation groups have been studied extensively,

none of the upper bounds known for permutation group problems are strong enough

for our purposes. In fat, even the divide-and-onquer group deomposition strategy

whih was ultimately used in solving the permutation group membership and many

related problems [7℄ in NC is not appliable in our setting beause even a mere logn

iterative steps is out of reah.

As in most other work on the omplexity of group problems, it is sensible to

investigate groups by starting with the \easiest" groups, and working our way up

to the \more ompliated". Standard results [22℄ about the struture of groups

provide the basis for this approah. The most basi kind of group is yli, generated

by a single element. The abelian groups are diret produts of yli groups, and

the nilpotent and solvable groups are suessively more ompliated ompositions of

abelian groups. In most settings solvable groups are substantially easier to work

with than general, non-solvable groups. (For example, the iterated multipliation

problem in a �xed solvable group is in ACC

0

, while iterated multipliation in a �xed

non-solvable group is omplete [3℄ for NC

1

.)

Even yli groups an pose non-trivial omputational problems. For example, it

is L-omplete to determine whether a permutation of n elements is a single yle, even

if it is known to be the produt of at most two disjoint yles [11℄. Testing whether

a Cayley group is yli is learly doable in L, and the logspae algorithm looks like

an inherently sequential proess. With our new parallel algorithm, however, we an

show that this problem is not hard for logspae:

Theorem 3.2 Testing a Cayley group for yliity is in FOLL \ L.

Proof. By Proposition 3.1, in FOLL \ L we an ompute the prediate a = b

i

for any elements a and b and any number i � n. A group is yli, by de�nition, i�

9g8a9i(a = g

i

). This is a �rst-order formula using an atomi prediate in FOLL\L.

Sine FOLL and L are eah losed under FO(or AC

0

) redutions, we are done.

Corollary 3.3 Testing a Cayley group, or even an arbitrary multipliation table, for

being that of a yli group is hard for none of the lasses ourring in the inlusion

hain (1).

Abelianness of a group is a �rst-order property as the ommutativity axiom is

�rst-order. The next property to onsider is that of being a nilpotent group. Here

again, the power prediate is enough for us:
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Theorem 3.4 A group given by Cayley table an be tested for nilpoteny in FOLL\L.

Proof. For any prime number p, we de�ne a p-element to be an element whose

order is a power of p. To determine the p-elements in a group, we need to ompute

the orders of elements and do some simple number theory on numbers smaller than

n. The former is �rst-order de�nable from the power prediate:

o(a) = m$ (a

m

= e) ^ 8j(0 < j < m! a

j

6= e)

and is thus in FOLL\L. The latter is in FO: sine (log n)-bit numbers an be added

and multiplied in FO, the prediates \p is a prime smaller than n" and \m � n and

no prime other than p divides m" an be expressed in FO. Our FOLL\L nilpoteny

test then follows from a group-theoreti lemma:

Lemma 3.5 A �nite group G is nilpotent i�, for eah prime p dividing jGj, the set

of p-elements in G is a group.

Proof. See the Appendix.

The power prediate does not seem to be of muh help in testing solvability of a

Cayley group. The best solvability test known to the authors is in LOGCFL, using a

stak to look for a non-trivial iterated ommutator whose existene shows the group

to be non-solvable.

3.3 The CGM Problem

Reall that the Cayley group membership problem (CGM) is to input a Cayley group

G, a set of elements X, and a target element t, and to determine whether t is in the

subgroup of G generated by X. We now onsider the subases of CGM for eah of our

lasses of groups. Note that even the simplest ase of CGM(yli) was onjetured

to be logspae-hard in [5℄.

Theorem 3.6 CGM(yli groups) is in FOLL\L and (sine it is in FOLL) is hard

for none of the lasses ourring in the inlusion hain (1).

Proof. Using the FOLL \ L power prediate, we an �nd a generator g for the

group G and ompute, for eah h 2 X, the unique integer i < jGj suh that g

i

= h.

The least ommon multiple l of these disrete logarithms an be expressed in FO,

and t 2 hXi i� the disrete logarithm of t divides l.

We now turn to the ase of abelian groups, but we �rst formulate a useful stru-

tural property:
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De�nition 3.7 A family of groups has the f(n) power basis property if any set X

of generators for a group G of order n from the family has the property that every

element of G is a produt of at most f(n) powers of elements of X.

Example. The family of all groups trivially has the n power basis property beause

any element a group G of order n generated by a set X = fg

1

; : : : ; g

k

g is of ourse

expressible as �

m

j=1

g

e

j

i

j

for some m � n.

Lemma 3.8 Abelian groups have the logn power basis property.

Proof. Let B = fb

1

; : : : ; b

k

g be an arbitrary set of generators for G. Let G

i

be

the subgroup of G generated by fb

1

; : : : ; b

i

g. Let X be the set of elements b

i

suh that

G

i

is di�erent from G

i�1

. (Note that sine eah distint group G

i

has at least twie

as many elements as its predeessor, the size of X is at most log n. This argument

works for an arbitrary group, showing that any generating set has a subset of size at

most log n that also generates.)

Renumber the elements of X as fx

1

; : : : ; x

j

g and let H

i

be the subgroup spanned

by fx

1

; : : : ; x

i

g. It is lear by indution that eah group H

i

is equal to the orre-

sponding group G

`

generated by the elements fb

1

; : : : ; b

`

= x

i

g, so that the entire set

X generates G. Thus any element of G an be written as a produt of elements of

X, and sine G is abelian this produt an be rearranged into a produt x

e

1

1

: : : x

e

j

j

,

a produt of length at most logn as desired.

Theorem 3.9 CGM(abelian) is in FOLL.

Proof. Consider the following sets of elements de�ned indutively:

Y

0

= fx

i

: x 2 X; i � ng

Y

i+1

= fyz : y; z 2 Y

i

g

The set Y

i

ontains all produts of at most 2

i

powers of elements of X. Sine G,

and the subgroup of G generated by X, have the logn power basis property, Y

log log n

ontains all produts of at most log n powers of elements of the power basis and hene

ontains the entire subgroup generated by X.

Membership in the set Y

0

is �rst-order de�nable from the power prediate and X

and is thus in FOLL. Sine Y

i+1

is �rst-order de�nable from Y

i

, Y

log log n

is de�nable

from Y

0

, and thus fromX in FOLL. We need merely hek whether the target element

t is in Y

log log n

.

Note that this seond FOLL algorithm, unlike the �rst one for the power predi-

ate, annot (as far as we know) be simulated in L. We thus do not know whether

CGM(abelian) is in L.
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Nilpotent groups are parametrized by nilpoteny lass. In the full paper we will

de�ne this notion and prove that nilpotent groups of lass d have the O(log

d

n) power

basis property. Hene CGM for nilpotent groups of lass d is in FO(d log log n),

following the proof of Theorem 3.9. In partiular, CGM for nilpotent groups of lass

O(1) is in FOLL. These results, however, are subsumed by the following treatment of

solvable groups (as a group's solvability lass is no greater than its nilpoteny lass).

Solvability of a �nite group an be de�ned in terms of the derived series, where

group G

(0)

is G and group G

(i+1)

is de�ned to be the ommutator subgroup of G

(i)

,

the group generated by all elements of G

(i)

of the form x

�1

y

�1

xy. A group is solvable

i� G

(d)

is the trivial group for some d, and is de�ned to be solvable of lass d if d is

the smallest number making this true. We show that our approah to deiding CGM

extends to some solvable groups:

Theorem 3.10 CGM(groups of solvability lass O(1)) is in FOLL. CGM for groups

of solvability lass d(n) is in FO(d(n)log logn).

Proof. See the Appendix.

A general solvable group of order n may have solvability lass 
(logn), so this

result does not improve on the FO(log n) existing algorithm for CGM for any group.

But nilpotent groups annot have suh a large solvability lass, aording to the

following result (proved by Th�erien [26℄, possibly well-known):

Theorem 3.11 [26℄ Any nilpotent group of order n has solvability lass O(log logn).

Corollary 3.12 CGM(nilpotent) is in FO((log log n)

2

), and hene is not hard for

any lass in the inlusion hain (1).

We onjeture that these results are not the best possible, and that in fat

CGM(solvable) may be in FOLL. The question also remains whether the CGM prob-

lem for general groups is easier than the best known upper bound of SL. Might this

problem be in L, or solvable in o(log n) parallel time? Any hardness results for these

problems would appear to require the redution to onstrut a multipliation table

for a group | this has so far been an insurmountable problem even for a redution

from PARITY.

3.4 Arithmeti of small numbers

One of the outstanding open problems in omplexity theory is the omplexity of

integer division and iterated multipliation of integers. These and related problems

were shown to be in P-uniform TC

0

by Beame, Cook, and Hoover [8℄, but are not
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known to be in L-uniform TC

0

or in L itself. The non-uniformity of this algorithm

depends on the need to ompute disrete logarithms modulo many di�erent primes.

A related, slightly easier problem (see [21℄) is to multiply n numbers, eah of

O(log n) bits, modulo another number of O(log n) bits. This is known to be in L and

in L-uniform TC

0

, but not in NC

1

or logtime uniform TC

0

.

Sine the prediate \ab �  (mod m)" is in FO = AC

0

when a; b; ;m are

O(logn)-bit numbers, the table for the multipliative group of Z

m

is available in

FO. Hene we an identify a generator and ompute disrete logs modulo m in

FOLL. To do iterated multipliation we need to (i) ompute the disrete logs of all

the inputs, (ii) add them modulo �(m), and (iii) raise the generator to the result.

Computing �(m) is doable in FO. Iterated addition of integers is in logtime-uniform

TC

0

.

We thus have a uniform parallel algorithm that plaes this problem in any lass

that ontains both FOLLand FO+MAJ. Unfortunately uniform NC

1

is not known (or

even suspeted) to ontain FOLL.

A related question is how lose we an ome to iterated multipliation modulo

O(log n)-bit integers in, say, logtime-uniform NC

1

or TC

0

. If our integers eah have

O((log n)=(log log n)) bits, then FOLL operations on these numbers an be performed

in uniform NC

1

. Thus we an alulate disrete logs for these moduli, add them in

uniform TC

0

� NC

1

, and thus perform iterated multipliation in uniform NC

1

. In

the full paper we will disuss these and related appliations of our FOLL algorithms.

4 Conlusions and Open Problems

We have introdued a new omplexity lass FOLL, and shown several problems in-

volving groups presented as multipliation tables to be in it. This lass is loated

somewhere between AC

0

and AC

1

, yet seems inomparable with the more onven-

tional omplexity lasses in that omplexity spetrum. We note that this \strange

omplexity" of Cayley group problems is not unpreedented: the Cayley group iso-

morphism problem [19℄ is one of the only problems known to be solvable in polylog-

arithmi spae but apparently not in polynomial time.

The obvious question is whether our FOLL upper bounds extend to more om-

pliated groups, suh as all solvable groups or even general groups. Our power basis

property may be of independent interest. There is also the question of whether solv-

ability of a group an be heked in FOLL or by some other fast parallel algorithm.
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6 Tehnial Appendix

6.1 Proof of Lemma 3.5

A �nite group G is nilpotent i�, for eah prime p dividing jGj, the set of p-elements

in G is a group.

Let G be nilpotent. Then G is a a diret produt � of p-groups (for various primes

p, see [22, Theorem 5.39℄). Hene, for eah prime p dividing jGj, the p-elements of

G are preisely the elements whose diret produt omponents outside the p-groups

are trivial. Hene the set of p-elements is a group, isomorphi to the diret produt

of the p-groups ourring in �.

Conversely [22, Exerise 4.12℄, a �nite group G having a unique maximal p-

subgroup for eah prime divisor p of jGj is the diret produt of these maximal

p-subgroups. Hene, if the set of p-elements of G forms a group, then the latter must

be the unique maximal p-subgroup of G. If this holds for eah prime p, then G is a

diret produt of p-groups, hene nilpotent by [22, Theorem 5.39℄.

6.2 Proof of Theorem 3.10

CGM for groups that are solvable of lass d is in FO(d log log n). In partiular, CGM

for groups that are solvable of lass O(1) is in FOLL.

Our algorithm onsists of d rounds, eah of whih performs the following FOLL

operation. As in the proof of Theorem 3.9, we take the urrent generating set and

lose it �rst under powers and then under produts of length O(log n). We must show

that d suh rounds, starting from any generating set for any solvable group of lass

d, suÆe to produe the entire group.

We prove this by indution on d, with the base ase of d = 1 being Theorem

3.9. Let G (of order n) be an arbitrary solvable group of lass d and let H be G's

ommutator subgroup, so that H is solvable of lass d� 1. Let X be an arbitrary set

generating G. Sine the elements xH for eah x in X generate the quotient group

G=H and G=H is abelian, any element of G is a produt of at most logn powers of

elements of X, followed by an element of H. That is, after the �rst round of losure

under powers and O(logn) length produts, our set will ontain a representative of

eah oset of G=H.

We laim that H has a generating set Y eah of whose elements is a produt of

O(log n) powers of elements ofX. Given this laim, we apply the indutive hypothesis

to H and Y . After d � 1 more rounds, eah onsisting of losure �rst under powers

and then under O(log n) produts, our set will ontain every element of H. Sine

every element of G is a produt of one of our oset representatives and an element of

H, we are done.
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To prove the laim, let h be an arbitrary element of H and express h as a produt

x

1

: : : x

`

, where eah x

i

is an element of X. (Sine X generates G, it also generates

H.) De�ne y

0

to be e and then indutively de�ne elements y

i

suh that x

1

: : : x

i

y

i

is

in H and y

i

is a produt of O(log n) powers of elements of X. This is possible beause

y

i

need only be in the same oset of G=H as (x

1

: : : x

i

)

�1

, and G=H is abelian and

has the O(log n) power basis property. Note in partiular that y

`

an be taken to be

e, as x

1

: : : x

`

= h is already in H.

Now note that x

1

: : : x

`

an be rewritten as

(x

1

y

1

)(y

�1

1

x

2

y

2

)(y

�1

2

x

3

y

3

) : : : (y

�1

`

x

`

)

and that eah of the parenthesized terms is in H. So H is generated by the set of

terms of the form y

�1

xz where x is in X and y and z are eah produts of O(log n)

powers of elements of X. We have proved the laim and thus the theorem.
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