
The Emptiness Problem for

Intersections of Regular Languages

�

Klaus-J�orn Lange Peter Rossmanith

Institut f�ur Informatik, Technische Universit�at M�unchen

Arcisstr. 21, D-8000 M�unchen 2

Abstract

Givenm �nite automata, the emptiness of intersection problem is to determine

whether there exists a string which is accepted by allm automata. In the following

we consider the case, when m is bounded by a function in the input length, i.e.,

in the size and number of the automata. In this way we get complete problems

for nondeterministic space-bounded and timespace-bounded complexity classes.

Further on, we get close relations to nondeterministic sublinear time classes and

to classes which are de�ned by bounding the number of nondeterministic steps.

Introduction

There is a general relationship between emptiness problems of formal languages and

word problems of complexity classes as noted by Hunt ([10], see also [6]). In the case

of �nite automata this means that the problem of determining whether a deterministic

�nite automaton accepts a nonempty language is complete for nondeterministic loga-

rithmic space [11]. While this holds for both nondeterministic and deterministic �nite

automata, results change if we restrict them to have a singleton input alphabet, i.e.,

containing one element only. In this case the nonemptiness problem of nondeterministic

automata remains complete for nondeterministic logarithmic space, while it is solvable

in deterministic logarithmic space for deterministic automata (in fact, this problem is

complete for deterministic logarithmic space with respect to NC

1

reductions). These

results still hold true, if we generalize these problems by considering the emptiness of the

intersection of several �nite automata, as long as their number is �xed. However, the sit-

uation changes drastically, if we take arbitrary, unbounded numbers of �nite automata.

The nonemptiness of intersection problem for both deterministic and nondeterministic

�nite automata is PSPACE-complete (see [13]). If the common input alphabet of the

automata is singleton, the problem is NP-complete for both deterministic and nonde-

terministic automata [8].

In this work the number of automata will be bounded by some function g(n) in

the input length n, which is the length of the codings of these automata. Obviously,

any reasonable function g must ful�ll 1 � g � n for all n, since we cannot encode

�

work supported by the Deutsche Forschungsgemeinschaft, La 618 1-1 and SFB 0342 A4 \KLARA"

more than n automata within n symbols. By the above mentioned results the com-

plexity of the nonemptiness of intersection problem for g(n) automata must lie between

NSPACE(log n) and PSPACE. In fact, we will show in the next section that this problem

is NSPACE(g(n) � log(n))-complete, regardless of the determinism or nondeterminism of

the underlying automata. Thus for the �rst time there are now complete problems which

are not purely codings of machines and their inputs for classes like NSPACE(log

k

n) or

NSPACE(log

log logn

n). In the case of a singleton input alphabet the situation is a bit

less uniform. We will see that the emptiness of intersection problem of g(n) unary deter-

ministic �nite automata is logspace reducible to a set in NTIME(g

2

(n)), which implies

that it is solvable by a polynomial time machine which uses only a small amount of

working tape and makes only few nondeterministic steps. Thus this problem is very un-

likely to be NSPACE(logn)-hard, as long as g is strictly sublinear, e.g. polylogarithmic.

On the other hand we can reduce in logarithmic space any set in NTIME(

p

g(n)) to

this problem. In total these two relations show a very close relationship between unary

regular intersections and sublinear NTIME-classes.

Preliminaries

We assume the reader to be familiar with some basic notions of complexity theory (as

contained in [9], [2], or [18]). In addition we use the following notation: DTISP(f; g)

(NTISP(f; g)) is the class of all languages accepted by deterministic (nondeterministic)

Turing machines, which are simultaneously time bounded by f and space bounded by g.

Completeness and hardness are always meant with respect to deterministic many-

one logspace reducibilities, unless otherwise stated. L �

log

M means that L is reducible

to M .

Finally, a function g(n) is said to be log-constructible, if a logspace bounded Turing

machine can print g(n) in unary coding (i.e.: a

g(n)

) given the unary input a

n

. In general,

nearly all of polynomially bounded functions commonly used as resource bounds are log-

constructible. That is why we will use throughout of this paper only log-constructible

functions:

Assumption. In the following we denote by g(n) only functions 1 � g(n) � n that

are log-constructible.

Intersection emptiness of regular languages

In this section we investigate the intersection emptiness problem for a bounded number

of deterministic or nondeterministic �nite automata. In this way we will get complete

problems for classes between NSPACE(log n) and NSPACE(n

O(1)

) = PSPACE.

These problems have �nite automata as inputs. Therefore we need an appropriate

coding function h�i, which maps a sequence A

1

; A

2

; : : : ; A

m

of �nite automata into a

word hA

1

; A

2

; : : : ; A

m

i over a �xed alphabet X. We do not go into the details of h�i, but

assume it to ful�ll certain standard properties; for instance that the coding of states

and symbols is of logarithmic length. We then set

; 6=

\

DFA :=

�

hA

1

; A

2

; : : : ; A

m

i

�

�

�

A

i

is a deterministic �nite automaton;

1 � i �m; m � 1;

T

m

i=1

L(A

i

) 6= ;

�

:

The set ; 6=

T

NFA is de�ned analogously with respect to nondeterministic �nite au-

tomata. Kozen [13] showed the PSPACE-completeness of ; 6=

T

DFA. Since ; 6=

T

NFA

can be decided within polynomial space, ; 6=

T

NFA is PSPACE-complete, too. These

intractable problems become feasible, if we bound the number of �nite automata by a

�xed k. Thus we set

; 6=

k

\

DFA := fhA

1

; A

2

; : : : ; A

k

i j hA

1

; A

2

; : : : ; A

k

i 2 ; 6=

\

DFAg

and de�ne ; 6=

T

k

NFA in a corresponding way. By Galil we know that for each k both

; 6=

T

k

DFA and ; 6=

T

k

NFA are NSPACE(log n)-complete (see [8]).

In the following we will consider these problems for the case that the number m of

�nite automata is bounded by a function g(�) in the length n := jhA

1

; A

2

; : : : ; A

m

ij.

1

That is, we now consider

; 6=

g

\

DFA :=

(

hA

1

; A

2

; : : : ; A

m

i

�

�

�

�

�

hA

1

; A

2

; : : : ; A

m

i 2 ; 6=

T

DFAand

m � g(jhA

1

; A

2

; : : : ; A

m

ij)

)

:

Again, ; 6=

T

g

NFA is de�ned using nondeterministic �nite automata.

The �rst theorem of this section describes the hardness of intersection emptiness of

g(n) deterministic automata:

Theorem 1 NSPACE(g(n) log n) �

log

; 6=

g

\

DFA.

Proof: Let M be some NSPACE(g(n) log n) machine. We construct a function f

which is logspace computable and maps w 7! hA

1

; : : : ; A

g(n)

i to a coding of g(n) DFA's

A

1

,: : : ,A

g(n)

such that w 2 L

M

i� f(w) 2 ; 6=

T

g

DFA. Each word #c

1

#c

2

: : :#c

m

2

T

g(n)

i=1

L

A

i

corresponds to an accepting computation of M with input w, where c

j

are

con�gurations of M . One individual DFA A

i

checks whether #c

1

: : :#c

m

is a valid

computation of M by simulating M using its states to remember M 's con�guration.

Since M has n

O(g(n))

di�erent con�gurations, this would, however, require n

O(g(n))

states, which are too many. So DFA A

i

will only remember the state of M , the input

head position and an O(log n) long part of M 's working tape. In [13] each automaton

was responsible for only one symbol of the working tape which would lead in our case

to g(n) logn DFA's rather than only g(n). On the other hand, a \window" bigger than

O(log n) is not possible, if the number of states has to stay polynomial.

The correctness of a computation #c

1

: : :#c

m

of M will be tested by A

i

only for

the part of the working tape which A

i

is responsible for. For g(n) DFA's it is possible to

cover the whole working tape (in an overlapping manner). Those #c

1

: : :#c

m

accepted

simultaneously by all DFA's are then exactly M 's accepting computation and each DFA

A

i

has only a polynomial number of states, so hA

1

; : : : ; A

g(n)

i will be polynomially

bounded in its length and is therefore logspace computable. 2

The next theorem shows that ; 6=

T

g

NFA is contained in NSPACE(g(n) log n).

1

Here jvj denotes the length of a word v.

Theorem 2 ; 6=

g

\

NFA 2 NSPACE(g(n) log n).

Proof: To simulate one individual NFA it is su�cient to use logn space. For

hA

1

; : : : ; A

m

i simply guess a word w 2

T

m

i=1

A

i

symbol by symbol and simulate all

m NFA's A

1

,: : : ,A

m

simultaneously step by step on w. 2

Please note that though we have ; 6=

T

g

NFA 2 NSPACE(g(n) logn) it is very

unlikely that ; 6=

T

g

DFA 2 DSPACE(g(n) log n) holds due to the completeness of

; 6=

T

g

DFA for NSPACE(g(n) log n). The \reason" why intersection emptiness of

DFA's is as hard as for NFA's can be seen as follows: Nondeterministic guesses are

needed to guess a word in the intersection and for the NFA's built-in nondeterminism.

For DFA's, however, the next state has also to be guessed, since the next input sym-

bol has to be guessed. For a singleton input alphabet this is no longer true; and in

fact ; 6=

T

g

Tally-DFA 2 DSPACE(g(n) log n). In the next section we will improve this

relation. From Theorems 1 and 2 we get the following corollary:

Corollary 3 Both ; 6=

T

g

NFA and ; 6=

T

g

DFA are complete for NSPACE(g(n) logn).

In particular, we present a �rst \natural" complete problem for NSPACE(log

k

n):

Corollary 4 ; 6=

log

k�1

n

T

DFA is complete for NSPACE(log

k

n), for k � 1.

We proceed with the investigation of a re�nement of the intersection emptiness

problem: The smallest word in the intersection of the languages of g(n) automata can

be as large as n

g(n)

, where n is the length of the coding of all g(n) automata. If we

are interested in the existence of short words in the intersection of NFA's and DFA's

rather than in the mere existence, the problem gets much simpler. In the following we

will regard words of linear length as \short". Instead of linear length we could bound

the length also by any �xed polynomial without changing the results.

By ; 6=

T

g

DFA

lin

we denote the language of all codings of up to g(n) DFA's with

the property that there is a word w in the intersection of their languages which has

linear length, i.e., jwj = O(n).

; 6=

T

g

DFA

lin

:=

n

hA

1

; : : : ; A

m

i 2 ; 6=

T

g

DFA

�

�

�

9

w2

S

m

i=1

L(A

i

)

: jwj � jhA

1

; : : : ; A

m

ij

o

Analogously, we de�ne ; 6=

T

g

NFA

lin

. The languages ; 6=

T

g

DFA

lin

and ; 6=

T

g

NFA

lin

will turn out to be complete for simultaneously time and space bounded classes between

NTISP(pol; logn) = NSPACE(log n) and NTISP(pol;pol) = NP. This leads especially

to complete problems for all levels of the NSC-hierarchy, i.e., the nondeterministic ana-

logue of the SC-hierarchy (see [5]).

Theorem 5 ; 6=

g

\

NFA

lin

2 NTISP(pol; g(n) logn).

Proof: In contrast to the proof of Theorem 2 we have to simulate g(n) NFA's on a

word of linear length which is possible in time ng(n). 2

We can also prove the hardness of ; 6=

T

g

DFA

lin

:

Theorem 6 NTISP(pol; g(n) logn) �

log

; 6=

g

\

DFA

lin

.

Proof: Since NTISP(pol; g(n) logn) �

log

NTISP(

p

n; g(n) logn) holds, we can start

with an NTISP(

p

n; g(n) log n) machine M and proceed as in the proof of Theorem 1.

2

Intersection of Regular Tally Languages

This section deals with the intersection emptiness problem of g(n) �nite automata with

a singleton input alphabet. Thus we will consider the problem

; 6=

T

Tally-DFA :=

8

<

:

hA

1

; A

2

; : : : ; A

m

i 2 ; 6=

T

g

DFA

�

�

�

�

�

A

i

is a deterministic �nite

automaton with input alphabet

fag for 1 � i � m

9

=

;

.

Using nondeterministic �nite automata we get ; 6=

T

Tally-NFA. As a consequence of

[17] and [8] both ; 6=

T

Tally-DFA and ; 6=

T

Tally-NFA are NP-complete.

Correspondingly, we de�ne the problem ; 6=

T

k

Tally-DFA and ; 6=

T

g

Tally-DFA

for an integer k and (log-constructible) function g. Using standard methods, also the

DSPACE(log n)-completeness of ; 6=

T

k

Tally-DFA can be obtained for each k. The

later result is not simply caused by the use of logspace reducibilities

2

. Depending in the

suitable choice of the coding h�i, these completenesses can be obtained with respect to

very �ne reducibility types like AC

0

or even DLOGTIME reductions.

The complexities of these problems show tight relationships to classes of bounded

nondeterminism. So, we will consider machines which are simultaneously bounded

in time, space, and number of executed nondeterministic steps. By TINOSP(f(n);

g(n); h(n))

3

the class of languages recognized by machines which perform at most f(n)

steps, g(n) of which may be nondeterministic, and use at most h(n) space.

A well known example of such a class is the �

k

-hierarchy of NP-machines making

at most O(log

k

n) nondeterministic steps, i.e., �

k

= TINOSP(pol; log

k

;pol), which lies

between P and NP and has complete problems for each of its level (see [1]). Other

examples of bounded nondeterminism can be found in [3, 7, 12].

We start by stating some simple properties of bounded nondeterminism classes:

TINOSP(|;|; f(n)) = NSPACE(f(n));

TINOSP(|; 0; f(n)) = TINOSP(|; f(n); f (n)) = DSPACE(f(n));

TINOSP(pol;|; f(n)) = NTISP(pol; f(n)):

If f(n) 2 o(n), it is not known, whether GAP 2 TINOSP(pol; f(n); f (n)) holds. But if

either the space or nondeterminism bound is dropped, GAP is clearly contained in the

resulting classes.

The following theorem gives us a �rst upper bound in terms of TINOSP-classes:

2

Almost every element of DSPACE(log n) is DSPACE(log n)-complete with respect to logspace

reductions!

3

TINOSP stands for TImeNOndeterminismSPace

Theorem 7 ; 6=

g

\

Tally-DFA 2 TINOSP(pol; g(n) logn; g(n) log n).

Proof: First, the length of a word in the intersection can be guessed in g(n) logn

nondeterministic steps and stored within g(n) logn space. Then it has to be veri�ed,

whether the word of this length is accepted by all of the Tally-DFA's. This cannot be

done by a simple simulation due to the polynomial time bound. However, since the

relevant part of a Tally-DFA corresponds to a transition diagram which consists of a

�xed number of state changes ending in a cycle, it is possible to check membership by

some simple computations modulo m. 2

In the following we will compare emptiness of intersection problems with nonde-

terministic sublinear time classes. To work with sublinear time makes it necessary to

augment the usual model of a Turing machine with an Index Tape, which enables the

machine to access its input tape more quickly. We refer the reader to [16] and [4].

4

We already pointed out that ; 6=

T

g

Tally-DFA 2 DSPACE(g(n) logn) holds (see

last section) and therefore also ; 6=

T

g

Tally-DFA 2 ATIME((g(n))

2

log

2

n). As an

alternative to Theorem 7 we show an improvement of this bound

5

:

Theorem 8 ; 6=

g

\

Tally-DFA �

log

NTIME((g(n))

2

log

2

n).

Proof: We use a reduction that maps the coding hA

1

; : : : ; A

g(n)

i of the Tally-DFA's to

a table that contains �

i

A

j

(q

j;k

) for i = 1; 2; 4; 8; : : : ; 2

g(n) logn

, where �

A

j

is the transition

function of A

j

and q

j;k

is the kth state of A

j

, i.e., �

i

A

j

(q

j;k

) is the state reached from the

state q

j;k

of A

j

in exactly i steps, i.e., after reading a tally word of length i. This table

is computable within logarithmic space using modulo computations as in Theorem 7.

Given that table, an NTM can guess the length of a word w = a

`

2

T

g(n)

j=1

L

A

j

. It

can check, whether w 2 L

A

j

by computing �

`

A

j

(q

j;0

) = �

2

i

1

A

j

� �

2

i

2

A

j

� � � � � �

2

i

m

A

j

(q

j;0

) with

the help of the table. Here m = g(n) logn and the numbers i

1

; : : : ; i

m

are directly given

by the binary representation of `. If we adopt a model with non-erasing index tape this

takes g(n) log

2

n steps which gives for a total of g(n) Tally-DFA's a running time of

(g(n))

2

log

2

n. 2

Note that only g(n) logn nondeterministic steps were used, so it was actually proved

; 6=

g

\

Tally-DFA �

log

TINOSP((g(n))

2

log

2

n; g(n) logn; g(n) logn):

Theorem 7 implied that it is possible to solve ; 6=

T

g

Tally-DFA by using polynomial

time and a small number of nondeterministic steps at the end of the computation rather

than at the beginning. Nondeterminism at the beginning of a computation seems to be

more powerful than at the end as illustrated by

4

We should note, that we use the noneraser version of an index tape, which is not necessarily erased

after each use.

5

Observe that NTIME(g) is not closed under logspace reducibility unless we choose g = pol

1. space bounded classes [14]: P = P

NSPACE(logn)

� NSPACE(log n)

P

= NP,

2. bounded nondeterminism [1]:

P(NPOLYLOGTIME) � NPOLYLOGTIME(P) =

S

i>0

�

i

,

3. blind nondeterminism [15]: ENL � BNL.

We were not able to achieve completeness results for the intersection emptiness

problem for tally languages as it was the case for the general problem. We can, however,

prove the following hardness result:

Theorem 9 NTIME(g(n)) �

log

; 6=

G(n)

\

Tally-DFA for G(n) =

(g(n))

2

log g(n)

logn

.

Proof: A computation of a g(n) time bounded NTMM consists of g(n) con�gurations

of size O(g(n)), which can be seen as a matrix of g(n)�g(n) symbols. Let p

1

; : : : ; p

(g(n))

2

denote the �rst (g(n))

2

prime numbers. Let the symbols S

1

; : : : ; S

(g(n))

2
in the matrix

be numbers from 0 to k. Then a computation can be coded in unary by a

p

S

1

1

�p

S

2

2

�:::�p

S

r

m

,

r = (g(n))

2

. We will show how to construct for some input word w the encoding

hA

1

; : : : ; A

m

i of m Tally-DFA's such that w 2 L

M

i� ; 6=

T

m

i=1

L

A

i

. For this end we

cover the g(n)� g(n) matrix with small squares of size `� `.

Each Tally-DFA A

i

checks for one small square whether the input a

j

could corre-

spond to some accepting computation of M . In order to do this it is necessary for A

i

to

\know" `

2

certain symbols of the whole square. The ith symbol is exactly S

i

= j mod p

i

which can be computed by a Tally-DFA having p

i

states. To compute simultaneously

`

2

symbols S

i

1

; : : : ; S

i

`

2

an Tally-DFA with p

i

1

� p

i

2

� : : : � p

i

`

2

states is su�cient. The ith

prime number p

i

is of order O(i � log i), so we get a Tally-DFA with O(n) states, if we

choose p

i

1

� p

i

2

� : : : � p

i

`

2

2 O(p

`

2

(g(n))

2

) = O((g(n))

2`

2

� log

`

2

g(n)) = O(n). From this we

get `

2

� log g(n) 2 O(n) and �nally `

2

2 O (logn= log g(n)). In order to cover the whole

g(n)�g(n) square with `� ` squares we need O(g(n

2

)=`

2

) = O((g(n))

2

� log g(n)= log n)

individual Tally-DFA's. 2

Turning to the nondeterministic case, the situation seems to be more di�cult. Al-

though we know, that ; 6=

T

g

Tally-NFA is NSPACE(log n)-complete in contrast to

; 6=

T

g

Tally-DFA, there seem to be no better lower bounds than those given for the

deterministic case in Theorem 9.

On the other hand we can give upper bounds analogously to the deterministic case,

if we do not use logarithmic space, but polynomial time reductions. Before doing this we

prove containment in the appropriate bounded nondeterminism class. In this way the

next theorem states that the intersection emptiness problem of g(n) Tally-NFA's can be

solved in polynomial time, if we allow a limited number of g(n) logn nondeterministic

steps. For the border case g(n) = n this is the best result possible since in these cases

the problem becomes NP-complete, while for g(n) = 1 (or g(n) = const) the theorem is

not optimal because then the problem gets NSPACE(log n) complete, while Theorem 10

gives only the upper bound P.

Theorem 10 ; 6=

g

\

Tally-NFA 2 TINOSP(pol;pol; g(n) logn).

Proof: For hA

1

; : : : ; A

g(n)

i there exists a word w of length O(n

g(n)

) in

T

g(n)

i=1

L

A

i

, if

there exists some word in this intersection. The �rst step is again to guess the length

of such a word and store it within g(n) logn space. To verify membership of w in

L

A

1

,: : : ,L

A

g(n)

we proceed as follows:

Within polynomial time and space we can compute �

2

k

A

i

, i.e., the transition function

of A

i

iterated 2

k

times, for k = 0; : : : ; g(n) log n. �

2

k

A

i

can be computed from �

2

k�1

A

i

as

follows:

�

2

k

A

i

(q

i;j

) :=

[

q

�

2

k�1

A

i

(q); q 2 �

2

k�1

A

i

(q

i;j

)

In this way it is not necessary to store the transition function for all possible subsets

of states, but polynomial space is su�cient. From this it is easy to compute �

j

A

i

for

j � n

g(n)

by the same technique. 2

The next theorem shows a reduction of ; 6=

T

g

Tally-NFA to NTIME((g(n))

2

log

2

n).

In contrast to Tally-DFA's we have to use a polynomial time reduction, since the com-

putation of the transition table seems to take a lot of space.

Theorem 11 ; 6=

g

\

Tally-NFA �

pol

NTIME((g(n))

2

log

2

n).

Proof: As in Theorem 10, the reduction will compute �

2

k

A

i

. The length of a word w

in the intersection is not computed at one blow in advance, but bit for bit in a binary

representation.

The actual computation of the time bounded NTM keeps a list of states for all

Tally-DFA's A

1

; : : : ; A

g(n)

which is initialized with the initial states. When the kth bit

of the binary representation of the length of w is guessed, for each Tally-NFA A

i

the

following is done:

If q

i;j

is the current state of A

i

held in the list, then q

i;j

is replaced by some state

q

i;j

0

2 �

2

k

A

i

(q

i;j

). Which q

i;j

0

is choosen, will be determined nondeterministically which

takes O(log n) nondeterministic steps. The input is accepted, i� the list contains only

�nal states after the computation is �nished. 2

We close this section by noting, that the restrictions of these unary emptiness prob-

lems with respect to deterministic (resp. nondeterministic) �nite automata to short

words, as it was done in Theorems 5 and 6, always leads to DSPACE(log n)-complete

(resp. NSPACE(log n)-complete) problems regardless of the size of g.

We close this work with the question whether similar results could be obtained, if

we would consider alternation instead of nondeterminism.

References

[1] C.

�

Alvarez, J. D��az, and J. Tor�an. Complexity classes with complete problems

between P and NP-C. In Proc. of Conf. on Funfamentals of Computation Theory,

number 380 in LNCS, pages 13{25. Springer, 1989.

[2] J. Balc�azar, J. D��az, and J. Gabarr�o. Structural Complexity Theory I. Springer,

1988.

[3] J. F. Buss and J. Goldsmith. Nondeterminism within P . In Proc. of 8th STACS,

number 480 in LNCS, pages 348{359. Springer, 1991.

[4] S. R. Buss. The boolean formula value problem is in ALOGTIME. In Proc. 19th

Ann. ACM Symp. on Theory of Computing, pages 123{131, 1987.

[5] S. A. Cook. A taxonomy of problems with fast parallel algorithms. Inform. and

Control, 64:2{22, 1985.

[6] J. Dassow and K.-J. Lange. Computational complexity and hardest languages of

automata with abstract storages. In Proc. of 8th FCT, number 529 in LNCS, pages

200{209. Springer, 1991.

[7] P. C. Fischer and C. M. R. Kintala. Real-time computations with restricted non-

determinism. Math. Systems Theory, 12:219{231, 1979.

[8] Z. Galil. Hierarchies of complete problems. Acta Inf., 6:77{88, 1976.

[9] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Language, and

Computation. Addison-Wesley, Reading Mass., 1979.

[10] H. Hunt. On the complexity of �nite, pushdown, and stack automata. Math.

Systems Theory, 10:33{52, 1976.

[11] N. Jones. Space-bounded reducibility among combinatorial problems. J. Comp.

System Sci., 11:68{85, 1975.

[12] C. M. R. Kintala and P. C. Fischer. Re�ning nondeterminism in relativezed

polynomial-time bounded computations. SIAM J. Comput., 9(1):46{53, 1980.

[13] D. Kozen. Lower bounds for natural proof systems. In Proc. of 18th FOCS, pages

254{266, 1977.

[14] R. Ladner and N. Lynch. Relativization of questions about log space computability.

Math. Systems Theory, 10:19{32, 1976.

[15] I. Niepel. Logarithmisch platzbeschr�ankte Komplexit�atsklassen|Charakterisie-

rung und offene Fragen. Diplomarbeit, University Hamburg, Mar. 1987. (in Ger-

man).

[16] W. Ruzzo. On uniform circuit complexity. J. Comp. System Sci., 22:365{338, 1981.

[17] L. Stockmeyer and A. Meyer. Word problems requiring exponential time: prelimi-

nary report. In Proc. of the 5th Annual ACM Symposium on Theory of Computing,

pages 1{9, 1973.

[18] K. Wagner and G. Wechsung. Computational complexity. Reidel Verlag, Dordrecht

and VEB Deutscher Verlag der Wissenschaften, Berlin, 1986.

