
On the Distributed Realization of Parallel

Algorithms

Klaus-Jörn Lange⋆

Fakultät für Informatik, Universität Tübingen

Abstract. This paper discusses some aspects of implementing parallel
algorithms on distributed computer systems like a LAN–connected set
of workstations. The notions of parallel and distributed computing are
represented by their interrelation. The possibility of distributed simula-
tions of parallel models is discussed. Finally, the complexity theoretical
consequences will be addressed.

1 Introduction

The efficient and correct use of distributed computing systems is one of the most
important and challenging topics of the present computer science. The abun-
dance both of distributed problems and of distributed models can be roughly
distinguished into two main branches: in the problem area of mastering dis-
tributed systems and in that of making efficient use of them. The latter case
includes the task of speeding up computations by using parallelism. In this con-
text, only few and rather easy synchronization problems like race analysis or
dead-lock avoidance occur. But the process of speeding up cannot totally avoid
to take these matters into account since every physical realization of a parallel
model necessarily exhibits concurrent phenomena. The topic of this paper is to
discuss certain aspects of the distributed realization of parallel algorithms on
rather weak “parallel” systems like a set of Ethernet connected workstations.
This research has been carried out in the projects KLARA and KOMET at the
Technische Universität München and the Universität Tübingen.

The paper is organized as follows. We will first relate the notions of dis-
tributed and parallel computing and compare their properties. Then, the pos-
sibilities and limitations of bridging the gap between parallel and distributed
models are discussed. Finally, some remarks concerning parallel complexity the-
ory are given.

2 Parallel and Distributed Computing

This section considers distributed and parallel computing in their interrelation.
First, it deals with the comparison of distributed vs parallel problems, mod-
els, and programming. Then, it considers the usefulness of parallel models as
intermediate steps between parallel problems and distributed models.

⋆ Supported by the DFG, Project La618/3-2



2.1 Parallel vs. Distributed

The aim of this subsection is to contrast and to compare the notions of parallel
and distributed computing. Things will be (over)simplified in order to exhibit
the characteristic distinctions of these two notions. A related and very inter-
esting discussion referring to aspects of concurrency has recently been given by
Panangaden [12].

Parallel problems, which ask for the possibility of decreasing running time
by using parallelism, are a sub-area of distributed problems which also include
questions of concurrency, nondeterminism, or liveness. While central distributed
problems, like for instance correctness, are rather simple and uninteresting in the
parallel case, issues like efficiency, the main concern of parallel computing, are
up to now nearly irrelevant in the distributing setting. Efficiency is an objective
and very crucial measure of success; there is no sense in any parallel solution,
as correct or beautiful it might be, which gives no speed-up. While concurrent

problems ask for the taming of distributed systems, parallel problems simply
want to exploit them.

In the following, we use the term distributed problems in the general sense as
the task of managing systems involving several processing units including coor-
dination of the components of distributed systems. In contrast, we speak about
parallel problems if we are solely interested in speeding up the computation.
We remark here that every “physical” or realized system exhibits concurrent
behavior. Reality is not parallel, but inherently distributed.

The confrontation of distributed vs. parallel also pertains to models and
algorithms. Distributed algorithms are designed for distributed models, i.e., for
systems composed of several more or less closely coupled processors exchanging
messages. There is broad variety of distributed models. Throughout this paper
we will consider rather weak distributed systems.

Also within parallel computing we find a large variety of models ranging from
PRAMs with global memory to systolic nets with distributed memory. Which
model should one choose for one’s purposes? It depends, since there is sort of
trade-off between ease of software development and hardware availability.

– The stronger the model, the easier to design and express parallel algorithms.
In addition, it might be easier to give proofs of correctness.

– The weaker the model, the higher the chance to find an existing parallel
system coming close to the chosen model.

Throughout the paper the following notation will be used in connection with
parallel algorithms. The number of steps performed by a parallel program is
called the parallel running time. Often we denote or bound it by T (n) if n is
the size of the input. When there is a related sequential algorithm we denote or
bound its running time by t(n). The speed-up is then the quotient t(n)/T (n).
The number of processors used by the parallel algorithm is denoted by P (n). An
algorithm is called optimal if the number of processors is linear in the speed-up
or, equivalently, if the time-processor-product of the parallel algorithm is linear
in the sequential time.



There are essential differences in programming parallel and distributed sys-
tems. A distributed program for a distributed system consists in a set of sequential
programs which communicate with each other by the help of mechanisms like
semaphores or message passing. On the other hand, a parallel program consists
in a sequence of steps which are executed in a synchronized way by all processing
units. These differences are indicated in the following diagram:

Time

❄

✲✛

Proc. Units

Distributed Computing

· · · Time

❄

✲✛

Proc. Units

Parallel Computing

...

Let us consider an example. The exchange of two register values a and b
could be done in parallel by performing a := b on one processor and b := a at
the same time step on another one. Running the same pieces of program in an
asynchronous way leads to unforeseeable results. To put it in a more picturesque
scene, consider acrobats throwing and catching dishes “in parallel”. Without
a perfect synchrony, a pile of broken fragments would result. Alternatively, a
protocol of exchange messages like “Are you ready?” – “Yes. Please throw now!”
– “Did you get it?” – “Yes, I got it.” . . . would preserve the dishes – or not · · ·

“Did you get it?” – “No. Did you throw it?” – “CLINK!”.

2.2 Distributed Solutions of Parallel Problems

Now let us discuss the process of solving parallel speed-up problems on available
parallel computing systems. Since these necessarily show distributed behavior,
typical problems of concurrency theory have to be solved during this process
despite the fact that the original question of speeding up the running time needed
to compute some function is free of these distributed aspects.

In the following we will assume the available hardware to be rather weak
for instance a bunch of workstations coupled by an Ethernet. An appropriate
formal model for this situation would be a set of nodes or active elements partially
connected by a set of directed edges. There is no global clock; instead each node
has its own program counter. The nodes communicate by sending and receiving
messages along the edges. Typically, communications are very slow compared to
local operations.

Any use of a machine or model like that involves the solution of intricate dis-
tributed problems. Let us symbolize this long way to go when solving distributed



problems by constructing algorithms on distributed models by the following di-
agram:

Distributed
Problem

Distributed
Algorithm

✲

The use of distributed systems in order to speed up computations is a sub-
area of the realm of all distributed problems. The nature of this kind of dis-
tributed problems exhibits fewer concurrent aspects and the process of finding
a solution on the distributed system should be easier than the general case.
In some sense it is a detour to treat speed-up questions simply like arbitrary
distributed problems. This might be indicated by the following diagram:

Distributed
Problem

Parallel
Problem

Distributed
Algorithm

✲

✟
✟

✟
✟

✟
✟

✟
✟✙

The restricted amount of distribution in parallel problems should offer easier
solutions. Further on, efficiency which is most important when trying to speed
up running time is usually a rather unimportant and not formalized aspect of
distributed problems. These are the reasons to use parallel models which serve
as a platform to formalize and express parallel algorithms. But these models
leave us with the task of efficiently transforming the parallel algorithm onto a
distributed system. This situation is depicted in the following diagram:

Distributed
Problem

Parallel
Problem

Parallel
Algorithm

Distributed
Algorithm

✲

✟
✟

✟
✟

✟
✟

✟
✟✙

✲

❍
❍

❍
❍

❍
❍

❍
❍❥

Thus the problem of speeding up the running time needed to solve some com-
putational problem is now divided into two steps: first, construct an algorithm
on a parallel model and, second, simulate the parallel model on the distributed
system. The first step of coming from a problem to a solution is much easier in



the parallel setting than in the distributed one. Since there are no concurrent
problems involved the whole process is similar to the sequential case. But the
more powerful the chosen parallel model is the easier is the step of finding a
parallel solution to a speed-up problem. This is the reason for the abundance of
algorithms designed for powerful parallel models like PRAMs or hypercubes.It is
significant for these models that in general there are no efficient transformations
known leading down to realistic distributed models.

It is the aim of this paper to discuss this “missing” second step under con-
tradicting aspects like efficiency, correctness, ease of handling, or independence
of the underlying distributed system.

3 Model Discussion

In this section parallel and distributed models are discussed and their main
differences brought out.

3.1 Constants and Functions

First let us consider the degree of parallelism, i.e. the number of processing units.
Off course, every real, existing machine has a bounded number of processors.
Even if this number may vary in time it surely doesn’t grow with the input size.
Hence this number, at first sight, seemingly has to be modeled by a constant.
But in order to get a both general and robust (i.e. model independent) theory
constants are to be avoided.

On the parallel side of the gap the degree of parallelism will be treated as
a resource measured as a function in the input length. This might be compared
with the opposition of finite vs infinite memory. Although every existing com-
puting system is finite, the appropriate models are infinite like Turing automata
or register machines. In some sense even the simplest algorithm like a matrix
multiplication can be regarded as a uniform family of algorithms: For each pos-
sible dimension of the input matrix there is one member of the algorithm family
solving the matrix multiplication for matrices of this size.

There is no specific algorithmic theory for memory size of 16MB in contrast
to 32MB and in the same way there is no specific theory for parallelization on
machines with 16 processors in contrast to 32 processors.

It should be added that the danger of abusing this feature is higher for the
degree of parallelism than for the memory size, since space is bounded by time
which is in general not true for the degree of parallelism.

Thus on the parallel model the degree of parallelism is treated as a function
of the input length.

On the other hand, on the distributed side, the number of processing units
is modeled by a constant. This makes the first crucial difference between the
parallel and the distributed side of the gap. The other differences of parallel and
distributed models, described in the following subsection, point to fundamental
difficulties in the process of simulating a parallel model on a distributed one.



But this is not the case for the number of processors, since it is no problem to
simulate a larger number of processors by a smaller one without increasing the
time-processor-product. In the contrary, the high degree of parallelism in many
parallel algorithms could be regarded as a resource which can be exploited in
order to get efficient implementations on distributed systems.

3.2 Local and Global Properties

There is an abundance of platforms for parallel programs reaching from systolic
arrays to PRAMs. The common feature of all these models is that they assume
global time: all participating processors are assumed to perform their steps in
a synchronized way; no processor start its i + 1st step before all processors
finished the execution of their ith step. Global time is the basis for global space:
all processors share a common address space and the access time to the memory
is independent of the accessed address.

In the following, when speaking of the parallel model being the platform for
some parallel algorithms, we refer to a model like a PRAM with global time and
global space using an input dependent number of processors and programmed
in the parallel way.

The world of distributed models is an unintelligible jungle, as well. Probably
the weakest, but also most common form of an existing distributed computing
system is a set of workstations connected by some local area network. Inspired by
this the distributed model will have local time, i.e. each processing unit will have
its own clock or program counter which is not adjusted by any “master clock”.
Further on, the model has local space: each unit has its own local memory and
cannot access directly the memory of other unit but has to simulate that by
message passing over the network. In addition, the number of units is bounded
and independent of the size of the actual input to be solved. On the other hand,
this number is not regarded as fixed since it might change by technical faults
or successful applications for grants every day. Finally, the distributed model is
used by a distributed program.

The gap to be bridged between the parallel algorithm and the distributed
algorithm, depicted in the last diagram, can now be given in more detail:

Global Time
Global Space
p(n) Units

Parallel Program

Parallel Model

Local Time
Local Space
O(1) Units

Distributed Program

Distributed Model

✲

4 On the distributed realization of parallel Models

A parallel model like a PRAM with all its properties cannot be realized in a scal-
able way for several physical reasons [18,19]. But even with a bounded number



of processing elements this seems to be at least expensive if it is to be done in a
general way. One possibility is to use the fact that the degree of parallelism of a
parallel program is much larger then the actual number of processing elements.
This slackness leads to situation that every processor has to serve a large num-
ber of the parallel jobs. Using a powerful interconnection network it is possible
to hide the cost for latency of the distributed machine behind the computation
time for the many jobs [13,17]. This scheduling approach has the advantage that
independently of the parallel program to be executed the running time of the
distributed system will with sufficiently high probability be proportional to the
parallel time-processor-product. On the other hand, it should be observed that
this solution uses randomization and is not deterministic. Further on, its inter-
connection network is logarithmic and hence this approach is not scalable. In
addition, this interconnection construction is intricate and cannot be simulated
by a simple network like an Ethernet, not even in the case of a small num-
ber of participating processing elements. Remarkable effort in building a PRAM
has been made by W Paul and his group [1]. Their activities even include the
implementation of a PRAM-specific parallel programming language [6].

A totally different way of bridging this gap is to use the fact that in most
existing interconnection networks it is cheaper to send one large message than
to send many small ones. This leads to the exploitation of locality. The disad-
vantage of this approach is that it is not as general as the scheduling approach.
Not every parallel algorithm provides enough locality and probably not every
parallel problem allows for a parallel algorithm with enough locality. This gives
the (complexity) theoretical issue to say, exactly which problems are efficiently
solvable using locality, and the practical issue to say, how the efficiently solv-
able problems can be efficiently solved. In the following, we will not consider
the strategy of caching to try to find implicit locality by working with large
neighborhoods of single addresses. Instead we will follow the approach to handle
locality explicitly in the parallel algorithm.

4.1 Using Locality

In this subsection we consider some aspects of using locality and propose strate-
gies to use it1. They are presented a bit more detailed and with some few exam-
ples in [5].

Let us shortly review the gap between the parallel Model and the distributed
one. We have a parallel algorithm, i.e. a sequence of parallel steps, working
with a large number of processors which communicate via a shared memory at
no extra cost. We want to execute or simulate this program on a distributed
machine consisting of a smaller number of processing units which communicate
by exchanging messages via a network. The time needed to exchange a message
through the network is much larger than that to access local data.

1 Some of these theoretical results and their implementations can be found under
http://www-fs.informatik.uni-tuebingen.de/forschung/komet.html.



Since the degree of parallelism is much larger than the actual number of
processors, each node of the distributed system will simulate many of the parallel
processes. Those of them which are laid on on the same physical node share
an ideal “PRAM atmosphere”: there are no synchronization problems and no
differences between local and remote communication; they share global time and
global space. Problems are caused by those processors which want to interact
but are laid on different nodes. One way to cope with these problems is simply
to consider only very restricted parallel algorithms.

– Admit only regular algorithms which allow to block many small communi-
cations into few large ones.

– Admit only simple algorithms for which the transfer from global time to
local time can be done without too much overhead

Off course, this is not possible for all algorithms and is not clear which problems
possess such algorithms. Nevertheless, there are simple and regular algorithms
for many relevant problems like sorting or matrix multiplication.

Thus, for adequate algorithms we are faced with two major steps: the dis-

tribution of space and the distribution of time. It is a central dogma of this
contribution that these two steps have to be performed in this order: first go
from global space to local space and afterwards go from global time to local
time. The first step asks for the solution of parallel problems and cares for effi-
ciency. The distribution of time poses distributed problems. Its main objective
will be the solution of concurrency problems. Hence we propose to work with
an intermediate model with local memory but global time. The situation can be
depicted as follows:

Global Time
Global Space
p(n) Units

Parallel Program

Parallel Model

Global Time
Local Space
O(1) Units

Parallel Program

Border Model

Local Time
Local Space
O(1) Units

Distributed Program

Distributed Model

✲ ✲

The Border model marks the frontier between parallel and concurrency prob-
lems. It is used by a designer (of space) for parallel algorithms, who cares for
efficiency, knows properties of his algorithm, but doesn’t know too much about
distributed problems or tools offered by concurrency theory. The border model
is implemented by an expert (of time) dealing with distributed problems. The
expert gets formalized, explicit information about synchronization aspects of the
parallel algorithm. This information is given in terms of declarations in the par-
allel program by the designer. The expert implements the parallel model on a
distributed one and guarantees the correctness of his simulation as long as the
conditions declared by the designer are fulfilled.



Distribution of Space: Virtual Topologies In this first step the gap from a
purely parallel model to the weaker border model has to be bridged. Every paral-
lel algorithm exhibits in its access to the global memory some pattern which we
will call virtual topology. This doesn’t pertain solely to the arrangement of the
processors. For instance, both a typical 2D-grid algorithm like a red-black peb-
ble game and Warshall’s algorithm would name their processors by two indices.
But while the grid-algorithm uses communications only between neighbors, War-
shall’s algorithm exhibits a clique communication on each column and on each
row. Thus, the virtual topology is given by naming scheme of processing units
together with a collection of multicasts. A multicast expresses the parallel move-
ment of data in global memory possibly including concurrent read and write
features. It consists in one or more sets of names of processing units acting as
senders, one or more sets of units acting as receivers and information regarding
which data to be send. Typical examples would be row-multicast, the sending
of entry in a matrix to all element in the same row, or par-row-multicast, the
execution of row-multicast for all rows in parallel.

The algorithm designer now writes his program by explicitly declaring the
virtual topology of his algorithm. This is done by choosing an adequate virtual
topology including its multicasts from a predefined set of topology types. The
set of available topologies might differ between different implementations of the
border model and depends in the topology of the distributed system to be used.
This real topology might range from clique realized by a slow bus to a quick
hypercube network or a two dimensional grid.

The virtual topologies available within an implementation of the border
model are not implemented by the algorithm designer. The field of embedding
and simulating topologies into other ones is too large to expect every algorithm
designer to know all about it. He is only to use the virtual topologies for ex-
pressing his parallel algorithms.

The implementation of multicasts, i.e.the translation into communications
on the distributed system follows the properties of the real topology. If the
real system only allows sending messages from one sender along a connection
to one receiver the simulation will transform every multicast statement into a
collection of point-to-point communications. If, for example, the real topology
provides broadcasting this would be used for the simulation of concurrent reads.

The efficiency of the simulation of a virtual topology off course strongly
depends in the real topology and will be different on different implementations
of the border model. These efficiencies are represented by border parameters

which are values expressing the time consumption of the simulations of multicast
statements in the actual implementation of the border model. These values can
be accessed by the designer or even by his parallel program in order to select
the appropriate available virtual topology. Assume, for instance, that for some
subtask there is a very good parallel algorithm using a hypercube topology and
a slower one using a simple grid. If now the border parameters of the hypercube
topology are bad since the actual real topology is inadequate to simulate a
hypercube, it might be better to switch to the grid algorithm to solve the subtask.



This decision could even be made at runtime by the parallel program reading the
border parameters. Thus the text of the parallel program would be independent
of the implementation of the border model. In this way we also regard the number
of processing units to be a border parameter.

Thus it is the task of the algorithm designer to select depending in the actual
border parameters an appropriate algorithm and to decompose it into as many
pieces as there are processing units by dividing the parallel processors appro-
priately onto the processing units of the border model. This could be connected
with some local modifications of the original parallel algorithm in order to in-
crease the possibility to combine many small accesses to memory into one large
data movement. Sometimes it can be useful to repeat computations and thus to
increase the time processor product but at the same time to decrease the number
of communications [5].

Distribution of Time: Synchronization Types The second step has to
link the border model to the distributed system. Their main difference is the
use of global and local time. Even if the program on the border model simply
exchanges data via directed channels, this difference is crucial and in general
it is not possible to execute directly this parallel program on the distributed
machine without further synchronization. This is demonstrated by the following
example. Assume the real topology to consist in two units P1 and P2 which are
connected by two directed channels. Let now the parallel task be the exchange
of the value of two cells of global memory G1 and G2. Than this could be done
by the single line OROW-Program (owner read owner write, see [15]) where Pi

executes Gi := G3−i. Here P1 is the read-owner of G2 and the write-owner of
G1 while P2 is the read-owner of G1 and the write-owner of G2. If this program
would be executed without global time with high probability the content of one
of the two cells would be lost.

A conceptionally simple method to provide global time is barrier synchro-

nization where a node can only start a new step if all other nodes have performed
their corresponding steps, which requires an enormous overhead of synchroniza-
tion messages on a distributed machine. In addition, this method forces some
processors to wait, even if they actually do not need any results from other
processors at this point. Waiting for input values should be the only acceptable
delay. This can be realized generally but inefficiently if each node stores each
computed value of each step in a local list and sends such a value to another node
whenever it receives a corresponding request. The transformation from global to
local time should yield more efficient distributed programs in the case of a more
restricted communication structures of the corresponding parallel program.

The idea to achieve this is to let the designer to give explicitly information
relevant for synchronization of his program. This (s)he does by making syn-

chronization declarations. These pertain either to elements of global memory
or to single communications in terms of multicast statements. By assigning a
synchronization type to a (global) variable certain conditions are guaranteed to
be fulfilled by the parallel program. Thus a synchronization type is a condition



which when fulfilled by a variable or by a communication makes it possible to
implement this variable or this communication with a certain expense of syn-
chronization overhead. In general one might say that the weaker the condition
of a certain type the more complex and expensive will be the protocol used in
implementing the type. This information is then used in the transformation from
global time to local time with the aim of minimizing synchronization overhead.
It should be observed that the designer isn’t confronted with any distributed
Problem. He works and thinks in a non distributed world with global time where
matters like liveness or correctness are comparable to the sequential case.

Assume, for example, the communications accessing a cell of global memory
are 2-cyclic, that is if a processor P writes into this cell a, then each processor
Q reading a has to write something into another cell b which has later to be
read by P followed later by P writing into a before Q may again read a. Then
this cell could be declared as being of synchronization type cycle (together with
the information of the cycle length, in this case 2). Then the access to this
cell simply can be simulated by FIFO-queues of length 2 (See [5]). Examples of
2-cyclic algorithms are convolution or red-black-algorithms. Other examples of
synchronization types are write–determined (each processor when reading from
global memory knows the time the data it is going to read has been written [11])
and zippered (between any two writings into a cell at different global times there
is a reading from that cell and vice versa).

If a global variable doesn’t fulfill the conditions of a certain synchronization
type in all multicasts accessing this cell it is nevertheless possible to give guar-
antees for some of them by declaring those which fulfill certain restrictions and
thus need less synchronization overhead.

The task of the expert who bridges the gap between border model and dis-
tributed system is to implement virtual topologies in an efficient and correct
way. To preserve efficiency he tries to find or construct the best possible em-
bedding into the real topology and to use the given synchronization information
in an optimal way. His transformations have to result in correct executions on
the distributed system as long as the synchronization properties stated by the
designer are fulfilled. Thus correctness proofs and the resulting distributed ques-
tions occur only for every implementation of a virtual topology and not for every
parallel program using this implementation.

5 Complexity Theory

This section deals with complexity theoretical aspects of parallel and distributed
computing. First, a short overview of current parallel complexity in terms of
classes like NC and P is given. This is followed by a discussion of the disad-
vantages of this approach. Finally, we discuss some possibilities to avoid these
problems.

The reader of this section is assumed to be familiar with the basic facts of
sequential and parallel complexity theory as they are contained for instance in
[2,3].



5.1 Parallel Complexity Theory

The original aim of complexity theory is to classify computational problems
according to the amount of time or of other resources needed for their solution.
The problems of proving matching upper and lower bounds remain in general
unsolved and led to the comparison of complexities and to notions like hardness
and completeness.

In the the parallel case it is not useful to consider just the time needed for a
solution. It seems necessary to bound simultaneously the degree of parallelism.
Observe, that complexity classes defined by simultaneous resource bounds are
more difficult to handle than the usual ones. For instance, they lack sharp hier-
archy theorems.

Using the complexity theoretical tools which yielded the successful notion of
NP-completeness the class NC of all problems possessing efficient parallel algo-
rithms has been introduced. While the P-completeness of a problem stands for
its inherent sequential nature, membership in NC is regarded as an indication
that the running time of a problem can be decreased dramatically using par-
allelism. The class NC is extremely robust against modification of the model.
It is defined by polylogarithmically time or depth bounded PRAMs, circuits,
or alternating machines. This uniform picture changes if logarithmic instead of
polylogarithmic time and depth bounds come into consideration. This results in
three levels. The most powerful one, unbounded fan-in parallelism, is represented
by CREW and CRCW PRAMS, circuits of unbounded fan-in, or depth bounded
alternation and contains as a typical class AC 1. The second, weaker level is char-
acterized by space bounded sequential computations and is represented by space
bounded sequential models with or without recursion. A typical representative
is the class DSPACE(log n). The lowest level, bounded fan-in parallelism, is char-
acterized by circuits of bounded fan-in or time bounded alternation and leads
to the class NC 1.

5.2 Problems of NC-Theory

As explained above, the use of reducibilities led to the opposition of P-complete-
ness regarded as a sign of being inherently sequential vs membership in the class
NC of all problems which have “efficient parallel algorithms”. But this classifica-
tion has the clear drawback that it looks for the reduction of polynomial running
time down to polylogarithmic one, i.e. for exponential speed-up, without caring
for the time-processor-product and optimality. Vitter and Simmons were able to
construct a P-complete problem which has an optimal parallel algorithm with
polynomial speed–up [20]. This phenomenon is caused by the use of reducibil-
ities which allow polynomial padding when defining the class NC . In order to
avoid this it seems necessary to restrict the growth of the reducibilities by linear
or nearly linear functions. There are some attempts to define classes capturing
polynomial speed-up [20,7]. There is even a “hardest sequential problem” in P,
which has polynomial speed–up if and only if this is true for every member of



P [14]. But these notions lack the existence of an adequate notion of reducibility
and didn’t gain the relevance of a notion like NP-completeness.

It should be remarked here that the many approaches to define more realis-
tic models as for instance the LogP model [4] are adequate in order to get good
estimations of running times, but they don’t seem to be appropriate for struc-
tural classification of being inherently sequential in contrast to being efficiently
parallelizable.

5.3 Classification by criteria

A way out of this dilemma could be to classify not by criteria that are based on
reducibilities like hardness and completeness but instead to find other properties
of problems or algorithms which may serve as sufficient or necessary criteria for
the existence or nonexistence of efficient parallel solutions.

A striking example is the notion of obliviousness or data–independence [8].
It was inspired by the observation that most of the algorithms which showed an
acceptable speed-up on a net of workstations exhibited a static pattern of access
to data. More formal, assume that we work with a CRCW-PRAM algorithm.
Then we can consider the read- and the write-access of this algorithm to the
global memory formalized as a graph. If these structures are independent of
the actual input data but only depend in the size of the input we speak about
data-independent read and data-independent write. If both read and write are
data-dependent we have no restriction at all and get the full power of unbounded
fan-in parallelism. For instance, in logarithmic time we can solve exactly the
problems in AC 1. If, however, we restrict the write to be data-independent
and let the read data-dependent we get space bounded sequential classes! In
logarithmic time we now get the class DSPACE(log n). And if we work with static
communication patterns where both the read and the write is data-independent,
we end up with bounded fan-in parallelism. In logarithmic time we get exactly
the class NC 1. This might be interpreted in the way that parallel models are
related to unbounded fan-in parallelism while distributed models are related to
bounded fan-in parallelism. Since space bounded sequential computations seem
to be more powerful than bounded fan-in parallelism (unless DSPACE(log n) and
NC 1 coincide) it is no surprise that a property like data-independence cannot
be treated by traditional complexity theory: Their reducibilities are originally
based on sequential devices which cannot preserve data-(in)dependence.

In this connection the notion of a problem being recursively divisible intro-
duced by R. Niedermeier is very interesting [10,9]. He calls a problem A divisible
if there is an algorithm solving A in time T (n) using P (n) = nǫ processors on
inputs of size n which consists in O(1) alternating layers of simple and regular
communications followed by layers consisting in P (n) independent applications
of some algorithm solving a problem B on inputs of size n/P (n) as indicated
in the following picture. (Here simple and regular is formalized as being NC 0–
computable.) Obviously, an algorithm like that can be easily implemented on a
distributed system with acceptable efficiency.



Algorithm for A

=A Time

❄

✲✛

Proc. Units

...

· · ·

· · ·

B B B B

B B B B

NC 0–layer

NC 0–layer

NC 0–layer

NC 0–layer

If now B is identical to A we can repeat this process of decomposition. In
this case A is called recursively divisible [10,9]. Many important computational
problems like sorting or matrix multiplication are recursively divisible. All known
examples of recursively divisible problems are members of NC 1, a class defined
by bounded fan-in parallelism. This supports the impression that distributed
models are closely related to bounded fan-in parallelism.

6 Discussion and open Questions

One aim of this paper was to relate and link rather separated areas. Much of
this contribution is unfinished and speculative. Only few constructions have been
implemented until now. One reason for this are the many open question of these
areas.

A very important task to settle is to handle recursion properly. On the the-
oretical side a proper definition of benign recursion is missing. Recursion is nec-
essarily dynamical and not static. Hence we have to deal with data-dependence.
While there are well-known examples of malign cases of data-dependence like
pointer jumping there also many cases of dynamic data-dependent algorithms
which exhibit a very local communication pattern like many approximation al-
gorithms. Neither there is a theoretical treatment of this dynamic case nor there
seems to exist an adequate language to express and formalize this phenomenon.
(An interesting approach to express (non)locality was given by Sabot [16]).

Another weakness of the concept of virtual topologies is that often algorithms
exhibit virtual topologies which only come close to a more regular one offered
in an implementation of the border model. For these cases something like an
editor for topologies would be helpful which could be used by the algorithm
designer to tailer an existing virtual topology to something more appropriate.
The difficulties to keep efficiency and correctness of the implementation of the
modified virtual topology are incalculable. One further problem would be that
there would be no adequate border parameters for the modified topology.

One task of the designer is to embed his parallel algorithm using n proces-
sors where n depends in the input size into a border program using a much



smaller number of k processing units. Once he did this, it is in many cases no
problem to modify his construction to be executed with a different number k′

of units as long as the topology stays similar. It should be possible to do this
computer aided. Questions are here, how to express and formalize this process
on the syntactical level and, second, can those problems which are adequate for
this (semi-)automatic lay out, be characterized in complexity theoretical terms.
These question are also interesting for the case of a weakly dynamic real topology
where the set of available nodes may change day by day.

While these problems concerned the distribution of space there are also many
open questions in connection with the concept of synchronization types. First,
there is the question for more reasonable synchronization types which are gen-
eral enough to be useful and which are restrictive enough to be implementable
without much synchronization overhead. Unclear is the general relation between
the different synchronization types and their structural behavior. Is it possible
to characterize synchronization types in terms of complexity theory? Are there
connections to concepts like completeness or to the other criteria mentioned in
subsection 5.3?

A specific feature sometimes found in parallel algorithms is that they are
robust against certain differences in local time. Consider for example a monotone
algorithms like Warshall’s algorithm. The participating memory cells aij carry
either the value 0 (there is no path from i to j) or 1 (there is a path from i to j))
and never a 1 is overwritten by a 0. That means that the algorithm could tolerate
results which are too young, i.e. come out of the future (wrt global time). What
has to be avoided is to receive data which is too old. It should be possible to
exploit this behavior and to introduce a synchronization type named, may be,
best before.

Acknowledgment

I like to thank Henning Fernau, expert for rewriting and formal languages, for
rewriting the introduction.

References

1. F. Abolhassan, J. Keller, and W. J. Paul. On the cost-effectiveness and realization
of the theoretical pram model. SFB Report 09/1991, Universität des Saarlandes,
Saarbrücken, 1991. revised and extended version of SFB Report 21/1990.

2. J. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity Theory I. Springer,
1988.

3. J. Balcázar, J. Dı́az, and J. Gabarró. Structural Complexity Theory II. Springer,
1990.

4. D. Culler, R. Karp, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and
T. von Eicken. LogP: Towards a realistic model of parallel computation. In Proc.

4th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, pages 1–12, 1993.



5. D. Gomm, M. Heckner, K.-J. Lange, and G. Riedle. On the design of parallel pro-
grams for machines with distributed memory. In Distributed Memory Computing,

Proc. 2nd European Conference, EDMCC2, volume 487 of LNCS, pages 381–391.
Springer, 1991.

6. T. Hagerup, A. Schmitt, and H. Seidl. FORK: A high-level language for PRAMs.
Technical Report 22/90, Universität des Saarlandes, Fachbereich 14, Im Stadtwald,
6600 Saarbrücken, 12 1990.

7. C. P. Kruskal, L. Rudolph, and M. Snir. A complexity theory of efficient parallel
algorithms. Theoret. Comput. Sci., 71:95–132, 1990.

8. K.-J. Lange and R. Niedermeier. Data-independences of parallel random access
machines. In Proc. of 13th Conference on Foundations of Software Technology and

Theoretical Computer Science, number 761 in LNCS, pages 104–113. Springer,
1993. Accepted for publication by JCSS.

9. R. Niedermeier. Recursively divisible problems. In Proc. of the 7th ISAAC, number
1178 in LNCS, pages 183–192. Springer, 1996.

10. R. Niedermeier. Towards Realistic and Simple Models of Parallel Computation.
PhD thesis, Universität Tübingen, 1996.

11. N. Nishimura. Restricted CRCW PRAMs. Theoret. Comput. Sci., 123:415–526,
1994.

12. P. Panangaden. Does concurrency theory have anything to say about parallel
programming? EATCS Bull., 58:140–147, 1996.

13. A. G.. Ranade. How to emulate shared memory. J. Comp. System Sci., 42:307–326,
1991.

14. K. Reinhardt. Strict sequential P-completeness. In Proc. of 14th STACS, number
1200 in LNCS, pages 329–338. Springer, 1997.

15. P. Rossmanith. The owner concept for PRAMs. In Proc. of the 8th STACS, number
480 in LNCS, pages 172–183. Springer, 1991.

16. Gary Wayne Sabot. The Paralation Model. MIT Press Cambridge Massachusetts.,
1988.

17. Leslie G. Valiant. A bridging model for parallel computation. Communications of

the ACM, 33:103–111, 8 1990.
18. Paul M.B. Vitányi. Nonsequential computation and laws of nature. In VLSI

Algorithms and Architectures, number 227 in LNCS, pages 108–120. Springer, 1986.
19. Paul M.B. Vitányi. Locality, communication, and interconnect length in multi-

computers. SIAM J. Comp., 17:659–672, 1988.
20. J. S. Vitter and R.A. Simons. New classes for parallel complexity: A study of

unification and other complete problems for P. IEEE Trans. on Computers, 35:403–
418, 1986.


