
Complexity of
Automata with Abstract

Storages 1

Jürgen Dassow

Technische Universität Magdeburg
Fakultät für Mathematik

Magdeburg, Germany

Klaus-Jörn Lange

Technische Universität München
Institut für Informatik
München, Germany

Abstract. The complexities of problems related to automata with storages, an

abstract automaton model introduced by Engelfriet, are analyzed. In particular,

we show a close relationship between the word problem of two-way automata and

the emptiness problem of one-way automata.

1. Introduction

In this paper we want to build a further bridge between the areas of formal
languages and of complexity. There are a lot of characterization results of
complexity classes with the help of formal language predicates and operations
(see e.g. [14] , [11]). A very typical result of this kind is the complexity
theoretical equivalence of the word problem of certain classes of two-way
automata and the emptiness problem of the corresponding class of one-way
automata. This phenomenon was observed for a large variety of automata
(see [3] , [9] , and [10]). Another result of this kind is the complexity theo-
retical interpretation of theorems of Chomsky/Schutzenberger and Greibach.
Here we intend to derive these results on a very abstract level. Approaches

1This work was supported by SFB 342, Teilprojekt A4 of the Deutsche

Forschungsgemeinschaft

1

like that were given before within the framework of balloon automata and
abstract families of languages (see [6]). A more suitable formalism for this
aim was exhibited by Engelfriet which introduced automata with storages
(see [4] , [5]). The advantage of this approach is a very clear distinction
between automaton and storage. To show this advantage with respect to
complexity theory is one of our aims.
This paper is organized as follows. In Section 2 we give the necessary defi-
nitions and present some basic facts, e.g. a normal form for automata with
storages. Section 3 contains the relation between membership problem for
two-way automata and emptiness problem for one-way automata of the same
type. In Section 4 we show the existence of hardest languages and analoga
of Dyck and Greibach languages.

2. Definitions and preliminary results

Throughout this paper we assume that the reader is familiar with the basic
concepts of formal language and complexity theory as contained in [8] and
[17] .
We start with some notation.
For a set P of predicates over a set C we denote by BE(P) the set of
Boolean expressions over P using the operators ∧,∨,¬, true, and false.
For b ∈ BE(P) and c ∈ C the value of b(c) is defined in the obvious way.
λ denotes the empty word.
We call a mapping f : X∗ −→ Y ∗, where X and Y are finite alphabets,
computable within logarithmic space (resp. polynomial time), if there is a
Turing-machine M which, started with some v ∈ X∗ on its read only input
tape, computes and prints f(v) on its write only output tape, consuming no
more than O(log(|v|)) space on its work tapes (resp. performing no more
than p(|v|) steps for some polynomial p).
A set L ⊆ X∗ is many-one LOG-reducible to a set M ∈ Y ∗, denoted by
L ≤L

m M if there exists a mapping f : X∗ −→ Y ∗ computable within loga-
rithmic space such that v ∈ L if and only if f(v) ∈ M for all v ∈ X∗. The
LOG-closure of a class X of languages is defined as

LOG(A) = {L : there is M ∈ A with L ≤L
m M }.

If A consists of a single element L0 we write LOG(L0) instead of LOG(A).
A class A is complete for a class B if A ⊆ B ⊆ LOG(A).

We now give the definition of automata with storages and related notions,
which differ slightly from those given in [4] by using of final configurations;

2

however, we cover that concepts.

A storage type is a quintuple

S = (C, P, I, Cin, Cfin)

where C is a set of configurations, P is the finite set of predicates over C, I
is the finite set of instructions, and Cin ⊆ C and Cfin ⊆ C are the sets of
initial and final configurations, respectively.

Example 1. For a fixed set Γ of push-down symbols, we define the storage
type PD(Γ) by

C = Γ∗, Cin = Γ, Cfin = C,
P = {topx : x ∈ Γ} ∪ {bottom},

I = {pushx : x ∈ Γ} ∪ {stayx : x ∈ Γ} ∪ {pop}

and the usual meaning

topx(w) = true if and only if w = w′x for some w′,
bottom(w) = true if and only if w = λ,

pushx(w) = wx,
stayx(wx) = wx and stayx(wy) is undefined for y 6= x, y ∈ Γ,

pop(wx) = w for x ∈ Γ.

In the same way it is possible to define storage types corresponding to stacks,
nested stacks, non-erasing stacks and checking steps. However, it is not
possible to characterize restricted push-down arrays of counters introduced
by Rozenberg (see [15]), although some the results given below are also valid
for this class (see [12]).
The crucial notion of this paper is the following.

A two-way S-automaton is a 6-tuple

A = (Q,X, δ, qin, cin, F)

where
- Q is a finite set (of states),
- X is the (input) alphabet,
- qin ∈ Q is the initial state,
- cin ∈ Cin is the initial storage configuration,
- F ⊆ Q is the set of accepting states,
- δ is a finite subset of Q×X × BE(P)×Q× {L,N,R} × I∗.
L,R,N, are interpreted as the moves of the reading head to the left or to the
right or as no move, respectively. The elements of δ are called transitions.

By < A > we denote a description of A as a word over some alphabet where

3

we assume that these description contains also P and I. The size of A is the
length of < A >.

An instantaneous description ofA is an element (q, w1#w2, c) ofQ×X∗#X∗×
C. The intuitive meaning is that A is in the state q, w1w2 is the word on the
input tape, the reading head reads the first letter of w2 , and c is the storage
configuration. For two instantaneous descriptions t1 = (q, w1y#xw2, c) and
t2 = (q′, w′

1#w′
2, c

′), we say that t1 derives directly t2, written as t1 ⊢A t2, if
there exist a transition (q, x, β, q′, r, γ) ∈ δ such that β(c) is true, c′ = γ(c),
and w′

1 = w1yx, w
′
2 = w2 for r = R, x ∈ X or w′

1 = w1y, w
′
2 = xw2 for

r = N, x ∈ X or w′
1 = w1, w

′
2 = yxw2 for r = L, x ∈ X .

Let ⊢∗
A be the reflexive and transitive closure of ⊢A. The language L(A)

accepted by A is defined as

L(A, S) = {z : (qin,#z, cin) ⊢
∗
A (q, z1#z2, c) for some q ∈ F and c ∈ Cfin}.

We say that the S-automaton is deterministic if, for any p ∈ Q, x ∈ X and
c ∈ C, there is at most one transition (p, x, b, q, r, f) ∈ δ with b(c) = true.
We say that the S-automaton is a one-way automaton, if the head cannot
move to the left. Obviously, the λ-transitions usually permitted for one-way
automata can be covered by transitions with no move of the head.
In addition, we consider augmented S-automata which are equipped with a
logarithmically bounded worktape. Therefore an augmented S-automaton
has additional components, which represent the alphabet of an additional
worktape and the initial symbol at the worktape; the transitions give also
the information on the reading, writing and move of the head scanning the
worktape, and the workspace used for the computation on the input z is
bounded by O(log(|z|)).
We say that the S-automaton A is in normal form iff δ is a subset of Q ×
X × P ′ ×Q× {L,R,N} × (I ∪ {λ} where P ′ = P ∪ {¬p : p ∈ P} ∪ {true}.
Let S and S be a storage type and a class of storage types, respectively. Then,
for x ∈ {1, 2}, we denote by x-NSA the family of all languages accepted by
x-way S-automata, and we set

x-NSA=
⋃

S∈S x-SA.

If the automata are deterministic, then we use the letter D instead of N
in the notation of the family of accepted languages. If the automata are
augmented, then we add the letter A after the N or D. Thus, for example,
1-DASA denotes the family of languages accepted by one-way augmented
deterministic S-automata.

Example 1. (continued) It is easy to see that a PD(Γ)-automaton A =
(Q,X, δ, qin, cin, F) is a usual push-down automaton. Therefore, #(Γ) ≥ 2,

4

1-NPD(Γ)A is the family of all context-free languages.
Let

PD =
⋃

Γ PD(Γ).

Thus we obtain the usual notation 1-NPDA for the family of languages
accepted by push-down automata (in contrast to the notation used by En-
gelfriet et al.).
Analogously we can define the sets x-NStA, x-NNeStA, x-NCStA, and x-

NNstStA of languages accepted by x-way stack automata, non-erasing stack
automata, checking stack automata, and nested stack automata. Moreover,
by using D instead of N and adding A we obtain the corresponding families
of deterministic and/or augmented stack automata.

Lemma 1. Let S be a storage type. Then, for any S-automaton A there is
an S-automaton B in normal form such that

L(A, S) = L(B, S).

Moreover, given A, the construction of B requires only logarithmic space.
with respect to the size of A.

Proof. In a first step it is easy to generate an equivalent S-automaton
A′ = (Q′, X, δ, q′in, cin, F

′) with δ′ ⊆ Q′×X×BE(P)×Q′×{R,N, L}×(I∪{λ}
by the usual adding of new states using the predicate true, i.e., a transition
t = (p, x, b, q, r, f1f2) is transformed into t1 = (p, x, b, pt1, N, f1) and t2 =
(pt1, x, q, r, f2).
The main step is now to unfold BE(P)-expressions. Any b ∈ BE(P) may
be regarded as a tree which inner nodes are labelled with ∧ or ∨ or ¬ and
the leaves with elements of P . As unique name of each node we use the
{0, 1}-description of the path, by which it is branched from the root which
is named by λ. Thus the left son of an inner node named v is named by v0
and the right son by v1.
The idea of the construction of the automaton B is to simulate the tree
stepwise. That is, for each transition t = (p, x, b, q, r, f) and each node v

in the tree of b we associate new states qt,vs , qt,vt , and q
t,v
f (where the lower

indices indicate start, true, false) and the following transitions:

t1 = (p, x, true, qt,λs , N, λ),

t2 = (qt,λt , x, true, q, r, f)

(we start and finish the determination of the truth value of b)

5

tv1 = (qt,vs , x, true, qt,v0s , N, λ),

tv2 = (qt,v0t , x, true, q
t,v
t , N, λ),

tv3 = (qt,v0f , x, true, qt,v1s , N, λ),

tv4 = (qt,v1t , x, true, q
t,v
t , N, λ),

tv5 = (qt,v1f , x, true, q
t,v
f , N, λ)

if v is labelled by ∨, and analogous transitions if the node is labelled by ∧
or ¬, and

tv1 = (qt,vs , x, pr, q
t,v
t , N, λ),

tv2 = (qt,vs , x,¬pr, qt,vf , N, λ)

if the node v is a leaf labelled by the predicate pr. This construction can
be done with logarithmic space by using the algorithm of Nancy Lynch (see
[13] or [2]). The main idea is to compute the nodename (which may have
superlogarithmic length!) of a functionsymbol or of a predicatename in the
coding of b by using the position of the input head within b and computing
the path (and thus the nodename) iteratively down from the root.

In the sequel we shall assume that P contains also the predicate true and ¬p
for any p ∈ P .

Typical results for actual families of storage types are normal forms like the
restriction to a binary ”working” (e.g. stack) alphabet. Proofs of results of
this type consist in stepwise simulations. If we generalize this to abstract
storage types we come to the notion of simulation. Informally, a storage
type S is able to simulate a storage type S ′ if there is an embedding of the
configurations of S ′ into those of S (e.g. a coding of a tape alphabet into
a binary alphabet) such that each instruction of S ′ may be simulated by a
sequence of instructions of S and that for each predicate of S ′ there exist a
sequence of instructions of S, say g1g2 . . . gn, and a Boolean expression over
predicates of S such that the Boolean expression, if the predicates are applied
to the configurations obtained when the sequence g1g2 . . . gn is executed, gets
the same truth value as the given predicate of S ′. In addition, we require that
the sequence g1g2 . . . gn leaves the configuration unchanged, i.e. gn ◦ . . . ◦ g1
is the identity (or noop instruction). (In the case of the simulation of a
predicate topx with a binary alphabet, this would mean that we remove the
topmost binary stack elements checking whether they form a binary coding
of x, and then we restore the old push-down contents.)
In order to give the formal definition we give the following notation. We set

In = {(g1, g2, . . . , gn) : gi ∈ I∗, gn ◦ gn−1 ◦ . . . ◦ g1 = id}

6

For g ∈ I∗ and (g1, g2, . . . , gn) ∈ In, we define the sets

P ◦ g = {p ◦ g : p ∈ P},
P ◦ (g1, g2, . . . , gn) =

⋃n−1
j=0 P ◦ (gj ◦ gj−1 ◦ . . . ◦ g1).

Definition. i) Let S = (C, P, I, Cin, Cfin) and S ′ = (C ′, P ′, I ′, C ′
in, C

′
fin) be

two storage types. We say that S simulates S ′ if there are mappings

α : C ′ −→ C,

β : P ′ −→
⋃

n≥1

⋃
(g1,...,gn)∈In BE(P ◦ (g1, . . . gn),

γ : I ′ −→ I∗

such that for all c ∈ C ′ and f ∈ I ′,

α(f(c)) = γ(f)(α(c)),

for all b ∈ P ′ and c ∈ C ′,

b(c) = true if and only if β(b)(α(c)) = true,

and

Cin ⊇ α(C ′
in) and Cfin = α(C ′

fin).

ii) Let S be a class of storage types. We say that S0 ∈ S is universal for S if
S0 simulates any S ∈ S.

Lemma 2. Let S and S ′ be two storage types such that S simulates S ′. Then
for any S ′-automaton A, there is an S-automaton B such that

L(A, S ′) = L(B, S).

Proof. Let S = (C, P, I, Cin, Cfin), S
′ = (C ′, P ′, I ′, C ′

in, Cfin) and the S ′-
automaton A = (QA, X, δA, qin,A, cin,A, FA) be given, where we assume with-
out loss of generality that A is in normal form. We now construct the S-
automaton B = (QB, X, δB, qin,B, cin,B, FB). The definition of QB and δB can
be seen from the following remarks. Let t = (p, x, b, q, r, f) ∈ δA.
In order to determine the Boolean value of β(b) on α(c) we use the same
method as in the proof of Lemma 1. However, the predicates which we have
to apply in the leaves are of the form π ◦ gi ◦ gi−1 ◦ . . . ◦ g1, and therefore
we use states of the form (v′, g1g2 . . . gi) where the first component gives the
states corresponding to some leaf and the second one can be used to compute
the needed subsequence of instructions. The work in the second components
is done by transitions of the forms

((p′, g1 . . . gi), λ, true, (p
′, g1 . . . gj), N, gi+1, gi+2 . . . gj) if i < j,

((p′, g1 . . . gi), λ, true, (p
′, g1 . . . gj), N, gi+1 . . . gng1 . . . gj) if i > j.

7

Finally we split the application of a sequence of instructions into single in-
structions as in the proof of Lemma 1. By this construction and γ(f)(α(c)) =
α(f(c)), we obtain

(p, w1#w2, c) ⊢A (q, w′
1#w′

2, f(c))

if and only if
(p, w1#w2, α(c)) ⊢

∗
B (q, w′

1#w′
2, α(f(c)).

If we now set qin,B = qin,A, cin,B = α(cin,A), and FB = FA, it is easy to see
that L(A, S ′) = L(B, S).

Corollary 3. Let S be a family of storage types with the universal storage
type S0.
i) Then, for any S ∈S and any S-automaton A, there is an S0-automaton B

such that
L(A, S) = L(B, S0).

ii) For x ∈ {1, 2},

x-NSA=x-NS0A.

Analogous equalities hold for the deterministic and/or augmented versions of
automata.

3. Emptiness and membership problems

In this section we compare the emptiness problem for one-way automata and
the membership problem for two-way automata.
In order to do this we identify the language family with its membership
problem. For a storage type S and a class X of S-automata, we define the
emptiness problem as

∅−XSA = {< A >: L(A, S) 6= ∅}.

For a family S of storage types we define ∅−XSA as the union of the sets
∅−XSA taken over S ∈ S.

Theorem 4. Let S be a storage type. Then

2−NASA = LOG(∅−1−NSA).

Proof. Let S = (C, P, I, Cin, Cfin), and let A = (Q,X, δ, qin, cin, F) be a
two-way S-automaton. For a given word x, we set

Z = {w1#w2 : w1w2 = x, w1, w2 ∈ X∗}

8

(Z describes the possible positions of the head on the word x) and

B = (Q× Z,X, δ′, (qin,#x), cin, F × Z)

where

(p, x1 . . . xi−1#xi . . . xn), λ, b, (q, x1 . . . xj−1#xj . . . xn), N, g) ∈ δ′

if and only if
(p, xi, b, q, r, g) ∈ δ

and

j = i− 1 iff r = L, j = i+ 1 iff r = R, or j = i iff r = N .

This means that the moves of the head and its reading of letters of x in the
two-way automaton A are stored in the second component of the state set of
B. Therefore L(B, S) = ∅ or L(B, S) = {λ} and

x ∈ L(A, S) if and only if L(B, S) = {λ}.

By standard arguments (see [9] for an analogous construction) B can be
constructed within logarithmic space. Thus

L(A, S) ≤L
m ∅−1−NSA

and
LOG(2−NSA) ⊆ LOG(∅−1−NSA).

Since 2−NASA = LOG(2−NSA) we obtain

2−NASA ⊆ LOG(∅−1−NSA).

In order to prove the converse inclusion we have to show that there is a two-
way Sautomaton accepting the descriptions of one-way S-automata accepting
a non-empty set. Since the construction of Lemma 1 is a LOG-reduction we
can assume that the description gives a one-way automaton in normal form.
Then the algorithm given in Figure 1 can be performed by an augmented
two-way S-automaton B on the description of A = (Q,X, δ, qin, F) (note
that the storage operations can be performed since the two-way automaton
has the same storage type as A).
Obviously B accepts A if and only if the word w = x1x2 . . . xn obtained as
the concatenation of the second components of the chosen elements of δ is
accepted by A, i.e. if and only if L(A, S) 6= ∅.

If we use δ as input alphabet of B and the corresponding transition as input
in the definition of δ′, then one can easily show by the same method that

9

BEGIN
p := qin
c := cin

B: IF p ∈ F THEN (accept, GOTO A) ELSE
choose (p, x, b, q, r, f) ∈ δ

IF b(c) = false THEN (reject, GOTO A) ELSE
p := q

c := f(c)
GOTO B

A: END

Figure 1

Theorem 4 also holds for deterministic automata. Thus we obtain

Corollary 5. Let S be a storage type. Then

2−DASA = LOG(∅−1−DSA).

Corollary 6. Let S0 be a universal storage type for the class S of storage
types. Then ∅−1−NS0A is 2-NASA-complete.

Using the known characterizations of the classes of lannguages accepted by
different types of augmented stack automata (see [1] ,[9] ,[10]), we obtain

Corollary 7. i) ∅−1−NPDA is P-complete.
ii) ∅-1-NStA is EXPOLYTIME-complete.
iii) ∅-1-NNstStA is EXPOLYTIME-complete.
iv) ∅-1-NNeStA is PSPACE-complete.

10

4. Complete sets

In the last section we saw that, for any abstract storage type the emptiness
problem of one-way automata is complete for the corresponding language
class of two-way automata. This relationship was shown for many actual
storage types before (see [9]). In this section we shall generalize some other
theorems as the Chomsky-Schutzenberger theorem and the existence of hard-
est languages by Greibach. This was already done within the framework of
balloon automata and abstract families of automata (see [6]). Here we shall
do this within the Engelfriet approach of automata with storage, which al-
lows a surprisingly simple treatment.

Theorem 8. Let S = (C, P, I, Cin, Cfin) be a storage type. Then there exists
a language LS such that, for any S-automaton A, there are homomorphisms
h, g, and a regular set R (all depending on A) with

L(A, S) = h(g−1(LS) ∩R).

Proof. We define LS ⊆ (P ∪ I ∪ {(,),#})∗ as the set of all words

(b1#f1)(b2#f2 . . . (bn#fn)

such that n ≥ 0, bi ∈ P and fi ∈ I for 1 ≤ i ≤ n, and there exist configura-
tions c0 ∈ Cin and c1, c2, . . . , cn−1 ∈ C and cn ∈ Cfin with

bi(ci−1) = true and fi(ci−1) = ci

for 1 ≤ i ≤ n. Now let A = (Q,X, δ, qin, cin, F) be a one-way S-automaton.
By Lemma 1, we can assume that δ ⊆ Q×X ×P ×Q×{N,R}× (I ∪ {λ}).
Then we define the homomorphism

g : (Q×X × P ×Q× {N,R} × (I ∪ {λ}))∗ −→ (P ∪ I ∪ {(,),#})∗

by
g((p, x, b, q, r, f)) = (b#f)

and the set R ⊆ (Q × X × P × Q × {R,N} × (I ∪ {λ})∗ as the set of all
strings

(p1, x1, b1, p2, r1, f1)(p2, x2, b2, p3, r2, f2) . . . (pn, xn, bn, qn+1rn, fn)

with n ≥ 0, p1 = qin, pn+1 ∈ F and (pi, xi, bi, pi+1, ri, fi) ∈ δ for 1 ≤ i ≤ n.
Note that R is regular. Then the set g−1(LS) ∩ R consists of all strings

w = (p1, x1, b1, p2, r1, f1)(p2, x2, b2, p3, r2, f2) . . . (pn, xn, bn, pn+1, rn, fn) ∈ R

such that there is a sequence c0, c1, . . . , cn with co = cin, fi(ci−1) = ci and
bi(ci−1) = true for 1 ≤ i ≤ n, and cn ∈ Cfin. Thus w resembles an accepting
computation. If we define

11

h((p, x, b, q, N, f)) = λ and h((p, x, b, q, R, f)) = x

for p, q ∈ Q, x ∈ X , b ∈ P , and f ∈ I, we obtain that h(w) is an element
L(A, S). In fact,

h(g−1(LS) ∩ R) = L(A, S).

If we fix the initial configuration c0 in the last construction and denote the
corresponding set by LS(c0), we see that L(A, S) = h(g−1(LS(c0)) ∩ R) still
holds. Moreover, it is not hard to see that LS(c0) is in 1-DSA. Hence 1-

NSA is the trio generated by 1-DSA. Since 1-DSA is obviously closed un-
der intersection with regular sets and inverse homomorphisms, and 1-NSA

is closed under homomorphisms we get

Corollary 9. For any storage type S, every set in 1-NSA is a homomorphic
image of a language in 1-DSA, or shortly, H(1−DSA) = 1−NSA.

Remark. If the considered one-way (nondeterministic) S-automaton A is
realtime, i.e. it has no transitions with N -moves of the reading head, then
the homomorphism in Theorem 8 and Corollary 9 can be chosen to be non-
erasing.

To generalize the Theorem of Greibach to abstract storage types seems to be
more difficult. Greibach used in her proof of the result that every context-
free language is the inverse homomorphic image of the hardest context-free
language (see [7]) two important properties of the family of context-free lan-
guages:
- each context-free language can be represented by a grammar, which means
retranslated to machines, that the involved automaton has just one state and
acceptance and rejection is purely controlled by the final configuration, and
- the grammar can be assumed to be in Greibach normal form, which re-
translated means that the involved automaton is realtime.
Note that this does not hold for stack languages. Thus, if we try to generalize
the Greibach result to some storage type S = (C, P, I, Cin, Cfin) we would
come up with some construction like

VS(c0) = {[w11$...$w1s1][w21$...$w2s2] . . . [wn1$...$wnsn] :

n ≥ 1, there are i1, ..., in such that

w1i1w2i2...wnin ∈ &LS(c0)}

(compare with [7]). The next construction to get rid of states would be a
storage type S × A to given S-automaton A such that there is an (S × A)-
automaton B with one state which satisfies L(A, S) = L(B, S×A) (although
S does not simulate S × A, we still have x−NSA = x−N(S × A)A !).

12

The Greibach-like result would then be that, for every realtime S-automaton
A there is a homomorphism h− A such that

L(A, S) = h−1
A (VS×A(c0)).

This is not the desired result! Therefore we shall now handle this problem
within complexity theory.
For context-free languages this was done by Sudborough in [16] ; he showed
LOG(CFL) = NAPDAPT (where the index PT indicates an additional
polynomial time restriction), and hence NAPDAPT = LOG(LGr). Thus
we shall deal with the following classes: If S is an arbitrary storage type,
we denote by 2−NASAPT the class of all languages in 2−NASA, which
are acceptable by some augmented S-automaton in polynomial time, that
is, for each word in the language, there is an accepting computation the
length of which is bounded by some polynomial in the length of the given
word. Let 1−NASAPT be the corresponding class accepted by one-way
automata. Furtheron, let 1−NASART denote the subclass consisting of
languages which are acceptable by one-way augmented S-automata in real-
time, i.e. there are only R-moves and no N -moves. Finally, we need the
class 1−NASANRT of ”nearly realtime” languages, which are acceptable
by automata where the set of transition satisfies

δ ⊆ Q×X × Γ× P ×Q× {R} × Γ× {R,N, L} × (I ∪ {λ})
⋃

Q×X × Γ× P ×Q× {N} × Γ× {R,N, L} × {λ},

where Γ is the alphabet of the working tape, i.e., during steps without move
of the input head there is no change of the storage. Then we have

Lemma 10.

a) 1−NASART ⊆ 1−NASANRT ⊆ 1−NASAPT ⊆ 2−NASAPT,

b) LOG(1−NASART) = LOG(1−NASANRT) = LOG(1−NASAPT)
= LOG(2−NASAPT) = 2−NASAPT.

Proof. a) is obvious.
b) LOG(2−NASAPT) = 2−NASAPT is done by the well-known con-
struction to show the transitivity of LOG-reducibilities.
2−NASAPT = LOG(1−NASAPT) uses the usual repetition construc-
tion w −→ (w$)p(n) (see [16]), which works since we have polynomial time
bounds and the investigated automata are augmented to be able to change
from one w-block to the next.
Finally, we indicate a LOG-reducibility from 1−NASAPT to 1−NASART.
If A = (Q,X,Γ, δ, q0, cin, γ, F) is an augmented one-way S-automaton with
polynomial time bound p(n) and δ ⊆ Q × X × Γ × P × Q × {R,N} × Γ ×
{L,N,R} × (I ∪ {λ}) (i.e., it is in normal form), we first add the following
”no-change”-transitions to δ:

13

(q, x, a, true, q, N, a,N, λ) for q ∈ Q, x ∈ X , a ∈ Γ.

With these additional transitions it is possible to pad each part of N -moves
in a computation of exactly p(n) steps. Thus, if v is accepted by A (with
no-change-moves), then there is an accepting computation consisting of |v|
R-steps each of which is followed by p(|v|) N -steps (not necessarily no-
change-moves!). Now we consider the realtime S-automaton B which is ob-
tained from A by converting each N -transition (q1, x, a1, b, q2, N, a2, r, f) into
(q1,#, a1, b, q2, N, a2, r, f), where # is a new input symbol not contained in
X . Then the mapping

x1x2 . . . xn −→ f(x1x2 . . . xn) = #p(n)x1#
p(n)x2#

p(n) . . . xn#
p(n)

is computable within logarithmic space and reduces L(A, S) to L(B, S).

Our analogon of Greibachs language is defined as

VS(c0) = {[w11$...$w1s1] . . . [wn1$...$wnsn] :

n ≥ 1, wij ∈ ({§,#, (,)} ∪ P ∪ I)∗,

there are i1, ..., in and m such that

w1i1w2i2 ...wnin = §m(b1#f1)§
m(b2#f2)§

m...§m(bn#fn)§
m,

(b1#f1)...(bn#fn) ∈ LS(c0)}

for any c0 ∈ Cin. Obviously, we get

Lemma 11. {VS(c0) : c0 ∈ Cin} ⊆ 1−NASANRT.

Hence {VS(c0) : c0 ∈ Cin} ⊆ 2−NASAPT.
To show the completeness of this family we use

Theorem 12. 1−NASART ≤L
m {VS(c0) : c0 ∈ Cin}.

Idea of Proof. Let A = (Q,X,Γ, δ, q0, cin, γ, F) be a realtime augmented
S-automaton in normal form, i.e. δ = Q × X × Γ × P × Q × {R} × Γ ×
{L,N,R} × (I ∪ {λ}). For a fixed input v = x1x2 . . . xn ∈ X∗ of length n,
we consider the set

Kn = Q× Γ⌈log(n)⌉ × {0, 1, ..., ⌈log(n)⌉}

of surface configurations, each of which consists of the state, the content of
the augmented working tape, the position of the input tape head, and the
position of the working tape head. The cardinality m = #(Kn) is bounded
by some polynomial p(n), which is dependent of A only. We order the m

surface configurations Kn = {ko, k1, . . . , km−1}such that k0 is the initial con-
figuration, i.e. initial state, working tape empty, both heads on the left end

14

of the tapes. For a transition t in δ it is then possible to say that t leads
a surface configuration k to another surface configuration k′, if the changes
of state, working tape and head positions follow the corresponding change
induced by t.
Following Greibachs construction (see [7]), for x ∈ X , we define

Hx = {§m−i(b, f)§j : there is a (q, xn, a, b, q
′, R, a′, r, f) ∈ δ

which leads ki to kj}

= : {w1(x), w2(x), . . . , ws(x)(x)}.

Now we set
Ui = [w1(xi)$w2(xi)$. . . $ws(xi)(xi)]

for 2 ≤ i < n and

H in = {§m(b, f)§j : there is (q0, x1, a, b, q, R, a′, r, f) ∈ δ

which leads k0 to kj}

= : {win
1 , win

2 , . . . , win
s },

U1 = {[win
1 $win

2 $. . . $win
s],

Hfin = {§m−i(b, f)§m : there is (q, x, a, b, q′, R, a′, r, f) ∈ δ

which leads ki to kj and q′ ∈ F}

= : {wfin
1 , w

fin
2 , . . . , w

fin
s′ },

Un = [wfin
1 , w

fin
2 , . . . , w

fin
s′].

Now we shall show that the within logarithmic space computable mapping
v −→ v1v2...vn−1vn = f(v) reduces L(A, S) to VS(c0). If f(v) is in VS(c0)
then, by construction, there is a sequence i1, i2, . . . , in such that

w1i1w2i2 . . . wnin = §m(b1, f1)§
m(b2, f2)§

m . . . §m(bn, fn)&
m

with
(b1, f1)(b2, f2) . . . (bn, fn) ∈ LS(c0).

Thus there exist indices j1, j2, . . . , jn−1 such that

§m(b1, f1)§
m−j1 = w1i1 ,

§m−jµ−1(bµ, fµ)§
jµ = wiµ

µ for 2 ≤ µ ≤ n− 1,

§m−jn−1(bn, fn)§
m = wnin.

Therefore there is a sequence of surface configurations k0, kj1, . . . , kjn−1
, kjn

where kjµ−1
leads to kjµ by a transition with test bµ and fµ. However,

15

(b1, f1)(b2, f2) . . . (bn, fn) ∈ LS(c0) ensures that the whole string f(v) rep-
resents a valid accepting computation of A on v, i.e., v ∈ L(A, S).
The converse implication that v ∈ L(A, S) implies f(v) ∈ VS(c0) is straight-
forward.
Hence we have

L(A, S) = f−1(VS(c0)).

Corollary 13. {VS(c0) : c0 ∈ Cin} is 2−NASAPT-complete.

The whole construction would be easier if we would restrict to storage types
which have just one initial configuration, or equivalently, we would work
with codings of configurations (we did so already as we coded S-automata
and their initial configurations), and which have certain instructions which
allow the installation of configurations according to a coding. We then would
deal with languages LS and VS. It is easy to see that for all types of stacks
considered so far we could work with one initial configuration, and thus we
get

Theorem 14. For S ∈ {St,NeSt, CSt,NstSt},

NP = 2−NASAPT = LOG(VS).

Proof. The statement follows from the NP-completeness of checking stack
languages and the containment of index languages in NP.

5. Discussion and open questions

Throughout this paper we use LOGSPACE-reducibilities. But it seems to us
that no LOGSPACE-complete task had to be performed by any of the reduc-
tions constructed in this paper. In most cases, AC0 or even DLOGTIME-
reducibilities should be sufficient. The exceptions seem to be Lemma 1 and
Lemma 2, where a Boolean formula has to be evaluated and this can be done
in ALOGTIME by Buss ([2]). Hence all results in this paper should hold
with respect to NC1-reductions as well.
We stated and proved all results of this paper for nondeterministic automata.
Concerning determinism Lemma 10 should also hold as well (compare this
with DAPDAPT = LOG(DCFL) in [16].
A related question would be to exhibit conditions under which 2−NASA =
2−DASA is true. Except for finite memories and for checking stacks, this
relation holds with respect to all storage types known to the authors.
Another question in this context would be to investigate alternation, more
generally, the whole setup of automata with storage is a sequential one. What

16

about circuit-like structures (or PRAMs) with storage?
Finally we ask for conditions under which 1−NASAPT is reducible to
1−NSAPT. This is, for instance, no problem for push-down, but seems a
hard problem for any stack type (without knowledge of theNP-completeness
of 1-NCStA). Related (at second sight!) are the problems if 1-NSA is per-
se polynomially bounded and if 1-NSA has a decidable emptiness problem.

References

[1] C. Beeri, Two-way nested stack automata are equivalent to two-way
stack automata. J.Comp.Syst.Sci. 10 (1975) 317-339.

[2] S. Buss, The Boolean formula value problem is in ALOGTIME. Proc.
19th STOC, 1987.

[3] S. Cook, Characterizations of pushdown machines in terms of time
bounded computers. J.Assoc.Comp.Mach. 18 (1971) 4-18.

[4] J. Engelfriet, Context-free grammars with storages. Techn. Report 86-
11, University of Leiden, Department of Computer Science.

[5] J. Engelfriet and H.J. Hoogeboom, Automata with storage on infinite
words. LNCS , 289-303.

[6] S. Ginsburg, Algebraic and Automata-Theoretic Properties of Formal
Languages. North-Holland, Amsterdam, 1975.

[7] S. Greibach, The hardest context-free language. SIAM J.Comput. 2
(1973) 304-310.

[8] J.Hopcroft and J.Ullman, Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, Reading Mass., 1979.

[9] H.Hunt, On the complexity of finite, pushdown, and stack automata.
Math. Systems Theory 10, (1976) 33-52.

[10] O. Ibarra, Characterizations of some tape and time complexity classes
of Turing machines in terms of multihead and auxiliary stack automata.
J.Comp.System Sci. 5 (1971) 1971.

[11] K.-J. Lange, Complexity theory and formal languages. LNCS 381, 19-36,
1988.

[12] K.-J. Lange and M. Schudy, A further link between formal languages
and complexity theory. EATCS Bull. 33 (1987) 67-71.

17

[13] N. Lynch, LOGSPACE recognition and translation of parenthesis lan-
guages. J.Assoc.Comp.Mach. 24 (1977) 583-590.

[14] B. Monien and I.H.Sudborough, The interface between language theory
and complexity theory. In R.Book (ed.), Formal Languages - Perspec-
tives and Open Problems, 287-324, Academic Press, 1980.

[15] G. Rozenberg, On a family of acceptors for some classes of developmental
languages. Internat.J.Comput.Math. 4 (1974) 218-235.

[16] I.H. Sudborough, On the tape complexity of deterministic context-free
languages. J.Assoc.Comp.Mach. 25 (1978) 405-414.

[17] K. Wagner and G. Wechsung, Computational Complexity. Deutscher
Verlag der Wissenschaften, Berlin, 1986.

18

