
Dense Completeness

Andreas Krebs and Klaus-Jörn Lange

University of Tübingen, Germany
{krebs,lange}@informatik.uni-tuebingen.de

Abstract. We introduce dense completeness, which gives tighter con-
nection between formal language classes and complexity classes than the
usual notion of completeness. A family of formal languages F is densely
complete in a complexity class C iff F ⊆ C and for each C ∈ C there is
an F ∈ F such that F is many-one equivalent to C.
For AC0-reductions we show the following results: the family CFL of
context-free languages is densely complete in the complexity class SAC1.
Moreover, we show that the indexed languages are densely complete in
NP and the nondeterministic one-counter languages are densely complete
in NL. On the other hand, we prove that the regular languages are not
densely complete in NC1.

1 Introduction

In this work we observe differences and similarities between complexity classes
(like NP or NL) and classes of formal languages (like the regular or the context-
free languages).

Despite the difference between the two areas there are surprisingly close
connections between them. A common behavior is that for a family of formal
languages F and a complexity class C we have on the one hand F ⊂ C and on
the other hand that for every C ∈ C there is an F ∈ F such that C ≤m F .

For the following complexity classes we have multiple complete formal lan-
guage classes([Lan93]:

complexity class formal language classes
NC1 REG, visibly push-down languages
NL linear context-free languages, one-counter languages

SAC1 context-free languages, IO
NP indexed languages = OI

In this article we will show that some of these relations are in fact much closer
than thought before. To this end we introduce the notion of dense completeness
which requires that for every C ∈ C there is an F ∈ F such that not only L ≤m F
but F ≤m L holds as well.

In this paper when we talk about many-one reductions we think about
DLOGTIME-uniform AC0 reductions. This type of reducibility is finer than
the more usual logspace or polynomial time reducibilities. It adequately demon-
strates the closeness of the relationship between complexity classes and families

of formal languages exhibited in this work. We write L1 ≤AC0

m L2 if there is a
many-one DLOGTIME-uniform AC0 reduction from L1 to L2, and L1 ≈AC0

m L2

if L1 ≤AC0

m L2 and L2 ≤AC0

m L1.

Definition 1 (Dense Completeness). Let C, D be classes of languages. We
say C is densely complete in D if

– C ⊆ D and
– ∀D ∈ D ∃C ∈ C : D ≈AC0

m C.

We observe that this notion is transitive in the sense that if both C is densely
complete for D and D is densely complete for E then C is densely complete for
E .

The main difference between the two areas lies in the combinatorial in-
tractability of complexity classes, in contrast to the setting of formal languages,
which are more amenable to combinatorial analysis via pumping lemmata, and
where properties such as emptiness and finiteness are decidable. This difference
is expressed by the abundance of notoriously open questions in complexity the-
ory while in the area of formal languages many of the basic questions like the
relation between determinism and nondeterminism are settled.

We observe some typical differences between these two areas:

typical properties formal language class complexity class

closure under reducibilities No Yes
closure under intersection No Yes
closure under morphism Yes No

emptiness decidable Yes No

In this paper we understand a class of formal languages as the following:

Definition 2. A family F of formal languages is a class of languages finitely
presented by some grammar or automata model such that the emptiness prob-
lem is decidable and which is closed under morphism, inverse morphisms, and
intersection with regular sets, i.e. F is a full trio.

Well established members of this kind are the regular languages, the linear
context-free languages, the one-counter languages, the context-free languages,
the indexed languages and the macro language families IO and OI
([Fis68,Aho68,Aho69]).

First, it might seem impossible to find a formal language class that is densely
complete in a complexity class, since by by Ladner ([Lad75]) we know that in
between any pair of languages L1 and L2 such that L1 ≤ L2 but not L1 ≥ L2

there is an L3 such that L1 ≤ L3 ≤ L2 and neither L1 ≥ L3 nor L3 ≥ L2. The
proof is done by merging the languages L1 and L2 according to the length of
words. In case L1 is the empty set this means “punching large holes” into the
language L2. This idea seems to contradict the concept of any pumping lemma.
Thus a language like L3 appears to lack any relation to a typical formal language
with a semilinear Parikh-image, since languages with a semilinear Parikh image
can only have linear sized holes in their set of lengths of words.

Despite this fact, we will show that in some cases there are in fact densely
complete subfamilies of formal languages. In particular we show that the com-
plexity classes NL, SAC1, and NP indeed possess dense subfamilies of formal
languages.

The paper is structured as follows: After listing the notions used in this
paper we treat the nondeterministic classes SAC1, NL, and NP and show that
they indeed contain dense subfamilies of formal languages. We then show that
the regular languages, which contain NC1-complete problems, are not densely
complete in NC1. In a closing discussion we look at perspectives to generalize
our approach.

2 Preliminaries

We assume the reader to be acquainted with some basic families of formal lan-
guages like the regular languages or the context-free languages and their sub-
families, the linear context-free languages and the one-counter languages.

In this paper we use the following notations for one-way and two-way k-
head nondeterministic finite automata with and without a stack. We denote by
1-NFA(k) (resp. 2-NFA(k)) the one-way (resp. two-way) finite automata. By
1-NPDA(k) (resp. 2-NPDA(k)) we denote the one-way (resp. two way) non-
deterministic pushdown automaton, where the 2-way pushdown automata are
restricted to work in polynomial time. Finally by 1-NOCA we denote the one-way
one nondeterministic counter automata.

Aho introduced the family INDEX of indexed languages and characterized
them by nondeterministic nested stack automata ([Aho68,Aho69]). The common
idea in both characterizations is to equip the nonterminals of a context-free
grammar or the stack symbols of a pushdown automaton by a stack of index
flags which are manipulated appropriately. This results in working with a stack
of stacks as memory structure.

We will refer to a variety of standard complexity classes such as NP, P, SAC1,
NC1, ACC0, ACC0

q, AC0, CC0 (see e.g. [Joh90,Str94]). For a variety of different
versions of auxiliary push-down-automata and for the class LOG(CFL) we refer
to [Coo71,Sud78]. This class coincides with SAC1 [Ven91].

Throughout the paper we will use AC0-many-one-reducibilities, i.e. mappings
between free monoids computed by polynomial sized DLOGTIME-uniform cir-
cuits of constant depth using both and- and or-gates (see e.g. [BIS90]).

We will use the notion of a syntactic monoid as it is dealt with for the finite
case by Eilenberg ([Eil76]) or Pin ([Pin86]).

3 The Context-free Languages and the class SAC1

Sudborough showed that the context-free languages are complete for SAC1

([Sud78]). For this he used the equivalent characterization of SAC1 by poly-
nomial time bounded pushdown automata with a two-way input tape and an

auxiliary logspace tape. We will extend this result and show that the context-
free languages are densely complete in SAC1.

Theorem 1. The context-free languages are densely complete in SAC1.

Before we start with the proof we will review the proof in [Sud78]. He applied
the well known technique of replacing a logspace tape by a multitude of two-
way input heads. He then reduced the number of input heads down to one by
reductions which intensively repeated the input word. It is quite easy to see
that these steps preserve denseness since we reduce the word problem of an
automaton A working on input w to the word problem of an automaton B on a
transformed input word w′ = T (w) and B with its two-way input head together
with its stack can check w′ to be of the right format first before simulating A
and reject otherwise.

In a next essential step Sudborough reduced the word problem of a one-head
two-way pushdown automaton A on an input w working in polynomial time
p(|w|) to the word problem of a usual one-way pushdown automaton B working
on the input T (w) := (w$←−w $)p(|w|). When A reverses the direction of its input
head at the i-th position of a subword w of T (w), B reads the remaining |w| − i
symbols of w against the first |w| − i symbols of the following subword ←−w .

This seems to need an additional counter which while in use freezes the stack
(and does not use it). But this freezing counter can be simulated within the
stack of the PDA by simply pushing an intermediate bottom of stack symbol
separating the frozen stack from the active counter. After successfully counting
the remaining |w|−i symbols of w against the first |w|−i symbols of the following
subword←−w the intermediate bottom of stack symbol is popped and the unfrozen
stack below continues its work - now on the reversed word.

It is now tempting to speculate that this reduction preserves denseness. But
this should not be the case: consider the case of undirected graph reachability. By
Reingold’s ([Rei08]) celebrated result this problem is in deterministic logspace
and thus in SAC1. It is possible to code it as a SAC1-language in a way that
after the last step of Sudborough’s proof going from a two-way automaton A to
a one-way automaton B we can cheat by giving B inputs which are only nearly
of the form T (w) but are too short and thus with the help of B can solve the
shortest path problem for undirected graphs which is NL-complete ([Tan07]).

This problem is caused by the inability of one-way automaton B to check
its input being of the correct form, i.e. being a member of T (Σ∗). To avoid
this problem we make use of the simple observation that the complement LBAD

of T (Σ∗) is both a context-free language (in fact it is even a linear context-
free language) and is in AC0. We now reduce L(A) via T (·) to the context-
free language L′ := L(B) ∪ LBAD. But since L′ = T (L) ∪ LBAD (observe that
T (L) = L(B) ∩ T (Σ∗)) we can reduce L(A) via a AC0-many-one reduction to
L′.

With this trick in mind we change the route from 2-NPDA(k) to 1-NPDA(1)
by not going via 2-NPDA(1) but instead via 1-NPDA(k) which seems to give
easier proofs and thus these constructions can be easier transferred to the classes
NP and NL.

But first we need some additional definitions. Given a word w ∈ Σ∗ of length
n, and an integer 0 ≤ k < nc, for some natural number c, define a mapping
γc that maps w, k injectively to a word of length n over a new alphabet. We
extend the alphabet by c markers, i.e. Σ′ = Σ × 21,...,c. The position of the
markers will allow us to encode the number k. In order to represent the number
k by c numbers in the range 1, . . . , n we pick 1 ≤ k1, . . . , kc ≤ n such that
k =

∑c−1
i=0 (ki+1 − 1) · ni. Finally, we define γc : Σ∗ × N→ (Σ × 2{1,...,c})∗ by

γc(w, k) = (w1, X1) . . . (wn, Xn),

where mi ∈ Xl iff ki = l.
Given a word .w/ with start and end markers we can repeat the word a

polynomial number of times and add increasing numbers to the repeated words.
In this way we can later check that the repetition is bounded by a polynomial.

Definition 3. Define Γc : Σ∗ → (Σ × 2{1,...,c} ∪ {., /})∗ as

w 7→ .γc(w, 0) / .γc(w, 1) / γc(w, |w|c − 1) / .

Lemma 1. The languages accepted by
⋃
k 1-NPDA(k) are densely complete for

the languages accepted by
⋃
k 2-NPDA(k).

Proof. Pick an automaton A from 2-NPDA(k) that recognizes a language L ⊆
(Σ∗). Choose c such that the runtime of A is bounded by nc.

We will show that there is a 1-NPDA(k + 1) automaton B that recognizes
L′ = Γc(L) ∪ LBAD, where LBAD = (Σ × 2{1,...,c} ∪ {., /})∗ \ Γc(Σ∗).

This will suffice for the proof since the mapping Γc can be computed by a
DLOGTIME-uniform AC0 reduction and since L′ ≤AC0

m L (see discussion at the
beginning of this section) we get L ≈AC0

m L′.
First we show that we can find a 1-NPDA(2), that accepts all words in

LBAD. This automaton will not even use the stack. For this we choose two heads
and place them randomly at two neighboring symbols .. Then we move them
simultaneously right till they reach /. If they do not reach / in the same step,
we accept, since in the image of Γc the distance between . and / is always the
same. During the movement we can check that the sequences scanned encode
γc(w, i) and γc(w, i+ 1) for a value i, if this is not the case we accept.

We now show how we can simulate A working on .w/ by a 1-NPDA(k + 1)
B working on w′ := Γc(.w/). For each of the k heads in the automaton A
automaton B has a corresponding head and in addition B has one auxiliary head.
Observe that w′ when projected to the Σ-components losing all information
concerning numbers consists in |w|c repetitions of the word .w/. Let n = |.w/ |,
we want to show that during the simulation of A by B the following invariant
holds: When B completed the simulation of a single step of A the position of each
of the k heads of A within .w/ coincides with the position of the corresponding
head of B on w′ modulo n. This is clear for the initial configuration.

Since the positions are the same modulo n, the corresponding heads of B
see which symbols are seen by the simulated automaton A. We can assume that

in the automaton A only one of the heads moves during one step. If the head
makes a move to the right or stays at the same position, we do the same with
the corresponding head of B. If the head of A moves to the left, we want to move
the corresponding head of B n−1 steps to the right. This position always exists
since the runtime of A is bounded by nc. In order to move the head n−1 steps to
the right, we move the auxiliary head right until we encounter a . symbol, and
then move the auxiliary head of B and the corresponding head simultaneously
to the right, until the auxiliary head sees a / symbol. Hence we can always keep
our condition about the positions of the heads.

We mention that we choose in our construction to use in the one-way au-
tomaton an additional head and avoided to do the counting by the push-down
store in order to use this proof for other automata than push-down automata.

ut

We define another mapping to encode the position of two heads by a single
head. Let x, y ∈ Σn then we write (x, y) for the word

(x1, y1)(x2, y2) . . . (xn, yn) ∈ (Σ2)n

also we let π1((xi, yi)) = xi and π2((xi, yi)) = yi.
Given a word w1 . . . wn ∈ Σ∗, we define a word over Σ × Σ ∪ {$}. We let

vi = (w,wni)$n for i ∈ {1, . . . , n}. Also we let w′ = v1v2 . . . vn, so the length
of w′ is 2n2 We let µ : Σ∗ → Σ′′∗ be the mapping of w to w′. Also we let
νn : {1, . . . , n}2 → {1, . . . , 2n2} be the map

νn(i, j) = i+ 2n · (j − 1).

Thus, given two heads at the positions i and j on a word w, the construction
guarantees that w′νn(i,j) = (wi, wj). In the following lemma we show that we can
simulate the movement of multiple heads on the word w by only one head on
the word w′.

Lemma 2. 1-NPDA(1) are densely complete for 1-NPDA(k).

Proof. Pick an automaton A from 1-NPDA(2) that recognizes a language L ⊆
(Σ∗). We will show that there is a 1-NPDA(1) B that recognizes L′ = µ(L) ∪
LBAD, where LBAD = Σ∗\µ(Σ∗). This will suffice for the proof since the mapping
µ can be computed by a DLOGTIME-uniform AC0 reduction and since L′ ≤AC0

m

L (see discussion at the beginning of this section) we get L ≈AC0

m L′.
First, we show that we can recognize LBAD. Let w′ be the input of B and

let n′ = |w′|. We can use the stack of B as a counter to accept if it is not
the case that each block of $’s, and each block between the $-blocks has the
same length. Also we can check that the number of $-blocks is the same as
the number $’s in the first $-block. If one of these conditions is not fulfilled we
accept the word, since we want to accept LBAD. We continue to check if there are
mistakes in the repetition of the word w, i.e. that π1(w′νn(i,j)) 6= π1(w′νn(i,j+1))
or π1(w′νn(i,1)) 6= π2(w′νn(j,i)) for i, j ∈ {1, . . . , n′}. (See appendix for details.)

Second, we show how we can simulate A working on w by a 1-NPDA(1)
working on w′ = µ(Σ∗). For the two heads of A at positions i, j we have one
corresponding head in B at position νn(i, j), where n = |w|. This is clear for the
initial configuration.

Since w′νn(i,j) = (wi, wj), the corresponding heads sees which symbols are
seen by the simulated automaton. We can assume that in the automaton we
simulate only one of the head’s moves during one step. If the first head makes
a move to the right, we do the same. If the second head moves to the right, we
want the head to move 2n steps to the right.

If had an additional freezing counter, we would move the head to right in-
creasing the counter, till we see a $ symbol. While we see $ symbols we move the
head further to the right and decrease the counter for each step. After the last
$ symbol we move further right increasing the counter with each step till the
counter equals zero. Since there are n $ symbols in a block, we move the head
2n positions to the right. Also a counter can be simulated with the stack and
two additional stack symbols. Hence we can always keep our invariant condition
about the positions of the heads.

Since we can use this reduction also in the presence of additional heads, by
induction we get our result. ut

Proof (Proof of Theorem 1). Since the languages accepted by 2-NPDA(k) equal
the the languages in SAC1, by the transitivily of dense completeness and the
previous two lemmas the result follows. ut

4 The One-Counter Languages and the class NL

In our other proofs in the previous section we use the ability of push-down au-
tomata to simulate an additional freezing counter. For One-Counter Languages
we face the problem that they cannot simulate an additional freezing counter,
otherwise they would be able to recognize, for example, {anbmcmdn} which is
not a one-counter language. Nevertheless, we can show that the one-counter
languages are dense in NL.

The general idea is two show that 1-NFA(2) are densely complete in NL.
This is similar to the previous section. Then we use a 1-NOCA to simulate a
1-NFA(2), where we can make use of the counter since 1-NFA(2) do not posses
a counter.

Lemma 3. The languages accepted by
⋃
k 1-NFA(k) are densely complete for

the languages accepted by
⋃
k 2-NFA(k).

Proof. This is the same as in the proof of Lemma 1, where we used an automaton
with an additional head from 1-NPDA(k + 1). ut

For the following reduction we will need a new mapping. The new mapping
should help us to encode the position of three heads by a two heads. This is
similar to the context free case, but here we need one additional head.

Let x, y ∈ Σn then we write (x, y) for the word (x1, y1)(x2, y2) . . . (xn, yn) ∈
(Σ2)n Given a word w1 . . . wn ∈ Σ∗, we define words over Σ × Σ ∪ {$u}. We
let ui = (w,wni)$n for i ∈ {0, . . . , n − 1}. Further, we define words over Σ′′ =
Σ′ ×Σ ∪ {$v}. We let vi = (u,w2n2

i)$2n2

v and w′ = v1v2 . . . vnv1v2 . . . vn, so the
length of w′ is 8n3. Please note that we repeated v1 . . . vn twice, this is a rather
technical reason, which we explain in the following lemma.

We let µ′ : Σ∗ → Σ′′∗ be the mapping of w to w′. Also we let ν′n :
{1, . . . , n}3 → {1, . . . , 4n3} be the map

ν′n(i, j, k) = i+ 2n · (j − 1) + 4n2 · (k − 1).

So given three heads at the positions i, j, k on a word w by the construction
w′νn(i,j,k) = (wi, wj , wk). In the following lemma we show that we can simulate
the movement of three heads on the word w by only two heads on the word w′.

Lemma 4. The languages accepted by 1-NFA(2) are densely complete for the
languages accepted by

⋃
k 1-NFA(k).

Proof. Pick an 1-NFA(3) A that recognizes a languages L ⊆ (Σ∗). We will
show that there is a 1-NFA(2) B that recognizes L′ = µ′(L) ∪ LBAD, where
LBAD = Σ∗ \ µ′(Σ∗).

Similar to Lemma 1 we can show that we can accept all words in LBAD; since
we have two heads this is straight forward. (Note that Lemma 2 is different, since
we have only one head there.)

Second, we show how we can simulate A working on w by a 1-NFA(2) work-
ing on w′ = µ′(Σ∗). For the three heads of A at positions i, j, k we have one
corresponding head in B at position ν′n(i, j, k), where n = |w|, and one auxiliary
head. This is clear for the initial configuration.

Since w′νn(i,j,k) = (wi, wj , wk), the head corresponding heads sees which sym-
bols are seen by the simulated automaton. We can assume that in the automaton
we simulate only one of the heads moves during one step. If the first head makes
a move to the right, we do the same. If the second (resp. third) head moves to
the right, we want the head of B 2n (resp. 4n2) steps to the right.

The auxiliary head will be at the beginning of one of the vi. We now move
both heads right till the auxiliary head is at the first letter beyond of the next
$u (resp. $v) block. If we just simulated a move of the second head of A, we
will continue to move the auxiliary head, just one character beyond the next
$v-block. So with every more of the second and third head of A, the auxiliary
head of B move 4n2 symbols to the right. This is the reason we doubled the
length of w′ in the definition of µ′.

Using induction on the number of heads we get our result. ut

Since in Lemma 2 we use the stack only to simulate a freezing counter, we
can use the (otherwise unused) counter here to get the lemma:

Lemma 5. The languages accepted by 1-NOCA are densely complete for the
languages accepted by 1-NFA(2).

Since the languages accepted by 2-NFA(k) are equal to the languages in
NL(see e.g. [Sud77]), by the transitively of dense completeness and the previous
lemmas the result follows.

Theorem 2. The one-counter languages are densely complete for NL.

5 The Indexed Languages and the class NP

Aho introduced the family INDEX of indexed languages and characterized them
by nondeterministic nested stack automata ([Aho68,Aho69]). The indexed lan-
guages coincide with Fisher’s class OI of outside-in macro-languages ([Fis68]).
The indexed languages are contained in NP and there are NP-complete indexed
languages ([Rou73]).

Theorem 3. The indexed languages are densely complete for NP.

Proof sketch. (For details see appendix.) The starting point is that polynomial
time bounded nondeterministic two-way nested stack multihead automata accept
exactly the languages in NP. Again, we first reduce densely the polynomial
time bounded nondeterministic two-way nested stack multihead automata to
the corresponding one-way model.

In the second step, we decrease the number of heads to one preserving den-
sity by the use of a freezing counter. Pushdown automata can simulate a freezing
counter by pushing an intermediate designated stack symbol as described in the
previous section. The same observation holds for nested stack automata which
gives us the dense NP-completeness of the languages accepted by nondetermin-
istic nested stack automata (with one-way input head), which are the indexed
languages. ut

Observe that the simulation of a freezing counter within the nested stack
automaton does not go through for other variants of stack automata , like stack
automata and non-erasing stack automata.

6 The Regular Languages and the class NC1

The regular languages are complete for NC1, since every regular language with a
non-solvable monoid is complete for NC1 ([Bar89]). In this section we will prove
unconditionally that the regular languages are not densely complete in NC1. For
regular languages we have the fact that a language is either in AC0, or its syn-
tactic monoids is non-aperiodic ([Sch65]). While this is a rather sharp boundary
on the formal language side, on the complexity side we can find languages very
close to AC0 but still outside. Similar to Ladner’s theorem [Lad75] that shows if
P 6= NP we can find languages that are neither in P nor NP -complete, we con-
struct a language that is neither in AC0 nor any non-aperiodic regular language
can be reduced to it.

Theorem 4. The regular languages are not densely complete in NC1.

Proof. Assume by contradiction that the regular languages are densely complete
in NC1. Then for every language L ∈ NC1 there is a regular language R such
that there are DLOGTIME-uniform AC0 reductions from L to R and conversely.

The idea is to find a language in NC1 that is not many-one equivalent to any
regular language. We apply Ladner’s result as generalized by Vollmer in [Vol90]
to the parity-language, yielding a language L ⊆ Lparity, such that L is reducible
to Lparity but not vice versa.

Essentially L = {w ∈ Lparity | |w| ∈ F} where F is a set of positive integers
such that both F and its complement consist in intervals of rapidly growing size.
Observe that L is not in AC0 by H̊astad’s result ([H̊as86]), but clearly in ACC0

2

since it is AC0-reducible to Lparity.
By assumption there is a regular set R which is many-one equivalent to L.

Let M be the (finite) syntactic monoid of R. There are three cases to consider.
Case 1: M contains no group. Then R is aperiodic and hence R ∈ AC0 and
L ∈ AC0 ([Str94],[Sch65]) - a contradiction.
Case 2: M contains a group of even order, then M also contains Z2. But then
Lparity is recognizable by M , and thus is many-one reducible to R and hence to
L - a contradiction.
Case 3: M contains a group of some odd order. Then for some odd n the cyclic
group Zn divides M , thus we could reduce a language whose syntactic monoid
is Zn to the language R. And hence also to Lparity in contradiction to [Smo87],
who proved that ACC0

2 cannot count modulo any odd number. ut

We can apply the exact same proof to any complexity class between NC1 and
ACC0

2 and its corresponding class within the regular languages. For example
the regular languages with solvable syntactic monoid are complete for ACC0

([BCST92]) , but the proof of the previous theorem shows:

Theorem 5. The regular languages with solvable syntactic monoid are not
densely complete in ACC0.

We are left with class AC0 and the aperiodic or star-free regular languages.
In order to treat this question it would be necessary to use a finer notion of
reducibility since with respect to AC0-reducibility every nonempty subset of
AC0 is densely complete in AC0.

7 Discussion

The principal construction used in this paper to establish the dense completeness
of a language family F in a complexity class C was transforming a language
L ∈ C by padding-like repetitions into some L′ ∈ F such that L′ was the union
of the transformation of L and the set LBAD of ill-formed words which are not in
the image of the transformation. This construction needs F to be closed under
union and to contain LBAD. This could force F both to be of a non-deterministic

nature and to be able to simulate a counter which would induce the NL-hardness
of F .

This may explain the fact that the regular languages are not dense in their
complexity class NC1. Considering the similarities between the regular, con-
textfree, and indexed languages (the contextfree languages are the yields of the
regular tree languages and the indexed languages are the yields of the contextfree
tree languages) this is a bit surprising.

This still leaves open the question whether there exists a dense subfamily
of formal languages in NC1. A natural candidate are the visibly pushdown lan-
guages VPL studied in [AM04], which are contained in NC1 and contain NC1-
hard languages since all regular languages are in VPL. They were characterized
in [AKMV05] by the finiteness of a certain congruence relation. We conjecture
that the visibly push-down languages are not dense in NC1. It might be possible
to show along the lines of the proof of Theorem 4 a conditional result like “If
TC0 6= NC1 then VPL is not dense in NC1”. If it were possible to exhibit a dense
subfamily of formal languages in NC1 one should not expect this to be a trio,
since the trio generated by the mirror language, i.e. the set of all palindromes
(as a simple example of a nonregular language) already contains NL-complete
languages.

We left open the following question: what is a class of formal languages? Our
decision to require the class to form a trio might be too restrictive since it seems
to exclude deterministic classes. Another try would for instance be closure under
intersection with regular sets only. But the following construction (which is only
indicated and needs more details for a real proof) then provides us an arbitrary
finitely presented class C with a dense subfamily F : Set T (w) := w1$w2 where
w = w1w2 and |w1| = |w2| if |w| is even resp. |w1| + 1 = |w2| otherwise. Then
the class F := {T (L) ∪ LBAD | L ∈ C} ∪ {∅} is dense in C, has a decidable
emptiness problem, and is closed under intersection with regular sets. In this
case, LBAD is the set of words containing more than one $-symbol, no $-symbol,
or one $-symbol not in the middle of a word. But this class F is just a complexity
class in disguise without any well-behavior of a typical formal language class.

Our results should not be regarded as an approach to separate complexity
classes: If you could prove that NC1 does not contain a dense subfamily of formal
languages, you would have separated NC1 from NL. This only shows how hard it
will be to show that certain complexity classes do not have dense subfamilies of
formal languages. But this motivates the question for the converse, i.e.: can we
show under some standard assumptions from complexity theory non-denseness
results for certain complexity classes? Can we for example show that NC1 6= NL
implies that NC1 does not contain a dense subfamily of formal languages?

References

[Aho68] Alfred V. Aho. Indexed grammars - an extension of context-free grammars.
J. ACM, 15(4):647–671, 1968.

[Aho69] Alfred V. Aho. Nested stack automata. J. ACM, 16(3):383–406, 1969.

[AKMV05] Rajeev Alur, Viraj Kumar, P. Madhusudan, and Mahesh Viswanathan.
Congruences for visibly pushdown languages. In Lúıs Caires, Giuseppe F.
Italiano, Lúıs Monteiro, Catuscia Palamidessi, and Moti Yung, editors,
ICALP, volume 3580 of Lecture Notes in Computer Science, pages 1102–
1114. Springer, 2005.

[AM04] Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In László
Babai, editor, STOC, pages 202–211. ACM, 2004.

[Bar89] David A. Mix Barrington. Bounded-width polynomial-size branching pro-
grams recognize exactly those languages in NC1. J. Comput. Syst. Sci.,
38(1):150–164, 1989.

[BCST92] David A. Mix Barrington, Kevin J. Compton, Howard Straubing, and Denis
Thérien. Regular languages in nc1. J. Comput. Syst. Sci., 44(3):478–499,
1992.

[BIS90] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On
uniformity within NC1. J. Comput. Syst. Sci., 41(3):274–306, 1990.

[Coo71] Stephen A. Cook. Characterizations of pushdown machines in terms of
time-bounded computers. J. ACM, 18(1):4–18, 1971.

[Eil76] Samuel Eilenberg. Automata, Languages and Machines, Vol. A+B. Aca-
demic Press, 1976.

[Fis68] Michael J. Fischer. Grammars with macro-like productions. In SWAT
(FOCS), pages 131–142. IEEE Computer Society, 1968.

[H̊as86] Johan H̊astad. Almost optimal lower bounds for small depth circuits. In
STOC, pages 6–20. ACM, 1986.

[Joh90] David S. Johnson. A catalog of complexity classes. In Handbook of Theoret-
ical Computer Science, Volume A: Algorithms and Complexity (A), pages
67–161. The MIT Press, 1990.

[Lad75] Richard E. Ladner. On the structure of polynomial time reducibility. J.
ACM, 22(1):155–171, 1975.

[Lan93] Klaus-Jörn Lange. Complexity and structure in formal language theory. In
Structure in Complexity Theory Conference, pages 224–238, 1993.

[Pin86] Jean-Eric Pin. Varieties of formal languages. Plenum, London, 1986.
[Rei08] Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4), 2008.
[Rou73] William C. Rounds. Complexity of recognition in intermediate-level lan-

guages. In SWAT (FOCS), pages 145–158. IEEE Computer Society, 1973.
[Sch65] Marcel Paul Schützenberger. On finite monoids having only trivial sub-

groups. Information and Control, 8(2):190–194, 1965.
[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for

boolean circuit complexity. In STOC, pages 77–82, 1987.
[Str94] Howard Straubing. Finite Automata, Formal Logic, and Circuit Complex-

ity. Birkhäuser, Boston, 1994.
[Sud77] Ivan Hal Sudborough. Some remarks on multihead automata. ITA,

11(3):181–195, 1977.
[Sud78] Ivan Hal Sudborough. On the tape complexity of deterministic context-free

languages. J. ACM, 25(3):405–414, 1978.
[Tan07] Till Tantau. Logspace optimization problems and their approximability

properties. Theory Comput. Syst., 41(2):327–350, 2007.
[Ven91] H. Venkateswaran. Properties that characterize logcfl. J. Comput. Syst.

Sci., 43(2):380–404, 1991.
[Vol90] Heribert Vollmer. The gap-language-technique revisited. In Egon Börger,

Hans Kleine Büning, Michael M. Richter, and Wolfgang Schönfeld, editors,

CSL, volume 533 of Lecture Notes in Computer Science, pages 389–399.
Springer, 1990.

