
Unambiguous Polynomial Hierarchies and Exponential Size ∗

Klaus-Jörn Lange Peter Rossmanith

Fakultät für Informatik, Technische Universität München

Arcisstr. 21, 80290 München, Fed. Rep. of Germany

Abstract

The classes NC k and AC k are defined by computa-

tional devices of polynomial size, i.e., by devices using

a polynomially bounded number of gates or processors.

We consider here the case of exponential size, which

results in classes between P and PSPACE. In this way

we get new characterizations of P and UP. The result-

ing relations of nondeterminism, unambiguity, and de-

terminism to several types of simultaneous write access

to a shared memory resemble perfectly the polynomial

case. A new phenomenon is the equivalence of concur-

rent read, exclusive read, and owner read for arbitrary

types of write access in the case of exponential size.

In the exponential case circuits of bounded depth

characterize the polynomial hierachy. Using the no-

tion of an unambiguous circuit we give a uniform

framework to relate the various types of unambiguous

polynomial hierarchies and to explain their differences.

1 Introduction

Between the two classes DSPACE (log n) and P there
is a rich structure of complexity classes, e.g., the SC k,
NC k, or AC k classes. These are defined by sequential
models like Turing machines and auxiliary push down
automata or by parallel models like PRAMs (parallel
random access machines), uniform circuit families, or
alternation [18]. While the running time or depth of
these parallel models is bounded by the logarithm of
the length of the input or some fixed power of it,
the size, i.e., the number of processors or of gates,
is polynomially bounded. In this paper we consider
these classes and their relationships for the case of
exponential size.

Starting point of our investigations are the follow-
ing equations which relate several types of PRAMs,
circuit families, and auxiliary push down automata:

∗work supported by the Deutsche Forschungsgemeinschaft in
SFB 0342 A4 “KLARA”

Pol 1: [21]

AC k = CRCW-TIME(logk n) for k ≥ 1,

Pol 2: [25]

SAC k = NAuxPDA-TIME(2O(logk n)) for k ≥ 1,

Pol 3: [11]

UAC k = CREW-TIME(logk n) for k ≥ 1,

Pol 4: [12, 16]

USAC 1 = StUAuxPDA-TIME(pol), and

Pol 5: [7]

CROW-TIME(log n) = DAuxPDA-TIME(pol).

These relations are depicted in Figure 1.

CROW
1

= DAuxPDApt

SAC
1

= NAuxPDApt

USAC
1

= StUAuxPDApt

AC
1

= CRCW
1

= AΣ
L

log

UAC
1

= CREW
1

✟
✟

✟
✟

✟
✟

✟

✟
✟

✟
✟

✟
✟

✟

✟
✟

✟
✟

✟
✟

✟

❍
❍

❍
❍

❍
❍

❍

❍
❍

❍
❍

❍
❍

❍

Figure 1: Classes of Polynomial Size

The classes NAuxPDA-TIME(pol) and DAuxPDA-

TIME(pol) are well known to be the ≤L
m–closures of

CFL and of DCFL [23].
In the case of exponential size, the following is

known:

Exp 1: Stockmeyer and Vishkin’s relation between
circuits of unbounded fan-in and CRCW–PRAMs



is not restricted to polynomial size: AC k
exp =

CRCWexp-TIME(logk n) for k ≥ 1 [21] and

Exp 2: NP is the exponential-size analogue of
NAuxPDA-TIME(pol): SAC 1

exp = NP [26].

Here the index exp denotes classes defined by circuits
of exponential size or by PRAMs with an exponential
number of processors.

Indeed, Venkateswaran showed that equation Exp 2
holds in a more general setting:

Exp 2′: SAC k
exp = NTISP(2O(logk n), pol) for k ≥ 1.

In addition, equations Pol 3 and Pol 4 are easily ex-
tended to:

Exp 3: UAC k
exp = CREWexp-TIME(logk n)

for k ≥ 1 and

Exp 4: USAC 1
exp = UP .

Again, the last equation can be generalized to:

Exp 4′: USAC k
exp = UTISP(2O(logk n), pol)

for k ≥ 1.

We will complete this picture by deriving the ex-
ponential analogue of equation Pol 5, which gives in
particular a new characterization of the class P :

Exp 5: P = CROWexp-TIME(log n).

We can generalize Exp 5, too:

Exp 5′: For k ≥ 1:

CROWexp-TIME(logk n) = DTISP(2O(logk n), pol).

Figure 2, depicting the equations Exp 1 to Exp 5,
shows the similarity of the polynomial and of the ex-
ponential case.

For exponential size circuits and PRAMs there is a
new phenomenon that does not occur in the polyno-
mial case. All classes mentioned so far coincide with
USAC 1

exp if we choose a weaker uniformity condition.

Especially, if USAC 1
exp and its exponential-time uni-

form analogue turn out to be the same classes, then
the exponential size AC hierarchy collapses. The rea-
son for this is that exponential size, semi-unbounded
fan-in circuit can already express every function, thus
only the uniformity condition restricts USAC 1

exp . On
the other hand, nonuniform polynomial size circuits
do not recognize all languages.

In general, complexity classes improve on robust-
ness when going from polynomial size to exponential

CROW
1
exp = P

SAC
1
exp = NP

USAC
1
exp = UP

AC
1
exp = CRCW

1
exp = AΣ

P

log

UAC
1
exp = CREW

1
exp

✟
✟

✟
✟

✟
✟

✟

✟
✟

✟
✟

✟
✟

✟

✟
✟

✟
✟

✟
✟

✟

❍
❍

❍
❍

❍
❍

❍

❍
❍

❍
❍

❍
❍

❍

Figure 2: Classes of Exponential Size

size. For example, we show that concurrent, exclu-
sive, and owner read access restrictions all are equiva-
lent when using an exponential number of processors.
This holds for every type of write access restriction.
For a polynomial number of processors, we only know
the equivalence of exclusive read and owner read in
the cases of concurrent write and of exclusive write
[17]. All these equivalences mentioned so far pertain
to the case of a logarithmic running time.

Another example is the equivalence of weak and
strong unambiguity for semi-unbounded circuits. The
difference between these two notions of unambiguity
is that in the case of weak unambiguity, for each input
there must not exist two different accepting subtrees,
i.e.: There is at most one way for the circuit to accept
its input. On the other hand, in the case of strong un-
ambiguity, we put this restriction on every gate of the
circuit and not on the output gate, only. The gain of
robustness is mainly caused by the bigger robustness
of the family of exponential functions. Barrington [13]
pointed out that also quasipolynomial size already im-
plies a gain in robustness.

Despite the similarity of Figures 1 and 2 the poly-
nomial case and the exponential one differ when con-
sidering circuits of bounded depth. While AC 0 is a
proper subclass of NC 1 and hence also of CROW-

TIME (O(log n)), the class AC 0
exp coincides with the

polynomial hierarchy:

SAC 1
exp = NP ⊆ AC 0

exp = PH ⊆ AC 1
exp.

An investigation of unambiguous hierarchies be-
tween P and PSPACE comprises the second part of
this paper. The polynomial hierarchy has character-
izations via oracles, bounded alternation, polynomi-
ally bounded quantifiers, and oracles restricted to one



question [6, 19, 20, 22, 27]. Instead of using nondeter-
ministic TM’s we can also build polynomial hierarchies
working with unambiguous computations. The many
possibilities to define hierarchies then no longer seem
to be equivalent. The largest hierarchy is an oracle
hierarchy based on promise access to an unambigu-
ous oracle. Promise access was investigated by Cai,
Hemachandra, and Vyskoč [5]. For promise access it
is sufficient that the oracle machine behaves unam-
biguously on queried words, but not necessarily on
all possible words. An apparently weaker hierarchy is
the unambiguous oracle hierarchy, followed by the un-
ambiguous alternation hierarchy. The latter coincides
with hierarchies built by unambiguous quantifiers and
the one-query unambiguous oracle hierarchy.

We find a uniform framework that characterizes
all these hierarchies in terms of circuits. If the cir-
cuits are weakly unambiguous, we get the unambigu-
ous promise hierarchy, while strongly unambiguous
circuits characterize the unambiguous oracle hierar-
chy. If the circuit is in a normal form such that the
unbounded fan-in gates have to be at the top of the
circuit, then we finally get the unambiguous alterna-
tion or quantifier hierarchy.

2 Preliminaries

The reader is assumed to be familiar with the ba-
sic facts of complexity theory as they are contained
in [2] or [9]. So we will use without explanation
the classes DSPACE(log n), NSPACE(log n), P, NP,
and PSPACE. Throughout the paper “exponential”

means bounded by a function in 2nO(1)

.
There are two results that are particularly impor-

tant for this paper. First, the equivalence of un-
bounded fan-in circuits and CRCW-PRAMs due to
Stockmeyer and Vishkin [21]. Their theorem is most
often used for polynomial size circuits, but holds as
well for exponential size ones. Second, the characteri-
zation by Venkateswaran of the polynomial hierarchy
by constant depth, unbounded fan-in, exponential size
circuits together with the characterization of NP by
logarithmic depth, semi-unbounded fan-in, exponen-
tial size circuits [26].

We use the following notation:

• XRYWexp-TIME(t(n)) is the class of languages
accepted by XRY W-PRAMs with exponentially
many processors in O(t(n)) steps.

• AC k
exp and SAC k

exp is the class of languages ac-
cepted by unbounded (semi-unbounded) fan-in
circuit of exponential size and O(logk n) depth.

• AC k and SAC k is the class of languages accepted
by unbounded (semi-unbounded) fan-in circuit of
polynomial size and O(logk n) depth.

• NAuxPDA-TIME(f(n)) denotes the class of lan-
guages accepted by nondeterministic f(n)-time
bounded auxiliary push down automata. Here,
auxiliary means both two-way access to the input
and augmentation with a logarithmically space
bounded working tape. DAuxPDA-TIME(pol)
denotes the corresponding deterministic class.

• NTISP(f, g) is the class of all langauges accpeted
by Turing machines which are simultaneously f -
time and g-space bounded. DTISP(f, g) denotes
the corresponding deterministic class.

All other special notation will be introduced where
needed.

3 Exponential Parallelism

In this section we investigate complexity classes de-
fined by PRAMs with an exponential number of pro-
cessors. It is well known that PRAMs using an ex-
ponential number of processors recognize in polyno-
mial time exactly all languages in PSPACE regardless
which type of memory access we allow. In the follow-
ing, we investigate fixed powers of the logarithm func-
tion as running times, in particular O(log n) steps. As
long as we allow polylogarithmic running time and a
polynomial number of processors, there is no differ-
ence between PRAMs with different reading and writ-
ing ability from a complexity theoretic point of view,
since a OROW-PRAM can simulate a CRCW-PRAM
with only a logarithmic factor of loss in time. All
models define together the class NC .

Working with an exponential number of processors,
life is harder at first glance, since even a polylogarith-
mic overhead of the running time does not guaran-
tee equivalence of the OROW and the CRCW model.
Nevertheless, in fact life is easier in the exponential
world as we will see shortly. Many classes collapse
whose cousins with polynomial size withstood any at-
tack to show their equality by now.

Venkateswaran showed in [26] the equivalence of
semi-unbounded circuits of exponential size and non-
deterministic polynomially space bounded machines:

Theorem 1

SAC k
exp = NTISP(clogk n, pol) for k ≥ 1.



In particular this yields NP = SAC 1
exp.

Let us start by deriving a comparable result for
DTISP(f, g)-classes. Our characterization will not
work with circuits, but with CROW-PRAMs with
an exponential number of processors and logarith-
mic running time. In the polynomial world we have
CROW-TIME(log n) = LOG(DCFL). The determin-
istic flavor of CROW memory access also manifests
itself when working with an exponential number of
processors. The following result is only stated for poly-

nomial space and time 2O(logk n), but holds in a more
general setting.

Theorem 2 For k ≥ 1:

DTISP(2O(logk n), pol) = CROWexp-TIME(logk n).

Proof: “⊆”: The configuration graph of a polynomi-
ally space bounded computation contains at most an
exponential number of nodes, since there are at most
exponentially many different configurations. Since we
consider only deterministic computations, we know
also that this graph is in fact a forest, where each tree

is of depth O(clogk n). We further know that the de-
gree of all nodes is constant since a configuration has
at most a constant number of predecessors. A CROW-
PRAM constructs this configuration forest in its mem-
ory by assigning one processor to each possible config-
uration. Each processor computes “its” successor and
“its” predecessors in the forest and writes pointers in
the appropriate locations in the global memory. In
this way the global memory contains a representation
of the computation graph in question. We can find
out whether the initial and final configuration are in
the same tree by simply performing pointer jumping.

“⊇”: We adopt Dymond and Ruzzo’s technique to
simulate CROW-PRAMs deterministically [7]. They
showed CROW-TIME(log n) ⊆ LOG(DCFL) by re-
cursively evaluating functions that describe the con-
tents of memory cells and states of processors at a
given time. Let G(m, t) be the contents of the mth
memory cell after the tth step and S(p, t) be the state
of the pth processor after step t. The state of a pro-
cessor includes its instruction counter as well as the
contents of all its local memory cells. We can as-
sume without loss of generality that there are only a
constant number of local memory cells, so polynomial
space suffices to encode a processor’s state as well as
a memory cell’s contents.

In polynomial time q(n) we can compute S(p, t)
from S(p, t− 1) and G(m, t− 1) where m is the mem-
ory cell read when in state S(p, t − 1). Similarly,
we can compute in time q(n) G(m, t) from G(m, t −

1) and S(p, t − 1) where p is the owner of memory
cell m. The recursion depth is O(logk n), so time

O(q(n)2O(logk n)) = 2O(logk n) suffices for the whole re-
cursion. ✷

Corollary 1

P = CROWexp-TIME(log n).

In the proof of P ⊆ CROWexp-TIME(log n) con-
current read seems to be absolutely necessary. Not so!
It is true that it isn’t possible to copy some informa-
tion to many places in small time, but there is a trick
to avoid it. For every possible input we create one
instance of the simulating algorithm, that is, we make
2n copies of the algorithm and each copy pretends to
act on a different input. It is not necessary at all that
a processor reads from the actual input. After ter-
mination of all algorithms we are confronted with 2n

possibly different results located in 2n global memory
cells. In O(log n) steps n processors can collect the
whole input in the näıve binary tree way. A single
processor can then use the whole input as an index to
the 2n possible results and access the correct one.

We can even prove a more general result. Con-
current, exclusive, and owner read access lead to the
same complexity classes for an exponential number of
processors.

Theorem 3 For k ≥ 1 we have:

1. CRCWexp-TIME(logk n)

= ERCWexp-TIME(logk n)

= ORCWexp-TIME(logk n),

2. CREWexp-TIME(logk n)

= EREWexp-TIME(logk n)

= OREWexp-TIME(logk n),

3. CROWexp-TIME(logk n)

= EROWexp-TIME(logk n)

= OROWexp-TIME(logk n).

Proof: The idea of the following construction is to
resolve simultaneous read access by multiple compu-
tating all values computed in a computation.

Given a CRCW, CREW, or CROW algorithm we
create 2nPT instances of this algorithm that will exe-
cute in parallel. Here P denotes the number of proces-
sors and T the number of steps in total. The 2nPT in-
stances are arranged in 2n blocks—one block for each



possible input. All instances of algorithms in a block
pretend to work on a fixed input, so no concurrent
reads to the inputs are necessary. Each block contains
PT copies of the original algorithm. All of them sim-
ulate the first step of the original algorithm, but only
2nPT−t+1 of them the tth step.

Let us assume that at the beginning of the tth step
PT−t copies of the algorithm have an exact copy of
the original algorithm’s memory contents in their own
global memory. Then each processor reads the correct
value—the same as in the original algorithm. If the
processor writes, it also writes the right value. In the
next step P times fewer instances of the algorithm will
be alive.

For each instance that will be alive in the next step,
there are P − 1 instances that will be dead. At this
point we can avoid concurrent reading by letting the
pth processor in the instance that will be alive read
from a memory cell in the pth instance that will be
dead. We arrange that the pth processor in the living
instance is the read-owner of all memory cells in the
pth dying instance.

At the end, n processors determine in log n steps
that block that worked on the correct input. ✷

Corollary 2 For k ≥ 1 we have:

1. DTISP(2O(logk n), pol) =

= CROWexp-TIME(logk n)

= EROWexp-TIME(logk n)

= OROWexp-TIME(logk n),

2. P = CROWexp-TIME(log n)

= EROWexp-TIME(log n)

= OROWexp-TIME(log n).

4 Unambiguous Circuits

Unambiguous circuits are an analogue to unambiguous
Turing machines [11]. There are two kinds of unam-
biguous circuits: weakly unambiguous and strongly
unambiguous ones. A Turing machine or an auxil-
iary PDA is strongly unambiguous, if for all pairs of
configurations there exist at most one valid computa-
tion connecting these configurations. This leads to the
complexity classes StUP and StUAuxPDA-TIME(pol)
[4]. Strong unambiguity is the more natural one in
the world of circuits. A strongly unambiguous cir-
cuit consists of robust gates of bounded fan-in and
vulnerable gates of unbounded fan-in. While there is

no restriction for robust gates, vulnerable OR-gates
must receive at most one 1 from their predecessors,
and vulnerable AND-gates must receive at most one 0.
Otherwise, a vulnerable gate is destroyed and outputs
a value that causes vulnerable gates that receive this
value to be destroyed, too. In an unambiguous circuit
no vulnerable gate must be destroyed. This restriction
must be fulfilled for all possible input values. In the
following, we assume that all unambiguous circuits are
layered, that is, all paths from a gate to an input have
the same length. In this way we come to the classes
UAC k for k > 0. Strongly unambiguous circuits show
tight relations to exclusive write PRAMs [11]: As
an unambiguous analogue of CRCW-TIME(logk n) =
AC k we have CREW-TIME(logk n) = UAC k [10]. To
define unambiguous circuits of semi-unbounded fan-in,
it turns out to be reasonable to forbid robust OR-gates
of bounded fan-in. Thus an USAC k-circuit is an un-
ambiguous circuit consisting of vulnerable OR-gates of
unbounded fan-in and robust AND-gates of bounded
fan-in.

We have StUAuxPDA-TIME(pol) = USAC 1 [12]
as an strongly unambiguous analogue of NAuxPDA-

TIME (2O(logk n)) = SAC k.1

A Turing machine or an auxiliary PDA is (weakly)
unambiguous if for each input there exists at most
one accepting computation. This concept leads to
the complexity classes UP and UAuxPDA-TIME(pol).
We define weakly unambiguous circuits analogously to
unambiguous Turing machines. A circuit is weakly
unambiguous, if there is at most one accepting subtree
for each possible input. We call the respective weakly
unambiguous circuit classes WUSAC 1 and WUAC 1.

As an weakly unambiguous analogue of NAuxPDA-

TIME(2O(logk n)) = SAC k we have UAuxPDA1 =
WUSAC 1 [12]. For more results in this field we re-
fer to [3, 4, 14]. In the following we consider circuit
families of exponential size.

We denote by USAC 1
exp , WUSAC 1

exp , and UAC 1
exp

the classes of languages corresponding to the classes
USAC 1, WUSAC 1, and UAC 1 if we replace the poly-
nomial size bound by an exponential one.

All results about polynomial size circuits transfer
to corresponding relations in the exponential world.
In most cases, however, these are rather odd ones, or
we can find better results with a little bit more effort.
We start with unbounded fan-in circuits:

Theorem 4 For k ≥ 1:

UAC k
exp = CREWexp-TIME(logk n).

1Observe that SAC
1 = LOG(CFL) does not seem to carry

over to USAC
1 and LOG(UCFL).



Proof: “⊆” We assign one memory cell to each gate
and one processor to each wire. These processors com-
pute the boolean functions of a gate and write the
result into the gate’s memory cell, which in the begin-
ning has a 1 in the case of an OR gate and a 0 in the
case of an AND gate. There are no write conflicts—at
most one processor writes for a vulnerable gate, and
the writes for robust gates can be carried out one after
the other.

“⊇” For the following construction it is crucial,
that our PRAMs have a polynomially bounded word
length. We assume that there is no indirect access
to local memory. Since the program is finite, each
processor accesses only a constant number of local
memory cells. Altogether a polynomial number of
bits suffices to describe the state of a processor. We
denote the state of processor p in step t by State(p, t)
and the contents of the mth memory cell in step t
by Global(m, t). We construct a circuit with gates
〈State(p, t) = s〉 and 〈Global(m, t) = a〉 for all possible
states s and memory contents a. Gate 〈State(p, t) = s〉
computes whether State(p, t) = s. Its interconnection
is

〈State(p, t) = s〉 ≡

∃(s′,m,a)〈State(p, t − 1) = s′〉 ∧ 〈Global(m, t − 1) = a〉,

where we quantify over (s′, m, a) such that a processor
reads from memory cell m when in state s′, and en-
ters state s if it reads value a. Gate 〈Global(m, t) = a〉
computes whether Global(m, t) = a. Its interconnec-
tion is

〈Global(m, t) = a〉 ≡

〈Global(m, t − 1) = a〉 ∧ ∀(p,s)¬〈State(p, t − 1) = s〉

∨ ∃(p,s)〈State(p, t − 1) = s〉.

The universal quantification runs over (p, s) such that
a processor in state s writes into memory cell m. The
existential quantification runs over (p, s) such that a
processor in state s writes a into memory cell m. The
subformulae before and after the OR reflect the cases
that (i) no processor writes into m, but it contained
already a, and (ii) some processor writes a into mem-
ory cell m. Since at every step the state of a processor
as well as the content of a memory cell are uniquely
determined and since the simulated PRAM obeys the
exclusive write restriction, the construed circuit is un-
ambiguous. ✷

By Theorem 3 we have:

Corollary 3 UAC k
exp = XREWexp-TIME(logk n)

for X ∈ {C, E, O} and k ≥ 1.

The unambiguous variant of NP is the well-known
class UP introduced by Valiant [24] as the class of lan-
guages accepted in polynomial time with at most one
accepting path. We defined the class StUP (strongly
unambiguous polynomial time) as the class of lan-
guages accepted by polynomial time bounded Turing
machines that have at most one computation path be-
tween two arbitrary configurations and are unambigu-
ous.

Since USAC 1 = StUAuxPDA1 and WUSAC 1 =
UAuxPDA1, we obviously expect USAC 1

exp = StUP

and WUSAC 1
exp = UP , and this is indeed the case.

In contrast to polynomial size, however, we can show
that weak and strong unambiguity defines the same
complexity classes, if the size is exponential.

Theorem 5

USAC 1
exp = StUP = UP = WUSAC 1

exp.

Proof: A nondeterministic multi-tape Turing ma-
chine without space bound can write a protocol of its
computation onto a separate tape. In this way its com-
putation graph becomes a forest: No configuration has
two predecessors. From this StUP = UP follows.

Next, we show WUSAC 1
exp ⊆ UP . An accepting

subtree of an semi-unbounded circuit has only polyno-
mial size and can be guessed in polynomial time. The
guessing Turing machine works unambiguously, since
there is at most one accepting subtree by definition.

Finally, we show StUP ⊆ WUSAC 1. We use gates
〈c1, c2, t〉 that compute whether configuration c2 is
reachable from configuration c1 in exactly t steps.

〈c1, c2, t〉 ≡ ∃c3
〈c1, c3, ⌊t/2⌋〉 ∧ 〈c3, c2, ⌈t/2⌉〉

The circuit guesses the middle of the path. Since
there is only one middle configuration, all gates are
vulnerable and the circuit is unambiguous. ✷

Observe, that this is the trick that also proves the
equivalence of nondeterministic and symmetric time.
In a more general setting, it is possible to show the
following relations, which we state without proof:

Theorem 6 For each k ≥ 1 we have:

WUSAC k
exp = UTISP(clogk n, pol) and

USAC k
exp = StUTISP(clogk n, pol).

5 Bounded Depth

In this section we look at the various unambiguous
polynomial hierarchies. We will relate them to UAC -
circuits of bounded depth. In this way we will get new
aspects of classes defined by bounded ambiguities.



UP-hierarchies

Stockmeyer [22] defined the polynomial hierarchy by
Turing reductions. There are also characterizations of
the polynomial hierarchy in terms of bounded depth
alternation [6], polynomial length bounded existential
and universal quantification of P [20, 22, 27], and by
one-query access to an oracle [19, section 5].

If we shift our interest from nondeterministic to un-
ambiguous computation, we are faced with these four
approaches to define a hierarchy. For unambiguous
computations, the resulting unambiguous hierarchies
do not longer seem to coincide. There are at least
three possibilities:

1. There is an unambiguous base machine that que-
ries an unambiguous oracle. If the base ma-
chine must be unambiguous for every possible or-
acle, the resulting complexity classes are rather
weak [5]. We therefore require the base machine
to be unambiguous for only one particular oracle.

If the oracle language is accepted by a Turing ma-
chine that behaves unambiguously on at least all
queried inputs (but not necessarily on all inputs)
we get the unambiguous promise hierarchy UPH
with levels ΣUP

k .

2. The alternative is to require that the oracle is ac-
cepted by an unambiguous Turing machine that
is unambiguous on all inputs (i.e., the usual defi-
nition), and not only on those that are queried by
the base machine. This leads to the unambiguous
oracle hierarchy UPH with levels ΣUP

k .

3. The levels of the unambiguous one-query hierar-
chy coincide with levels defined via unambiguous
quantification or bounded alternation of an un-
ambiguous Turing machine. We call the resulting
classes AΣUP

k and the hierarchy is AUPH .

From these characterizations we immediately get
the following relationship:

Theorem 7 AΣUP
k ⊆ ΣUP

k ⊆ ΣUP
k .

Unambiguous AC 0
exp-circuits

From the work of Venkateswaran [26] it follows imme-
diately that PH = AC 0

exp . We define UAC 0,k
exp as fol-

lows. A language belongs to UAC 0,k
exp , if it is accepted

by an unambiguous circuit of unambiguous circuit of
exponential size such that at most k unbounded fan-in
vulnerable gates are on each path. Additionally, the
circuit may contain bounded fan-in robust gates, but
at most O(log n) on each path. The corresponding

weakly unambiguous class is called WUAC 0,k
exp and we

define
UAC 0

exp :=
⋃

k UAC 0,k
exp and

WUAC 0
exp :=

⋃
k WUAC 0,k

exp .

Furthermore we define the classes UAC 0,k
exp-NF and

WUAC 0,k
exp−NF via the additional restriction for the

underlying circuits that all vulnerable gates are at the
top of the circuit, that is, on every path there are
vulnerable gates followed by robust gates. For this
normal form, weak and strong unambiguity coincide,
i.e.,

WUAC 0,k
exp-NF = UAC 0,k

exp-NF.

The reason is simple: There is no difference between
weak and strong unambiguity unless there are robust
gates that get as their inputs the outputs of vulnerable
gates.

The constant-depth unambiguous AC 0
exp-circuit

classes provide us with a uniform setting for the three
possibilities of unambiguous polynomial hierarchies.

Theorem 8

1. AΣUP
k = UAC 0,k

exp-NF,

2. ΣUP
k = UAC 0,k

exp ,

3. ΣUP
k = WUAC 0,k

exp .

Idea of proof: 1) To simulate an unambiguous al-
ternating machine by UAC 0

exp-circuits in normal form,
we express each “layer” of alternation by a vulner-
able gate of unbounded fan-in; existential layers by
OR gates and universal layers by AND gates. At the
ends of the last layer we check the validity of the path
constructed so far, which can be done by an NC 1-
subcircuit. The uniformity of this curcuit can be ful-
filled by assuming the simulated machine to be in some
normal form; e.g., all layers are of the same depth, the
machine first performs its alternations recording the
nondeterministic decisions, and then deterministically
checkes its decisions.2 The simulation of an unam-
biguous circuit in normal form by an unambiguously
alternating machine is quite obvious.

2) and 3) The representation of languages in ΣUP
k

by UAC 0,k
exp-circuits is done by induction over k. For

this, we essentially use query-replacement of the base
machine. Guessed negative answers directly lead to
oracle queries, while positive guesses lead to a simula-
tion of the base machine on level 1 and so on. This can
be refined to a circuit of exponential size consisting of

2Thus, we essentially simulate here the unambiguous quan-
tification of an NC

1-predicate.



one vulnerable OR gate of unbounded fan-in, many ro-
bust AND’s of bounded fan-in and many UAC 0,k−1

exp -
subcircuits with a vulnerable AND-gate on top. In
total this results in an UAC 0,k

exp-circuit.

To show the reverse we simulate an UAC 0,k
exp-circuit

top-down. A vulnerable OR is processed by (un-
ambiguously) guessing the predecessor delivering the
value true. Vulnerable AND’s simply lead to an ora-
cle query. Robust gates of bounded fan-in are simu-
lated sequentially. Since the depth of robust gates is
logarithmically bounded, this results in a polynomial
running time. ✷

Corollary 4

1. AUPH = UAC 0
exp-NF,

2. UPH = UAC 0
exp ,

3. UPH = WUAC 0
exp .

From the above theorem we get immediately an al-
ternative proof of Theorem 7. Though we know inclu-
sions between the levels of the three hierarchies, we do
not know whether the three hierarchies intertwine, or
if some hierarchy is contained in a fixed level of one
of the other hierarchies. Another possibility is that
some (or all) of these hierarchies collapse to a fixed
level. We will see later that a collapse would be hard
to prove.

As another consequence we get the containment of
all three hierarchies in SPP , the smallest gap-definable
class [8].

Theorem 9 AUPH ⊆ UPH ⊆ UPH ⊆ SPP.

Idea of proof: Let C be a weakly unambiguous
UAC 0

exp-circuit. Without loss of generality we may
assume C ′ not to contain robust OR-gates of bounded
fan-in by replacing A ∨B by A ·∨ (¬A ∧B). The sim-
ulating SPP machine M will simulate C ′ top-down.
A logical output ‘true’ of a gate will be simulated by
M having gap 1 at that point of its subcomputation.
The output ‘false’ will be represented by M having
gap 0. If a vulnerable gate is destroyed, which may
occur in a weakly unambiguous circuit, this may result
in M having an arbitrary gap. A vulnerable OR gate
x with m predecessors is processed by M by guessing
a number 1 ≤ i ≤ m and recursively processing pre-
decessor i. If at most one predecessor has gap 1 and
all other have gap 0, this will lead to a subcomputa-
tion with gap 1, if the gate x outputs ‘true’, and with
gap 0, if x outputs ‘false’. If more than one of the pre-
decessors carry a ‘true’ or if any predecessor carries an

undefined value, M probably will will have a gap dif-
ferent from 0 or 1. A vulnerable AND gate x with m
predecessors is again processed by guessing a number
1 ≤ i ≤ k and recursively processing the ith prede-
cessor of x. But in addition, we add m − 1 rejecting
paths at this part of the computation of M . Assume
x is not destroyed during the computation of C, i.e.,
it receives at least m − 1 inputs corresponding to a
gap 1 and probably one input corresponding to gap 0.
But this means that M will have gap 0 if x evaluates
to ‘false’ and will have gap 1 if x evaluates to ‘true’.
Again M can have gap 6= 1 or 6= 0, if x would be
destroyed.

A robust AND gate is simulated sequentially by
M , which leads to a multiplication of the incomming
gaps. Thus the process of ‘undefined ∧ false 7→ false’ is
simulated by the multiplication of arbitrary gap with
gap 0 resulting in gap 0. ✷

Bounded ambiguities

Let UP≤d denote the class of all languages that are
recognizable by polynomially time bounded machines
that accept their inputs in at most d different ways.
The class UP and FewP [1] are special cases of UP≤d:

UP = UP≤1 and FewP = UP≤pol.

Our main result concerning UP≤d is that up to d ac-
cepting paths can be simulated by an unambiguous
Turing machine with d alternations (see also Theo-
rem 11 in [15]):

Theorem 10 UP≤d ⊆ AΣUP
d .

The special case d = nO(1) leads immediately to
FewP ⊆ AΣUP

− =: AUP [15]. Following Theorem 8.1,
we can say equivalently that FewP is contained in
UAC 0,pol

exp -NF, since AUP is recognized by circuits of
exponential size, consisting of a top level of polynomial
depth of vulnerable gates of unbounded fan-in and
an input level of logarithmic depth of robust gates of
bounded fan-in. From this follows also that a CREW-
PRAM with exponentially many processors could rec-
ognize FewP in polynomial time. But this is not very
thrilling, since CREWexp-TIME(pol) = PSPACE. In
this connection, it is interesting to note that AUP is
contained in SPP .

Theorem 11 [15] AUP ⊆ SPP.

On the other hand, it is easy to include FewP in-
side of PUP , and hence in ΣUP

2 , or equivalently in
WUAC 0,2

exp . Observe that by Theorem 9 this upper
bound of FewP is contained in SPP , too.



6 Discussion and Open Questions

A central point of this work is the comparison of un-
ambiguity to determinism and nondeterminism. It
turned out that the case of polynomial time, or equiv-
alently, of exponential size3, resulted in a pattern of
relations nearly identical to the case of logarithmic
space (or of polynomial size). Thus unambiguity re-
sembles nondeterminism and not determinism with re-
spect to structural behavior. This is different from
the view point of computational power, in particu-
lar with the case of logarithmic space, where there
are relations indicating that unambiguity is rather re-
lated to determinism. While we have the equivalence
of UP and of StUP, nothing like that is known for
USPACE (log n) and StUSPACE (log n). In the latter
case these classes ought to be different, as it is indi-
cated by [4], where StUSPACE (log n) ⊆ DAuxPDA-

TIME(pol) was shown. Indeed, very similar meth-
ods yield also the closure under complementation of
StUSPACE (log n) [4]. Observe that this question of
closure under complementis still open for UP = StUP

and USPACE (log n).

These subtleties of unambiguous classes showed up
again during the consideration of unambiguous poly-
nomial hierarchies. The various definitions of poly-
nomial hierarchies, which coincide in the case of non-
determinism, fall apart for unambiguous classes. It
is convincing how the concept of unambiguity of cir-
cuits explained these differences and put them into
a unifying frame. The relation between these hierar-
chies are still unknown. For instance, it is easy to
see that the closure of UP under union would imply
UPH = AΣUP

2 , but what would be the consequences,
if we could prove AΣUP

k to be closed under union for
some k ≥ 2.

Acknowledgement

We thank Lane Hemaspaandra for the stimulating lec-
ture and many ideas he gave us during his visit. Our
special thanks go to Rolf Niedermeier for fruitful dis-
cussions on the topic of unambiguous circuits.

References

[1] E. W. Allender. Invertible Functions. PhD thesis,
Georgia Institute of Technology, 1985.

3which includes the case of an exponential number of
processors

[2] J. Balcázar, J. Dı́az, and J. Gabarró. Structural

Complexity Theory I and II. Springer, 1990.

[3] G. Buntrock, L. A. Hemachandra, and D. Siefkes.
Using inductive counting to simulate nondeter-
ministic computation. Information and Compu-

tation, 102:102–117, 1993.

[4] G. Buntrock, B. Jenner, K.-J. Lange, and P. Ross-
manith. Unambiguity and fewness for logarithmic
space. In L. Budach, editor, Proc. 8th FCT, num-
ber 529 in LNCS, pages 168–179, Gosen, Sept.
1991.

[5] J.-Y. Cai, L. Hemachandra, and J. Vyskoč.
Promise problems and access to unambiguous
computation. In I. Havel, editor, Proc. 17th

MFCS, number 629 in LNCS, pages 162–171,
Prague, Czechoslavakia, Aug. 1992.

[6] A. K. Chandra, D. Kozen, and L. Stockmeyer.
Alternation. J. ACM, 28:114–133, 1981.

[7] P. W. Dymond and W. L. Ruzzo. Parallel RAMs
with owned global memory and deterministic lan-
guage recognition. In Proc. 13th ICALP, number
226 in LNCS, pages 95–104. 1986.

[8] S. A. Fenner, L. J. Fortnow, and S. A. Kurtz.
Gap-definable counting classes. In Proc. 6th

Structures, pages 30–42, 1991.

[9] J. E. Hopcroft and J. D. Ullman. Introduction to

Automata Theory, Languages and Computation.
Addison-Wesley, 1979.

[10] K.-J. Lange. Complexity and structure in formal
language theory. In Proc. 8th Structures, pages
224–238, 1993.

[11] K.-J. Lange. Unambiguity of circuits. Theoretical

Comput. Sci., 107:77–94, 1993.

[12] K.-J. Lange and P. Rossmanith. Characterizing
unambiguous augmented pushdown automata by
circuits. In B. Rovan, editor, Proc. 15th MFCS,
number 452 in LNCS, pages 399–406, Banská
Bystrica, Czechoslovakia, Aug. 1990.

[13] D. A. Mix Barrington. Quasipolynomial size cir-
cuit classes. In Proc. 7th Structures, pages 86–93,
1992.

[14] R. Niedermeier and P. Rossmanith. Unambiguous
simulations of auxiliary pushdown automata and
circuits. In I. Simon, editor, Proc. 1st LATIN,
number 583 in LNCS, pages 387–400, São Paulo,
Brazil, Apr. 1992.



[15] R. Niedermeier and P. Rossmanith. Extended lo-
cally definable acceptance types. In P. Enjalbert,
A. Finkel, and K. W. Wagner, editors, Proc. 10th

STACS, number 665 in LNCS, pages 473–483.
1993.

[16] R. Niedermeier and P. Rossmanith. Unam-
biguous auxiliary pushdown automata and semi-
unbounded fan-in circuits. 1993. To appear in
Information and Computation.

[17] P. Rossmanith. The owner concept for PRAMs.
In C. Choffrut and M. Jantzen, editors, Proc. 8th

STACS, number 480 in LNCS, pages 172–183,
Hamburg, Feb. 1991.

[18] W. L. Ruzzo. On uniform circuit complexity.
J. Comput. Syst. Sci., 22:365–383, 1981.

[19] W. L. Ruzzo, J. Simon, and M. Tompa. Space-
bounded hierarchies and probabilistic computa-
tions. J. Comput. Syst. Sci., 28:216–230, 1984.

[20] L. Stockmeyer and A. Meyer. Word problems
requiring exponential time: preliminary report. In
Proc. 5th STOC, pages 1–9, 1973.

[21] L. Stockmeyer and U. Vishkin. Simulation of par-
allel random access machines by circuits. SIAM

J. Comput., 13(2):409–422, May 1984.

[22] L. J. Stockmeyer. The polynomial time hierarchy.
Theoretical Comput. Sci., 3:1–22, 1977.

[23] I. H. Sudborough. On the tape complexity of
deterministic context-free languages. J. ACM,
25:405–414, 1978.

[24] L. Valiant. The relative complexity of checking
and evaluating. Inf. Process. Lett., 5:20–23, 1976.

[25] H. Venkateswaran. Properties that characterize
LOGCFL. J. Comput. Syst. Sci., 43:380–404,
1991.

[26] H. Venkateswaran. Circuit definitions of nonde-
terministic complexity classes. SIAM J. Comput.,
21(4):655–670, 1992.

[27] C. Wrathall. Complete sets and the polyno-
mial hierarchy. Theoretical Comput. Sci., 3:23–
33, 1977.


