
Empty Alternation∗

Klaus-Jörn Lange Klaus Reinhardt

Institut für Informatik, TU München Institut für Informatik, Universität Stuttgart

Arcisstr.21, D-8000 München-2 Breitwiesenstr.22, D-7000 Stuttgart-80

e-mail: lange@informatik.tu-muenchen.dbp.de e-mail: reinhard@informatik.uni-stuttgart.dbp.de

Abstract

We introduce the notion of empty alternation by investigating alternating automata
which are restricted to empty their storage exept for a logarithmically bounded tape
before making an alternating transition. In particular, we consider the cases when the
depth of alternation is bounded by a constant or a polylogarithmic function. In this
way we get new characterizations of classes like PNP [log], ACk, and SACk. Finally, we
exhibit characterizations of empty alternation by formal language concepts.

Topics: Computational complexity, automata and formal laguages, theory of parallel and
distributed computation.

1 Introduction

Alternation as introduced by Chandra, Kozen, and Stockmeyer in [CKS81] proved to be
a very fruitful and versatile parallel concept in complexity theory. It has been combined
with both automata and grammar models. The language families described by alternating
devices coincide with sequential time or space classes.
Bounding the depth of alternation, i.e. bounding the number of transitions between exis-
tential and universal configurations within each computation path, by a constant, results
in characterizations of several well-known hierarchies defined by iterated relativizations1 of
sequential time and space. Let us review these relations for logarithmically space bounded
Turing machines, polynomially time bounded Turing machines, and for the intermediate
model of polynomially time bounded auxilliary push-down automata:

Logarithmic Space: There are two types of relativizations of nondeterministic logarithmic
space, that of Ladner and Lynch (see [?]) and that of Ruzzo, Simon, and Tompa (see
[?]), which is more restricted by prohibiting nondeterministic oracle queries. While
the former leads to the Polynomial Hierarchy of Meyer and Stockmeyer (introduced
in [?]), the many-one version of the later one characterizes the “late” Logarithmic

∗This research was supported by DFG-SFB 342, Teilprojekt A4 “KLARA”.
1Starting from a complexity classX , e.g.: NP, we define levels of a hierarchy by setting ΣX

1 = X and

ΣX
i+1 = X

ΣX
i

1

Alternation Hierarchy (see [?]).2 Thus, in the case of logarithmically space bounded
computations, alternation is related to the weaker kind of relativization.

Polynomial Time: The two types of relativization mentioned above coincide in the case of
nondeterministic polynomially time bounded computations and lead to the Polyno-
mial Hierarchy of Meyer and Stockmeyer. In [?] Jenner introduced the Deterministic
Polynomial Hierarchy by iterating restricted relativizations of deterministic polyno-
mial time equipped with an nondeterministic polynomial time oracle. This hierarchy
does not seem to coincide with the Polynomial Hierarchy but rather shows some sim-
ilarities to the Logarithmic Alternation Hierarchy - in particular, its collapse. If we
look at alternating polynomial time, bounding the depth of alternation by a constant
leads to the Polynomial Hierarchy ([Sto76], [Wra76]). We see that in the case of
polynomially time bounded computations, alternation is related to the stronger kind
of relativization and the corresponding hierarchy.

Polynomial Time of Auxilliary Push-Down Automata: Finally, let us consider polynomi-
ally time bounded two-way push-down automata which are augmented by a logarith-
mically space bounded working tape (see [Coo71], [Sud78]). Bounding the depth of
alternation of this device by a constant again leads to the Polynomial Hierarchy ,but
(as in the Ladner-Lynch case) shifted by one level ([?], [?]). It is possible to introduce
both a Ladner-Lynch-like and a Ruzzo-Simon-Tompa-like relativization of this device.
In the later case not only nondeterminism but also access to the push-down store has
to be prohibited during the generation of oracle queries. Here, again, the Ladner-
Lynch approach would lead to the Polynomial Hierarchy, while the corresponding
Ruzzo-Simon-Tompa hierarchy would behave like the Logarithmic Alternation Hier-
archy, in particular it would collapse on its first level down to LOG(CFL), the class
of problems reducible to context-free languages.

Thus, we see that in all three cases we have two kinds of hierarchies, a stronger one which
coincides with the Polynomial Hierarchy and a weaker one which collapses on a low level.
Unless the considered type of storage is just a logarithmically space bounded working tape,
alternation is related to the stronger hierarchy.
In this paper we introduce a new kind of restricted alternation, which we call Empty Al-
ternation. It is characterized by the property that in moments of alternation all tapes or
stacks have to be empty except for one working tape of logarithmic size. While ”full” alter-
nation usually corresponds to the stronger hierarchy, Empty Alternation will correspond
to the weaker one. Thus, the fact that full alternation and Empty Alternation coincide if
there is no additional storage but a logspace tape explains the correspondence of logspace
alternation to the Ruzzo-Simon-Tompa Relativization.
In section 2 we will give a short overview on complexity classes obtained by bounding depths
of alternations by constants or slowly growing functions. In section 3 the notion of Empty
Alternation is introduced and related to full alternation, yielding new characterizations of
well-known classes like ACk, SACk, or ΘP

2 = LP . Finally, we will investigate in section

2Wagner introduced in [?] a slightly more powerfull type of alternation which characterizes the likewise
“late” Logarithmic Oracle Hierarchy defined by the Turing version of the relativization of Ruzzo, Simon,
and Tompa.

2

4 relations of Empty Alternation to formal languages. In particular, we will consider the
context-free and the linear context-free case.

2 Alternation

We assume the reader to be familiar with the basic notions and results of complexity theory
as they are contained in [HoUl79] or [?] and [?]. In particular, the sets recognizable in
logarithmic space, nondeterministic logarithmic space, polynomial time, nondeterministic
polynomial time, and polynomial space are denoted by LOG, NLOG, P, NP, and PSPACE.
Let LOG(X) denote the class of all languages reducible to a class X. By NAuxPDApt

and DAuxPDApt we denote the classes of languages recognizable by nondeterministic and
deterministic auxilliary push-down automata (see [Coo71]) in polynomial time. In addi-
tion, we use the STA-notation: STA(f, g, h) denotes the set of all languages recognizable
by alternating Turing machines, which are f(n) space-bounded, g(n) time-bounded, and
make no more than h(n) − 1 alternations. Thus, h(n) = 1 covers nondeterministic lan-
guages and by convention h(n) = 0 denotes the deterministic case. In the following we
will consider alternating logspace machines, push-down-automata (both with and with-
out polynomial time bound), and polynomially time or space bounded Turing machines
with two-way input and bounded depth of alternation, which are allways equipped with
a logarithmically space bounded working tape. This, of course, makes no sense (i.e. does
not increase computational power) in the case of polynomially time or space bounded
Turing machines. But it will be useful when introducing empty alternation. Thus, for
X ∈ {LOG ,PDApt ,PDA,P ,PSPACE} and a function g, where we admit the cases that g
is a constant or that g is unbounded which will be indicated by the symbol ω, let AΣlog

g X

denote the set of all languages recognized by alternating X-machines augmented with a
logspace working tape, which make g(n)− 1 alternations.
Characterizations of these classes are collected in table ??. Here, the result STA(pol,−, pol) =
PSPACE in Column 5 is due to the result STA(f,−, g) ⊆ DSPACE(f(f + g)) for

f(n) ≥ log(n) of Borodin (cited according to [CKS81]). The cases AΣlog

logk
PDA and

AΣlog

logk
PDApt will be settled by the following propositions. The remainig results may

be found in [LSL84], [CKS81], [?], [Sud78], [?], and [Sze88].
The Auxiliary PDA Hierarchy Theorem from [LSL84] can be enhanced in the following
way:

Theorem 2.1 For s(n) ≥ log(n) and a(n) ≥ 0 computable within space s(n) it holds:

⋃

c
AΣa(n)SPACE(2cs(n)) ⊆ AΣ

s(n)
1+a(n)PDA

Idea of the proof: For the simulation of a AΣa(n)SPACE(2cs(n)) mashine the PDA first
pushes its startconfiguration. To test, whether an existential (universal) configuration be-
longs to an accepting tree, the PDA existentialy (universaly) guesses an universal (existen-
tial) configuration onto the pushdown store, alternates and forgs universaly (existentialy)
to test recursively whether this configuration belongs to an accepting tree (or whether
an accepting configuration is reachable) or the test of (not-) reachability from the last

configuration, which can be done by a AΣ
s(n)
2 PDA in the same way as in [LSL84].

3

Step of without with pushdown store with polynomial tape
alter- push-down polynomial without polynomial without
nation store timebound timebound timebound timebound

determ. L
LOG(DCFL)

[Sud78]
P PSPACE

AΠ1 [Bo et al 88]
P

[Coo71]
co−NP

AΣ1 NL
LOG(CFL)

[Sud78]
NP

AΠ2
[?]

[Sze88]
co−NP

[?] [LSL84]
Πp

2

AΣ2 NP [?]
PSPACE
[LSL84]

Σp
2

...
...

...

AΠk
Πp

k−1

[?]
Πp

k

AΣk
Σp
k−1

[?]
Σp
k

[Imm88]
[Sze88]

...
...

...

AΣlog(n) AC1 Σp
log(n)

〈Corollary ??〉 Σp
log(n)

...
...

...
...

AΣlogk(n) ACk
Σp

logk(n)

〈Corollary ??〉 〈Corollary ??〉 Σp

logk(n)
[CKS81]

...
...

...
...

AΣω P [CKS81]
PSPACE

[?]
EXPTIME
[LSL84]

PSPACE
[CKS81]

EXPTIME
[CKS81]

Table 1: Complexity classes of automata with spacebounded tape

With the help of the Alternation Bounded Auxiliary PDA Theorem of [LSL84], which reads

AΣ
s(n)
a(n)PDA ⊆ ⋃

c
NSPACE(a(n)2cs(n))

for s(n) ≥ log(n), we get

Corollary 2.1 AΣlog

logk
PDA =

⋃

c
NSPACE(logk(n)2clog(n)) = PSPACE

The result from [?] page 60 can be extended to the case of nonconstant depth of alternation
as follows:

Theorem 2.2 For s(n) ≥ log(n) and a(n) ≥ 1 computable within space s(n) it holds:

⋃

c
AΣ

s(n)
a(n)TIME(2cs(n)) =

⋃

c
AΣ

s(n)
1+a(n)PDA2cs(n)

4

Proof: ’⊆’ In a similar way as in Theorem ?? with the difference, that the test of

(not-) reachability from the last configuration, can be done by an AΣ
s(n)
2 PDA2cs(n) (an

AΠ
s(n)
2 PDA2cs(n)) in the same way as in [LSL84] because only 2c

′s(n) configurations has to
be guessed and pushed.
’⊇’ A turing mashine simulates the pushdown automaton directly using a turing tape
instead of an push down store. If the pushdown automaton alternates, the turing mashine
does the same. If the pushdown automaton alternates the a(n)-th time (the turing mashine
can calculate a(n) and count the alternations), the turing mashine does not alternate, but
to decide whether the reached configuration is the root of an accepting partial subtree is

equivalent to simulate an AΣ
s(n)
1 PDA2cs(n) rsp. an AΠ

s(n)
1 PDA2cs(n) , which can be done

deterministicaly in 2cs(n) time according to [Coo71].

Corollary 2.2 AΣlog

logk
POL = AΣlog

logk
PDApt

3 Empty alternation

If we equippe logarithmically space bounded turing mashines with the possibility of bounded
alternation, the result is comparatively small: We just reach nondeterministic LOGSPACE.
The situation changes completely, if we increase the power of the underlying machine. If we,
for example, augment deterministic LOGSPACE machines with auxilliary push-down stores
while still keeping polynomial time bounds, this results in LOG(DCFL), a rather small com-
plexity class contained in SC and in NC and thus in P and in POLYLOGSPACE. But now
the addition of depth bounded alternation yields the Polynomial Hierarchy ([?],[?]). If we
take a closer look to this phenomenon, we see, that the underlying machine has now the
possibility of pushing polynomially many bits in an existential or universal way onto the
push-down store. These bits are then popped, i.e. read one-way, and evaluated again with
the help of bounded alternation. This phenomenon and its explanation led us to the con-
cept of empty alternation: We augment machines with several storage types and then add
alternation under the restriction that in moments of alternation, that is during transitons
between existential and universal configurations, all auxilliary memories are empty and all
transferred information is contained in the state and on a logarithmically spacebounded
working-tape.
In the following, for X ∈ {LOG,PDApt, PDA,P, PSPACE} and a function g, where we
again admit the cases that g is a constant or that g is unbounded, which will be indicated
by the symbol ω, let EAΣlog

g X denote the set of all languages recognized by LOGSPACE
turing mashines augmented with storage of typeX, which make g(n)−1 empty alternations.
The main results of this chapter are collected in table ??, which is the ’empty’ analogon of
table ??.

3.1 Empty Alternation and push-down automata

In this section we study the concept of empty alternation for machines equipped with
an additional LOGSPACE tape (i.e. for ’unaugmented’ machines), with one push-down
store while maintaining a poynomial time bound, and with one push-down store with-
out any restriction of the running time. Obviously, for unaugmented machines empty
alternation coincides with (full) alternation, which reads EAΣlog

g LOG = AΣlog
g LOG for

5

Step of without with pushdown store with polynomial tape
alter- push-down polynomial without polynomial without
nation store timebound timebound timebound timebound

determ. L
LOG(DCFL)

[Sud78]
P PSPACE

AΠ1 [Bo et al 88]
P

[Coo71]
co−NP

AΣ1 NL
LOG(CFL)

[Sud78]
NP

EAΠ2 [?]

EAΣ2 [Sze88]
...

EAΠk

EAΣk 〈Theorem ??〉
...

EAΣlog(n) AC1 〈Theorem ??〉
...

...

EAΣlogk(n) ACk 〈Theorem ??〉 Θp
2

...
...

EAΣω [CKS81] P 〈Corollary ??〉 〈Corollary ??〉 〈Theorem ??〉 〈Theorem ??〉

Table 2: Complexity classes of automata with logarithmic spacebounded tape and empty
alternation

g ∈ {O(1), logkn, ω}. Thus, EAΣlog
ω LOG = P . The following result shows, that this

relation holds even for machines augmented with an unrestricted push-down store.

Theorem 3.1 EAΣlog
ω PDA ⊆ P

Proof: According to [Coo71] it can be decided in polynomial time for two configurations
K1,K2 with empty pushdown store, whetherK1 | ∗

M
K2 without alternation. IfM without

loss of generality only stops with empty pushdown store, then for input x it can be
calculated recursively for all such configurations in the calculation of M(x), whether there
is a partial accepting subtree under that configuration. Because this has to be calculated
once for each of the polynomially many configurations, this can be done in polynomial
time.
Contrast this with AΣlog

ω PDA = EXPTIME in [LSL84]. By Cooks characterization of P
by auxilliary push-down automata in [Coo71] Theorem ?? yields

Corollary 3.1 EAΣlog
g PDA = P for g ∈ {O(1), logk , ω}

Another consequence of Theorem ?? follows from P = EAΣlog
ω LOG ⊆ EAΣlog

ω PDApt:

Corollary 3.2 EAΣlog
ω PDApt = P

6

Finaly the nature of polylogarithmically bounded empty alternation of polynomially time
bounded pushdown automata is characterized by

Theorem 3.2

EAΣlog

logkn
PDApt = ACk for k ≥ 1

Proof: ACk = EAΣlog

logkn
LOG ⊆ EAΣlog

logkn
PDApt :

√
The converse follows from Lemma

?? below.

This result indicates the comparatively small computational power of Empty Alternation
when dealing with polynomially time bounded auxilliary push-down automata: the addition
of a push-down store does not increase the power of a logspace machine as long as the depth
of alternation is at least logarithmically growing.
In an obvious way it is posible to introduce semiunbounded empty alternation (compare
with [Ven87]) which yields classes named SEAΣlog

g X. For the semiunbounded circuit class

SACk we refer to [Ven87].

Theorem 3.3

SEAΣlog

logkn
PDApt = SACk for k ≥ 1

Proof: SEAΣlog

logkn
LOG ⊆ SEAΣlog

logkn
PDApt :

√
The other direction follows from Lemma

?? below.

Lemma 3.1 EAΣlog

logkn
PDApt ⊆ ACk and SEAΣlog

logkn
PDApt ⊆ SACk

Proof: An empty alternating push-down automaton with h log(n) spacebounded tape can
be simulated by an ACk (SACk) circuit which calculates with O(|x|2h+2) subcircuits for
every pair of surface-konfigurations 〈K1,K2〉 with empty push-down-store whether K2 is
reachable from K1 without any alternation. Since this can be done in LOG(CFL) or
LOG(co−CFL) it can also be done by a SAC1-circuit because of [Bo et al 88]. Then the
circuit recursively calculates in each level j of the logk levels for every surface-configuration
Ki the bit ci,j, which is 1, if it has an accepting tree of depth j. For an accepting (rejecting)
node, this is 1 (0), for an existential node

ci,j =
∨

l(cl,j−1 ∧ 〈Kl,Ki〉)

and for an universal configuration

ci,j =
∧

l(cl,j−1 ∨ 〈Kl,Ki〉),
in case of a semiunbounded push-down automaton there are only finitely many l’s in a
conjunction, so the whole construction results in a SACk circuit.

3.2 Empty Alternation and Turing-Tapes

If we consider machines with two or more auxilliary push-down stores, it is easy to see,
that from the aspect of compexity these are equivalent to turing tapes. That is why we will
consider empty alternation of polynomial time and of polynomial space in this subsection.
In the case of polynomial time we will get a characterization of the class Θp

2 := LNP . This

class was named by Wagner, who gave several representations of the classes Θp
k+1 := LΣp

k .
In particular he showed:

7

Theorem 3.4 [?]: Θp
k+1 = PΣp

k
[log] for each k

which reads for k = 1:

Theorem 3.5 [?]: Θp
2 = PNP [log]

Here PA[log] referes to classes defined by polynomial time bounded oracle machines, which
are allowed to ask at most O(log(n)) queries.

Theorem 3.6 EAΣlog
2 P = EAΣlog

ω P = Θp
2

Proof: EAΣlog
2 P ⊆ EAΣlog

ω P is trivial, the rest follows from Theorem ??, Lemma ?? and
Lemma ??, below.

Lemma 3.2 EAΣlog
ω P ⊆ LNP

Proof: Let K(x) be the set of those configurations of an EAΣlog
ω P -mashine M on input

x, where the not logarithmic spacebounded tape is empty. Thus |K(x)| is bounded by a
polynomial. We consider the language

L1 := {(x,K1,K2) | K1,K2 ∈ K(x) and K1 leads to K2 without any alternation }.

Obviously, we have L1 ∈ NP . Now, the number n(x) := |L1 ∩ ({x} × K(x) × K(x))| is
polynomially bounded and can be computed by a logspace machine with oracle L1. We
define

L2 := {(x, n) | x ∈ L(M) or n < n(x)}.
First we observe L2 ∈ NP : The NP -mashine N for this oracle language can guess, verify
and store on input (x, n) all n different pairs (K1,K2) with K1 | x

M
K2 . If n = n(x), then

the list is complete, otherwise N rejects. Now it guesses which configurations belong to the
accepting partial tree T and tests for all universal configurations Ka in T , whether all K
with Ka | x

M
K are in T or whether Ka is accepting and for all existential configurations

Ke in T , whether there is a K with Ka | x
M

K in T or whether Ke is accepting. We
assume w.l.o.g., that the tape, which is not logarithmic spacebounded is empty, if the
machine accepts or stops.
On the other hand, we see, that L(M) can be recognized by a logspace Machine with oracle
L2, if the number n(x) is known. Hence, by building the disjoint (i.e. marked) union of L1

and L2 as an oracle, we can accept L(M) by an LNP -machine.

Lemma 3.3 PNP [log] ⊆ EAΣlog
2 P

Proof: Let L ∈ PNP [log] by an oracle machine M with oracle SAT . An EAΣlog
2 P -machine

A simulates M twice:
In the first simulation A starts in an existential state and simulates the deterministic steps
of M . If M asks the i-th oracle question ’vi ∈ SAT ?’, then A guesses the answer and stores
it as the i-th bit on the logarithmic spacebounded tape. If the answer ’Yes’ is guessed,
then A simulates the NP -mashine B for SAT on vi and rejects, if B rejects. If the answer
’No’ is guessed, the verification is postponed to the second phase of alternation. Then A

8

continues the simulation of M . If M accepts, then A alternates into an universal state and
starts the second phase of the simulation by simulating again the deterministic steps of
M . If M asks the i-th oracle question ’vi ∈ SAT ?’, then A looks up the answer from the
logarithmic spacebounded tape. If the answer is ’No’, then A simulates universally the
co − NP -mashine C for UNSAT on vi and rejects, if C rejects. Then A continues the
simulation of M . If M accepts, then A accepts.
Finally, we shortly consider the case of polynomial space. By a result of Borodin (cited
in [CKS81]) we have AΣPSPACE

pol = PSPACE. While AΣPSPACE
ω = EXPTIME, empty

alternation does not lead beyond PSPACE:

Theorem 3.7 EAΣlog
ω PSPACE = PSPACE

Proof: It can be decided with polynomial space for two configurations K1,K2 , whether
K1 | ∗

M
K2 without alternation. If M without loss of generality only stops with all aux-

illiary tapes empty, then for input x it can be calculated recursively for all such configu-
rations in the calculation of M(x), whether there is a partial accepting subtree under that
configuration. Because this has to be calculated once for each of the polynomially many
configurations, this can be done in polynomial space.

4 Formal language concepts and empty alternation

So far, we only investigated two-way automata augmented with a logarithmically space
bounded working tape. Now, we will consider automata which read their input only once
and which are not equipped with an additional logspace working tape. Obviously, this is not
a restriction for polynomially time or polynomially space bounded Turing machines. Thus,
it remaines to treat the case of case of push-down automata. Full alternation of push-down
automata, that is alternating push-down automata which may alternate with an nonempty
push-down store, were investigated in [?], [?] and [?]. In the first part of this section we
will consider Empty Alternation of unaugmented one-way push-down automata, that is of
alternating push-down automata which have to empty their push-down store before any
alternation. Searching for an equivalent grammar system, we will introduce in the second
part of this section the notion of an alternating linear context-free grammar.

4.1 Empty alternating pushdown automata

In Theorem ??, we saw EAΣlog

logkn
PDApt = EAΣlog

logkn
LOG for each k. That is, the addi-

tional push-down store does not increase the computational power, as long as we keep a
polynomial time bound. In this subsection we will see, that the other direction holds true in
the sense, that empty alternating push-down automata without two-way input and without
logspace working tape generate languages complete for EAΣlog

a(n)PDApt. Thus we will gen-

eralize the equations NAuxPDApt = LOG(CFL) and DAuxPDApt = LOG(DCFL) of

Sudborough in [Sud78]. This result may be interpreted in the sense that in EAΣlog
a(n)PDApt-

automata an one-way push-down part may be separated from a two-way logspace part.
This decomposition is also possible for fully alternating pushdown automata as shown in
[?] and [?], slightly generalizing a result of [?]. It could be remarked here that this relation
does not seem to hold in general: e.g. unambiguous automata seemingly do not allow for
decompositions like that.

9

Definition An 1-way-empty-alternating-push-down automaton is an 8-tuple

A = (Ze, Zu,Σ,Γ, δ, z0, $, E)

with the set of states Z = Ze∪Zu consisting of existential states Ze and universal states Zu,
the input alphabet Σ, the push-down alphabet Γ, the transition relation δ ⊆ (Z×Σ×Γ)×
(Z×Γ∗), the start state z0, the bottom symbol $, the final states E, the rejecting states R,
the configuration set CA = Z ×Σ∗ × Γ∗, the start configuration σA(x) = 〈z0, x, $〉 and the
configuration transition relation 〈z, x1x, gk〉 |

A
〈z′, x, g′k〉 if and only if z, z′ ∈ Z, k, g′ ∈

Γ∗, g ∈ Γ, g′ ∈ Γ∗ and 〈z, x1, g, z′, g′〉 ∈ δ. If z ∈ Za, then a configuration 〈z, x, k〉 ∈ CA is
called a universal configuration, if z ∈ Ze, then it is called an existential configuration, if
z ∈ E and x = λ, then it is called accepting.

The definitions of alternating push-down automata differ concerning the role of λ-transi-
tions. Fortunately these things do not matter when considering empty alternation.
Since an unaugmented push-down automaton has just a finite memory, it is not possible
to count and bind the depth of alternation by an infinitely growing function. Thus we
could treat the cases of either unbounded or constant alternation depth, only. To cope
with that problem, we apply a depth bound not within the automaton, but instead within
the language:

Definition Let A be an one-way empty alternating push-down automaton. TheEAΣa(n)-
language of A is the set of all words x accepted by A, which have a finite accepting subtree
of configurations within the computation tree of A on x such that

• The root is the existential start configuration σA(x),

• for every existential configuration c in the tree, there is a d with c |
A

d in the tree,

• for every universal configuration c in the tree, all d’s with c |
A

d are in the tree,

• the leaves of the tree are accepting,

• alternations from an existential to an universal configuration or vice versa are only
allowed, if the push-down-store is empty (the push-downstore is regarded as empty,
if only the bottom symbol $ is on the push-down store.3), and

• there are at most a(n)− 1 alternations on every path on the tree.

It should be remarked here, that the EAΣa(n) language of A is a subset of L(A) which is
the EAΣω language of A.
The set of all EAΣa(n)-languages of one-way empty alternating push-down automata is
denoted by 1−EAΣa(n)PDA. 1−SEAΣa(n)PDA is the set of languages which can be rec-
ognized by an 1-way-empty-semiunbouded-alternating- Σk-push-down automaton, which
is only allowed to make finitely many steps in universal states before alternating into an
existential state.

Using the result of [Bo et al 88], it is easy to see, that we then have

3
A is not allowed to push further $ symbols.

10

Theorem 4.1 LOG(1−EAΣkPDA) = LOG(CFL) for each k.

Concerning bounded depth of alternation we get:

Theorem 4.2 1. ACk = EAΣlog

logkn
PDApt = LOG(1−EAΣlogknPDA)

2. SACk = SEAΣlog

logkn
PDApt = LOG(1−SEAΣlogknPDA)

3. P = LOG(1−EAΣωPDA) = LOG(1−SEAΣωPDA)

Proof: Since 1− (S)EAΣa(n)PDA is contained in (S)EAΣlog
a(n)PDApt, and the later is

closed under log-reducibility, and because of Lemma ??, it suffices to exhibit some (S)ACk-
complete set, which is genereated as (S)EAΣlogkn-language by an one-way empty alternat-
ing pushdown automaton. This is done in Lemma ?? and Lemma ?? below.

Lemma 4.1 ACk ⊆ LOG(1−EAΣlogknPDA)

Proof: We define the following formal language CFEk, which is in case of k = ω just a
variation of the context-free-emptiness problem.

CFEk := {w | w =< S >R #&vu ,where v is a concatenation of all <

A > %# < B1 >R # < B2 >R #...# < Bi >R #& for a production
A → B1B2..., Bi ∈ P and u is a concatenation of all < T > & for termi-
nals T ∈ Σ for an encoding <> of Σ ∪ V and a grammar G = (Σ, V, P, S) with
a word in L(G) with a derivation tree not deeper than O(logk(|w|) using the
productions in the order of v.}

CFEk is complete for ACk: Let L be accepted by an ACk circuit family. Using the unifying
machine of this family, we can construct a logspace computable function f which maps an
input x to an unbounded fan-in circuit of logk depth, which evaluates to 1, iff x ∈ L.
A logarithmic transducer T can convert such a circuit to a context-free grammar in the
following way: We assume w.l.o.g., that the output gate is OR and that there are only
connections from OR gates to AND gates and vice versa. If A is the output of an OR-
gate and B1, ...Bi are the inputs of an AND-gate with its output in this OR-gate, then
the production A → B1...Bi has to be in the grammar. The productions have to be in a
monotone order, that means, that an encoding of a production with A on the left side has
to be after the encoding of a production with A on the right side; this can simply be done
by repeating the productions logkn times. All inputs having the value 1 are the terminals
and the output of the circuit is the start-symbol of the grammar. A gate of the circuit has
value 1 iff a word consisting of terminals can be derived from the corresponding Variable,
so T reduces L to CFEk.
An alternating 1-way pushdown automaton M recognizing CFEω works as follows: M

chooses existentialy a production and tests the reverse order encoding of the variable with
the push-down store in existential states and thus emptying the push-down store. Then
M chooses the variable on the right side of a production in an universal state without
using the push-down store. M starts with < S > on the push-down store. Clearly the
EAΣlogk -language of M is CFEk.

11

Lemma 4.2 SACk ⊆ LOG(1−SEAΣlogknPDA)

Proof: We define CFECk analogously to CFEk with the difference, that the grammar
must be in Chomsky normal form. CFECk can be recognized by an automaton like than
one of Lemma ??, which makes only one step in an universal state by decing which variable
on the right side of a production is used. CFECk is complete for SACk. The bounded
fan-in of AND-gates corresponds to the restriction to 2 variables on the right hand side of
the productions of the simulated grammar.

The results of Theorem ?? might be interpreted as a kind of computational equivalence
between two-way input and a logarithmically space bounded working tape on the one hand,
and one-way input and a push-down store on the other hand in the case of depth of Empty
Alternation which grows at least logarithmically.

4.2 Alternating linear Grammars

We now consider alternating grammars. There are several possibilities to define alternating
context free grammars. So for the alternating context free grammars in [?] we have

LOG(ACFL
left
λ−free) = PSPACE ,but for the alternating (even λ-free) alternating context

free grammars in [?] LOG(CFLΣω) = EXPTIME holds. In any case there are close
relations to alternating push-down automata and corresponding complexity classes. On
the other hand, it seems difficult to introduce the concept of empty alternation within the
framework of grammars. Instead of trying to do so, we will consider in this subsection
alternating linear (context-free) grammars, since linear grammars seem somehow to work
without auxilliary storage, which implies in this case the coincidence of alternation and
empty alternation. (Compare this with the NSPACE(log(n))-completeness of the class
of linear languages, and with the fact that for logspace alternation and empty alternation
coincide). The machine model corresponding to the linear languages is the one-turn push-
down automaton, which starts its computations in a ’push’-mode, where no symbols may
be popped from the stack and then enters a final ’pop’-mode, in which no more symbols
may be pushed onto the stack. Unfortunately, a closer look at the constructions in [?]
reveals the Σp

k-completeness of 1−AΣk+1PDA1−TURN i.e., it shows a ’strong’ behaviour.
To come to an adequate machine characterization of alternation, Chen and Toda defined
in [?] a state-free alternating pushdown automata, which is forced to pop a symbol in
every step after entering the ’pop’-mode. On the other hand, the 1-turn restriction is
very severe when considering empty alternating push-down automata, as their accepted
languages seem to coincide with the Boolean closure of linear languages, which is contained
in NSPACE(log(n)). We now turn to alternating linear grammars:

Definition According to [?] and [?] we define an alternating grammar G to be an 8-tuple

G = (V, Ve, Va,Σ, Pe, Pa, S, F) with S,F ∈ Ve ∩ Va,

12

and for k > 0 we define:

SenFΣ0(G) := SenFΠ0(G) := {S}
SenFΣ1(G) := {α ∈ (Va ∪ Σ)∗ | S ∗

=⇒
Pe

α}
SenFΠ1(G) := {α ∈ (Ve ∪ ∀β ∈ {S,F}(β ∗

=⇒
Pa

α → β = S)}
SenFΣk+1(G) := {α ∈ (Va ∪ Σ)∗ | ∃β ∈ (Ve ∪ Σ)∗ ∩ SenFΠk(G) with β

∗

=⇒
Pe

α}
SenFΠk+1(G) := {α ∈ (Ve ∪ Σ)∗ | ∀β ∈ (Va ∪ Σ)∗(β

∗

=⇒
Pa

α → β ∈ SenFΣk(G)}.

Because for a linear grammar G there can be sentential forms with more than one variable
in SenFΠ1(G), SenFΣ2(G), ... we define the ω-set as union of all odd levels:

SenFΣω(G) :=
⋃

k odd
SenFΣk(G).

Alternating linear languages are now defined by:

LΣk(G) := SenFΣk(G) ∩ Σ∗,

LINΣlogkn :=

{L | there is an alternating linear grammar G with LΣ2O(logkn)+1(G) := L}, and
LINΣω := {L | there is an alternating linear grammar G with LΣω(G) := L}

Then we have:

Theorem 4.3 1. LOG(LINΣω) = P

2. LOG(LINΣk) = NL for k ≥ 1.

The first part coincides with the equation LOG(linearACFL) = P of [?] and is a conse-
quence of the proof of the next theorem.
In the case of bounded alternation we get further characteriztions of ACk.

Theorem 4.4 LOG(LINΣlogkn) = ACk

Proof:
’⊆’: In analogy to the proof of Lemma ??, there are only linear many sentential forms.
’⊇’: We define the following complete language CFEMk := {wR&w | w ∈ CFEk}.
CFEMk is complete for ACk, in the same way as CFEk. We can construct an alternating
linear grammar for CFEMk, which simulates the work of the empty alternating pushdown
automaton in Lemma ??, where a path from the start-configuration to an accepting con-
figuration corresponds to a reduction of a word to the start-symbol. The comparison of
two (unary) encodings, which was done with the push-down store is now made by a simul-
tanious reduction of two parts in the two halfs of the word. Hereby the simulation always
changes to the other half, when the next encoding has to be found.

It is possible to characterize SACk classes by alternating linear grammars which have
no recursion in their universal productions. The interested reader may find the explicit
notations and constructions in [?].

13

Discussion and Open Questions

We introduced the concept of Empty Alternation as a restriction of the usual ‘full’ alter-
nation and exhibited close connections to questions of how to relativize complexity classes
and about the collapses of hierarchies. As a result new representations of many well-known
complexity classes have been obtained. Since alternation is a very powerful mechanism, it
seems reasonable not only to restrict the concept itself, but also the device, it is applied to.
In this way, relations between formal languages and complexity could be generalized. This
leaves open to investigate these relations with respect to other models of formal language
theory. First candidates should here be all types of stack automata, since the relations
between their deterministic, nondeterministic, (fully) alternating, and auxilliary versions
show a pattern very similar to that of push-down automata. Another interesting question
would be to determine both an alternation type and an automata model which together
characterize the NCk classes not as time classes, but directly by the depth of alternation.

Acknowledgement We thank Peter Rossmanith, Werner Ebinger and Volker Diekert
for many helpfull remarks, and Prof. Dr. W. Knödel, who made this joint work possible.

References

[BDG88] J. Balcázar and J. Diáz and J. Gabárro: Structural Complexity Theory I; Springer
1988.

[BDG90] J. Balcázar and J. Diáz and J. Gabárro: Structural Complexity Theory II;
Springer 1990.

[Bo et al 88] A.Borodin. S.A. Cook, P.W.Dymond, W.L. Ruzzo, M.Tompa; Two applica-
tions of complementation via inductive counting, 3rd Structure in Complexity Theory.

[Bun87] G. Buntrock: On the Robustness of the Polynomial Time Hierarchy, Technische
Universität Berlin, Technischer Bericht, Nr.: 87-11,1987.

[CKS81] A.K. Chandra, D.C. Kozen, L.J. Stockmeyer; Alternation, Journ. of the ACM
28,1(1981), 114-133.

[Coo71] S.A. Cook: Characterizations of push-down machines in terms of timebounded
computers, Journ. of the ACM 18,1(1971), 4-18

[CT90] Z.-Z. Chen, S. Toda: Grammatical Characterizations of P and PSPACE, transac-
tions of the IEICE, Sep. 1990.

[Imm88] N. Immerman: Nondeterministic space is closed under complementation, SIAM
Journ. Comput. 15, 5 (1988), 935-938.

[Jen87] B. Jenner: Die Deterministische Polynomielle Hierarchie, Diplomarbeit, Univer-
sität Hamburg, 1987.

[JK89a] B. Jenner, B. Kirsig: Characterizing the polynomial hierarchy by alternating aux-
iliary push-down automata. Theoretical Informatics and Applications, 1989, 87-99.

14

[JK89b] B. Jenner and B. Kirsig: Alternierung und Logarithmischer Platz,Dissertation,
Universität Hamburg,1989.

[LLS84] R E. Ladner, R. J. Lipton, L. J. Stockmeyer: Alternating Pushdown and Stack
Automata,SICOMP 13, FEB 1984,135–155.

[LL76] R. Ladner and N. Lynch: Relativization of questions about log space computability,
Math. Systems Theory 10(1976),19-32.

[LSL84] R.E. Ladner,L.J.Stockmeyer,R.J. Lipton: Alternation bounded auxiliary
pushdown automata, Information and Control 62(1984), 93-108.

[Lan86] K.-J. Lange: Two Characterizations of the Logarithmic Alternation Hierarchy,
Proc. of 12th MFCS 233, LNCS, Springer 1986, 518–526.

[MSt72] A.R. Meyer and L.J. Stockmeyer: The equivalence problem for regular expressions
with squaring requires exponential time, Proc. of 13th Annual IEEE Symp. Switching
and Automata Theory (1972), 125-129.

[Mor89] E. Moriya: A grammatical characterization of alternating push-down automata,
TCS 67 (1989) 75-85.

[Rei89] K. Reinhardt: Hierarchien mit alternierenden Kellerautomaten, alternierenden
Grammatiken und finiten Transducern, Diplomarbeit, Universität Stuttgart, 1989.

[Rei90] K. Reinhardt: Hierarchies over the context-free Languages, Proc. of 6th IMYCS,
LNCS, 464, Springer 1990, 214-224.

[Ruz81] W. Ruzzo: On Uniform Circuit Complexity, JCSS 22 (1981) 365-338.

[RST84] W. Ruzzo and J. Simon and M. Tompa: Space – Bounded hierarchies and prob-
abilistic computations, JCSS 28(1984),216-230.

[Sze88] R. Szelepcsenyi: The Method of forced enumeration for nondeterministic automata,
Acta Informatica 26(1988), 96-100.

[Sud78] I.H. Sudborough: On the tape complexity of deterministic context-free languages,
Journ. of the ACM 25, 3 (1978),405-414.

[Wag87] K. Wagner: The number of alternations, Universität Augsburg, Technischer
Bericht, Nr.: 133, 1987.

[Wag88] K. Wagner: Bounded Query Computation, Proceedings of the 3rd annual Struc-
ture 88, 260-277.

[Wra76] C. Wrathall: Complete sets and the polynomial-time hierarchy, Theoret. Comp.
Sci. 3 (1976), 23-33.

[Ven87] H. Venkateswaran: Properties that characterize LOGCFL. In Proceedings of
the Nineteenth Annual ACM Symposium on Theory of Computing, 141-150, New
York,May 1987.

15

