
Characterizing TC0 in Terms of Infinite Groups

Andreas Krebs, Klaus-Jörn Lange, Stephanie Reifferscheid

WSI, Sand 13, D-72076 Tübingen

{krebs,lange,reiffers}@informatik.uni-tuebingen.de

Topics

Complexity, Logic, Formal Languages

Abstract

We characterize the languages in TC0 = L(Maj[<,Bit]) and L(Maj[<]) as inverse
morphic images of certain groups. Necessarily these are infinite, since nonregular sets
are concerned. To limit the power of these infinite algebraic objects, we equip them
with a finite type set and introduce the notion of a finitely typed (infinite) monoid.
Following this approach we investigate type respecting mappings and construct a new
type of block product, which is more adequate to dealing with infinite monoids. We
exhibit two classes of solvable finitely typed groups which exactly characterize TC0

and L(Maj[<]) via inverse morphisms.

1 Introduction

There are very close relations between families of regular languages and low level complexity classes
([2, 8]). In particular the class AC0 corresponds to the family of star-free regular languages, the class ACC0

to the family of solvable regular languages, and NC1 to the family of all regular languages. Unfortunately,
the class TC0 is not treatable in the framework of regular languages unless it collapse with ACC0 or NC1,
since a regular language is NC1-hard if its syntactic monoid contains a nonsolvable group and is contained
in ACC0 otherwise ([1, 3]).

These connections between families of regular languages and low level complexity classes are expressed
in the unifying framework of logic, where their difference is reflected by the use of different numerical
predicates. For instance, the star-free regular languages are precisely those acceptable by first-order
formulae using only order as numerical predicate, while (uniform) AC0 coincides with those acceptable
by formulae using in addition the BIT predicate. In the same way, the difference between the solvable
regular languages (all regular languages) and the class ACC0 (NC1) is made in using or not the BIT
predicate or related ones like multiplication and addition ([2]).

Using the BIT predicate the class TC0 is expressible as the family of all languages acceptable by
formulae built of first-order and majority quantifiers using order and the BIT predicate ([2]). Hence a
natural candidate for a formal language counterpart of TC0 is the family L(Maj[<]) of all languages
represented by majority formulae using only the order predicate and not the BIT predicate. It turns out,
that both first-order quantifier and addition are definable in Maj[<] ([4]). Hence these formulae have an
undecidable satisfiability problem (over finite words).

The various families of regular languages can be characterized algebraically, e.g. the star-free regular
sets are those recognizable by aperiodic finite monoids using inverse morphisms. It was the original
starting point of this work to exhibit monoids which recognize by inverse morphisms exactly the languages
in L(Maj[<]).

When characterizing languages recognized by various classes of finite monoids in terms of certain
formula classes the crucial point is to exhibit algebraic objects which correspond to logic operators. For
instance, the application of a modular counting quantifier is characterized by building the block product
with a cyclic group. In the same way, first order quantifier are expressed by the block product with the
two element monoid U1 ([8]).

It seems natural to relate in the same way majority (and counting and threshold quantifiers as well)

1

to the block product with the set Z of integers. The problem is now, that the ordinary block product
with infinite monoids results in too powerful objects and it wouldn’t be possible to simulate the resulting
monoids by logical formulae. Hence we need a new, more restricted version of the algebraic approach.
We obtain this in two steps: First, we introduce the notion of a finitely typed monoid, that is a monoid
which is the finite disjoint union of subsets called types. When recognizing languages with such a monoid
the inverse morphism is in some sense not allowed to distinguish the elements inside a type. Building on
that we introduce the notion of a type respecting mapping.

In the second step we define a restricted version of the block product W := M � N of M and N as
follows: Usually, for finite N , W is the bilateral semidirect product MN×N ∗ ∗N . For infinite N the first
component is uncountable and there would be no chance to define all languages that can be recognized
by this monoid with the anticipated logical formula. Instead, we build the monoid V ∗∗N for a countable
submonoid V of MN×N which is generated by some well behaved type respecting mappings from N2 to
M . Using this restricted version of a block product we are able to construct two families M< and M<,Sq

of finitely typed infinite solvable groups, such that TC0 coincides precisely with the family of languages
recognized by the elements of M<,Sq. The same connection holds between the class L(Maj[<]) and the
family M<.

The paper is organized as follows: Section 2 collects the needed preliminaries. The following two
sections define the new block product and use it to construct families of infinite groups which are related
to the classes TC0 and L(Maj[<]). Section 5 summarizes our main results which are proven in the final
two sections.

2 Preliminaries

2.1 Logic formulae over words

Throughout this paper we consider languages defined by logical formulae. We use essentially the notation
as it is presented in the book of Straubing ([8]). In general, i, j, k, n will denote positive integers, while
x, y, z will denote position variables with positive integer values. The integer n will usually denote the
length of the corresponding input word. Thus, variables will range over {1, 2, · · · , n}. The predicate
Qa(x) expresses that the position a variable x is pointing to contains the symbol a.

As usual, a formula φ with set V of free variables is interpreted over words as structures w =
(a1,V1)(a2,V2) · · · (an,Vn) such that V is the union of the Vi and that the Vi are pairwise disjoint.
Words of this kind are called V-structures. A letter (a, ∅) is simply denoted by a. We denote the set of
all V-structures over Σ by Σ∗ ⊗ V whereas (Σ × 2V)∗ contains also words with multiple occurrences of a
variable. The set of V-structures modeling φ is denoted by Lφ,V .

Remark 2.1. Is φ a sentence, then Lφ := Lφ,∅ = {w ∈ Σ∗ | w |= φ}.

We call this the set of words defined by φ. The nonemptiness problem of Lφ is identical to the
satisfiability problem of φ over words.

If w = (a1,V1)(a2,V2) · · · (an,Vn) ∈ Σ∗ ⊗ V and x 6∈ V then wx=i denotes the word (a1,V1) · · ·
(ai−1,Vi−1)(ai,Vi∪{x})(ai+1,Vi+1) · · · (an,Vn) ∈ Σ∗⊗ (V ∪{x}). As abbreviation for wx=i |= φ we often
write w |= φ(x = i), or if x is understood, w |= φ(i).

Let Q be a set of quantifier types (e.g. first-order) and X a set of numerical predicates (possibly not
containing the order predicate <).We denote by Q[X] the set of all formulae built over the elements of
X ∪Qa(.) as atomic formulae by conjunction, negation and quantification using quantifier types from Q.
By L(Q[X]) we denote the class of all languages definable by Q[X] formulae.

Formulae not using the Qa(.) predicates are numerical predicates. It is possible to define in FO[<]
the following numerical predicates: =, 6=, >,≤,≥,+1 (successor),−1 (predecessor),MIN (first position),
and MAX (last position). Barrington et al. showed that in the presence of the order predicate first-order
quantifiers can define addition and multiplication by use of the BIT predicate and vice versa ([2]). A
very comprehensive treatment of related results is given by Schweickard ([7]).

We will use Maj to denote the majority quantifier. w |= Maj x φ is fulfilled iff the number of all
1 ≤ i ≤ |w| such that wx=i |= φ is larger than ⌊|w|/2⌋. The majority quantifier rejects in case of a draw.

Lautemann et al. showed that all numerical predicates definable by Maj[<]-formulae are even defin-
able by FO[+] formulae ([5]). As a consequence they got:

Theorem 2.2.
L(Maj[<,+, ∗]) 6⊂ L(Maj[<])

2

The (unary) counting quantifier is denoted by ∃=yx. w |= ∃=yx φ is fulfilled iff there are exactly j
positions 1 ≤ i ≤ |w| such that wx=i |= φ where j is the numerical value of variable y, i.e. y points to
the j-th symbol of w. The counting quantifier can take values in the range{0, 1, . . . , n} which is one mor
then there are positions available in inputs of Size n. If we care for the case y = 0 by the formula ∀x¬φ
and only treat the case y ≥ 1 it is possible to show:

Lemma 2.3 ([4]). The counting quantifier is definable in Maj[<].

For the ease of handling we will use the counting quantifier without this restriction and note that
more formally in all formulae using the counting quantifier the exception handling of the case y = 0
should be added.

2.2 Circuits

The reader is assumed to be acquainted with language classes defined by uniform circuit classes as they
are presented by Barrington et al. ([2]). In particular we will use the following relation:

TC0 = L(FO +Maj[<,+, ∗]).

2.3 TC0 and the Square Predicate

Let square(x) denote the numerical predicate that the position number the variable x is pointing to
is a positive square number. It is well known, that with respect to first-order quantifiers addition and
multiplication are equivalent to addition and the square predicate (see e.g. [7][Theorem 2.3.f]). Combined
with results in [4] this yields

TC0 = L(Maj[<, square]).

We will use Sq to denote the square quantifier. w |= Sq x φ is fulfilled iff the number of all 1 ≤ i ≤ |w|
such that wx=i |= φ is a positive square number. It is easy to show that the square predicate square is
definable in FO+Sq[<] logic. On the other hand, the square quantifier can be simulated by the counting
quantifier in connection with the square predicate. Hence we have

TC0 = L(Maj + Sq[<]).

2.4 List of Symbols

Symbol Explanation Page
Z Integers
Z+ Positive integers
Z
−
0 Nonpositive integers

S Positive quadratic numbers
S Nonquadratic numbers and zero
Σ ⊗ 2V Set of all V-structures over Σ
Lφ,V Set of V-structures modeling φ
πi Projection to the ith coordinate
eG Neutral element of G
2d {(a1, . . . , ad) | ai ∈ {0, 1}}
2V Set of all subsets of V
(G,G) � (H,H) Block product of (G,G) with (H,H) 4
H−1(M) Set of languages recognized by some element of M 5
M<, M<,Sq Group classes 5

ΓG,G,m x
−→
φ (x) Group quantifier 8

ΓG,G,mp..q x
−→
φ (x) Relative group quantifier 8

(G,G) D Q[X] (G,G) is definable in Q[X] 8

3

3 Finitely typed monoids

We call a monoid M finitely typed with type set M = {Mi | i ∈ I} iff M = ˙⋃
i∈IMi for a finite set I. The

pairwise disjoint sets Mi, i ∈ I, are called the types of M . We call the elements of B(M), (the boolean
algebra generated by M), extended types of M . If the type set M of M is understood we often simply
write M instead of (M,M).
Let (M,M), (N,N) be finitely typed monoids. We call φ := (φM , φM) a type morphism iff

(i) φM : M → N is a monoid morphism

(ii) φM : B(M) → B(N) is a lattice morphism

(iii) φM (M) = φM(M) ∩ φM (M) for all extended types M of M .

A type morphism φ = (φM , φM) is called injective (resp. surjective) iff φM , φM are injective (resp.
surjective). The image φM (M) of a finitely typed monoid (M,M) under a type morphism φ = (φM , φM)
can be equipped with the type set φM (M) given by the set B({φM (M) | M ∈ M}).

Remark 3.1. Let M be a monoid and let M1, M2 be type sets such that M1 is coarser than M2 (that
is, B(M1) ⊆ B(M2)).
Then φ = (φM , φM) with φM , φM the identities, is an injective type morphism.

We call a monoid (U,U) a submonoid of (M,M) ((U,U) ≤ (M,M)) iff there exists an injective
type morphism φ : (U,U) → (M,M). Analogously, we call a monoid (N,N) a quotient of (M,M)
iff there is a surjective type morphism φ : (M,M) → (N,N). Finally we define the direct product
(M,M) × (N,N) of finitely typed monoids (M,M) and (N,N) as the usual Cartesian product equipped
with M × N := {M×N | M ∈ M, N ∈ N}.

Let (M,M), (N,N) be finitely typed monoids. We introduce two kinds of functions which are dealing
with types. We call a function f : N × N → M strongly type respecting iff f |N1×N2

is constant for all
N1, N2 ∈ N. The set of all strongly type respecting functions is denoted by STR(N,M). The second
kind of functions are the type dependent functions: Assign to each N ∈ N an element mN ∈ M and
denote this collection by mN = (mN)N∈N. Then for c ∈ N we denote the type dependent function
fmN

c : N × N → M by fmN

c (x, y) = mN iff x · c · y ∈ N . The set of all type dependent functions is
denoted by TD(N,M).

Definition 3.2 (Block product). Let (M,M), (N,N) be finitely typed monoids. The finitely typed
block product (W,W):=(M,M) � (N,N) of (M,M) with (N,N) is defined as the bilateral semidirect
product V ∗ ∗ N of the submonoid V generated by V (1) and V (2) with N where

• V (1) = {fs,t : N ×N →M | s · f · t ∈ STR(N,M), s, t ∈ N}

• V (2) = TD(N,M).

We call the elements of V type respecting (w.r.t. N and M). The left (resp. right) action of N on V is
given by (f · n) (x, y) := f(x, ny)(resp. (n · f) (x, y) := f(xn, y)), n ∈ N, f ∈ V .

The type set W of W consists of all types

WM = {(f, n) ∈W | f(eN , eN) ∈ M},

where M ∈ M.

Remark 3.3. (a) As usual we write the operation in V additively to provide a more readable notation.
Note that this does not imply that V is commutative. By definition of the bilateral semidirect product
we have

(f1, n1) . . . (fr, nr) = (
r
∑

i=1

n1 . . . ni−1 · fi · ni+1 . . . nr, n1 . . . nr).

The neutral element of (M,M) � (N,N) is (e, eN) where e(x, y) = eM for all x, y ∈ N . If M , N are
groups, then (M,M) � (N,N) is a group as well and (f, n)−1 = (−n−1 · f · n−1, n−1).

(b) The range of f is finite for every f ∈ V .
(c) For f ∈ V there is a finite set {fj | j ∈ J} ⊆ V (1) ∪ V (2) with f =

∑

j∈J fj . Using the notation

above we have fj = fsj ,tj iff fj ∈ V (1) and fj = f
m

j

N

cj iff fj ∈ V (2). Thus we can determine f(x, y) by
determining types Nj1 , Nj2 , Nj3 ∈ N such that

4

(i) x · sj ∈ Nj1 for fj ∈ V (1).

(ii) tj · y ∈ Nj2 for fj ∈ V (1).

(iii) x · cj · y ∈ Nj3 for fj ∈ V (2).

Definition 3.4. A finitely typed monoid (M,M) is said to accept a language L ⊆ Σ∗ iff there is a

morphism h : Σ∗ →M and a subset {M1, . . .Mk} ⊆ M of types of M such that L = h−1(
⋃k

i=1 Mi). If
the type set M of M is fixed we simply say that M accepts L.

Let M be a class of finitely typed monoids. We denote the set of all languages recognized by some
element of M with H−1(M).

Remark 3.5. If a language L is accepted by a submonoid or a quotient of M , then M accepts L as well.

4 The class MZ

Let Z be a type set of Z. We now define the class MZ recursively by starting with the integers and
repeatedly applying the block product. During this process we will associate with each element G of MZ

the depth Dp(G) of G and the width Wd(G) of G.

• (Z,Z) is in MZ. We set Dp(Z,Z) := 1 and Wd(Z,Z) := 1.

• For (G,G) and (H,H) in MZ the direct product (G,G) × (H,H) is in MZ as well.
The depth is set to Dp(G×H,G × H) := Max{Dp(G,G), Dp(H,H)}. The width is set to be the
sum of the widths of the components: Wd(G×H,G × H) := Wd(G,G) +Wd(H,H).

• For (G,G) and (H,H) in MZ the finitely typed block product
W:=(G,G) � (H,H) is in MZ.
The depth is set to Dp(W,W) := Dp(G,G) +Dp(H,H), the width is defined by Wd((W,W) := 1.

Note that the elements of depth 1 in MZ are commutative. Moreover it is readily seen that all elements
of MZ are solvable where the derived length of a group G ∈ MZ is bounded by the depth d(G) of G.

Let M be a class of finitely typed monoids closed under forming finite direct products, We denote by
M the smallest class C of finitely typed monoids such that (i) M is contained in C (ii) C is closed under
forming submonoids, and (iii) C is closed under forming quotients. As usual (see for instance [6]), the
following properties of this closure operation hold:

Remark 4.1. (a) M is the class of all finitely typed monoids (G,G) such that there exists (H,H) ∈ M, a
submonoid (U,U) of (H,H)
and a surjective type morphism φ : (U,U) → (G,G).

(b) M is closed under forming finite direct products.
(c) For a partition Z of Z we have H−1(MZ) = H−1(MZ).
(d) Let Z1, Z2 be partitions of Z such that Z1 is coarser than Z2. Then MZ1

⊆ MZ2
. In particular,

H−1(MZ1
) ⊆ H−1(MZ2

).

Lemma 4.2. Let Z1, Z2 be type sets of Z. Then MZ1
× MZ2

= MZ1∩Z2
, where Z1 ∩ Z2 = {Z1 ∩ Z2 |

Zi ∈ Zi, i = 1, 2}, and MZ1
× MZ2

= {M1 ×M2 |Mi ∈ MZi
}.

Proof. Obvious.

Definition 4.3. In the following we denote by M< the class MZ for Z = Z< = {Z+,Z−
0 } and by M<,Sq

the class MZ for Z = Z<,Sq = {S,Z+ \ S,Z−
0 }.

5 Main results

The central result of this work is the characterization of the languages in L(Maj[<]) and in TC0 as
inverse morphic images of groups in M< and M<,Sq. We prove this in two parts. First, in Theorem 5.1
we show how to go from logic to groups. The more difficult direction from groups to logic is done in
Theorem 5.2.

5

Theorem 5.1. Let φ be a formula of Maj[<] (resp. Maj+Sq[<]) and V be a set of first-order variables.
Then there is a group (G,G) ∈ M< (resp. M<,Sq) and a monoid morphism h : (Σ× 2V)∗ → G fullfilling

Lφ,V = h−1(G) ∩ (Σ∗ ⊗ V)

for some G ∈ B(G).

Theorem 5.2. Let (G,G) ∈ M< (resp. M<,Sq), V be a set of variables and let h be monoid morphism
h : (Σ × 2V)∗ → G. Then there is for each G ∈ G a Maj[<]-formula (resp. Maj + Sq[<]-formula) with
free variables V that defines the language L = h−1(G) ∩ (Σ∗ ⊗ V).

Corollary 5.3. L(Maj[<]) = H−1(M<) and TC0 = H−1(M<,Sq).

6 Proof of theorem 5.1

This proof is done by induction on the term structure of φ.
(1) φ = Qa(x) for some a ∈ Σ:

We recognize the set L := {(a1, S1) . . . (an, Sn) ∈ (Σ×2V)∗ | at position x there is an a} by (Z ,Z<) with
the morphism

h : (Σ × 2V)∗ → Z, (α, S) 7→

{

1 if α = a and x ∈ S,
0 otherwise.

Then L = h−1(Z+), thus Lφ,V = h−1(Z+) ∩ (Σ∗ ⊗ V).

(2) φ = x < y:
We recognize the set L of all words in (Σ × 2V)∗ such that x is positioned before y by the finitely typed
block product (G,G) = (Z,Z<) � (Z,Z<) = V ∗ ∗Z. We use the morphism h : (Σ × 2V)∗ → G given by

h(a, S) :=

(e, 0) if {x, y} ∩ S = ∅
(e, 1) if x ∈ S and y 6∈ S
(f>, 0) if y ∈ S,

where e(x, y) = 0 for all x, y ∈ Z, and f>(x, y) = 1 if x > 0 and f>(x, y) = 0 otherwise. Obviously
f> ∈ V (1) ⊆ V .
Set G := {(f, n) ∈ V ∗ ∗Z | f(0, 0) ∈ Z

+}. Then L = h−1(G), thus Lφ,V = h−1(G) ∩ (Σ∗ ⊗ V).

Note: Let (a1, S1) . . . (an, Sn) be a V-structure and (fi,mi) = h(ai, Si). Then h(a1, S1) · · ·h(an, Sn) ∈
L iff (f1 +m1 · f2 + . . .+m1 . . .mn−1 · fn)(0, 0) > 0. But this holds precisely when there exist i, j, i < j
such that mi = 1 (that is x ∈ Si, y 6∈ Si) and fj = f> (that is y ∈ Sj).

(3) φ = φ1 ∧ φ2:
By induction Lφi,V = h−1

i (Gi)∩ (Σ∗⊗V), for suitable hi,Gi and i = 1, 2, hence Lφ,V = h−1(G)∩ (Σ∗⊗V)
where h = h1 × h2, G = G1 ×G2 and G = G1 × G2.

(4) φ = ¬ψ:
By induction Lψ = h−1(G)∩ (Σ∗ ⊗V), h, G suitable. Hence Lφ,V = h−1(G)∩ (Σ∗ ⊗V) where G = G \ G.

(5) φ = Maj x ψ:
By induction there exist (H,H) ∈ M< and a monoid morphism h0 : (Σ×2V∪{x})∗ → H with Lψ,V∪{x} =

h−1
0 (H) ∩ (Σ∗ ⊗ V ∪ {x}) ⊆ (Σ × 2V∪{x})∗, for a suitable extended type H ∈ B(H).

We set (G,G) := (Z,Z<) � (H,H) = V ∗ ∗H and define a morphism h : (Σ × 2V)∗ → G by h(a, S) :=
(f(a,S), h0(a, S)) where

f(a,S)(m1,m2) =

{

1 if m1 · h0(a, S ∪ {x}) ·m2 ∈ H,
−1 otherwise.

Then f(a,S) is in V (2) ⊆ V . Set G := {(f,m) ∈ V ∗ ∗H | f(eH , eH) > 0}. Then G is a type of G and
Lφ,V = h−1(G) ∩ (Σ∗ ⊗ V).

Note: An input word (a1, S1) · · · (an, Sn) ∈ Σ∗ ⊗ V is a model for φ iff the number of positions
1 ≤ i ≤ n fulfilling

h0((a1, S1) · · · (ai−1, Si−1)(ai, Si ∪ {x})(ai+1, Si+1) · · · (an, Sn)) ∈ H

6

is larger than that of nonfulfilling positions. By definition we have

h0((a1, S1) · · · (ai−1, Si−1)(ai, Si ∪ {x})(ai+1, Si+1) · · · (an, Sn)) ∈ H

iff
h0((a1, S1) · · · (ai−1, Si−1)) · f(ai,Si)(eH , eH) · h0((ai+1, Si+1) · · · (an, Sn))

= f(ai,Si)((h0(a1, S1) · · · (ai−1, Si−1)), h0((ai+1, Si+1) · · · (an, Sn))) = 1.

Since h((a1, S1) · · · (an, Sn)) = (f, h0((a1, S1) · · · (an, Sn))) with

f(eH , eH) =

n
∑

i=1

f(ai,Si)(h0((a1, S1) · · · (ai−1, Si−1)), h0((ai+1, Si+1) · · · (an, Sn)))

=
∑

“i fulfilling ψ”

1 −
∑

“i not fulfilling ψ”

1

we have Lφ,V = h−1(G) ∩ (Σ∗ ⊗ V).
The assertion follows in the Maj[<]-case. Since H−1(M<) ⊆ H−1(M<,Sq) it remains to consider the

situation
(6) φ = Sq x ψ:

We define the morphism h as for Maj x ψ , but now mapping nonfulfilling positions to 0 instead of −1.
This causes that we now simply count the number of satisfying positions ignoring the unsatisfying ones.
Hence Lφ,V = h−1(S) ∩ (Σ∗ ⊗ V).

An Example

In the following we give as example the simulation of modular counting by groups in M<. We deal with
the formula χ := MajxMajyx ≤ y which accepts the set of all words of odd length. Since we do not
use Qa(·)-predicates, lets simply take Σ := {a} to be singleton. The syntactic monoid of Lχ is the cyclic
group with two elements.

As a first step, we simulate the formula ψ := x ≤ y with the set of free variables V := {x, y}. Thus
we begin with the group (Gψ,Gψ) = (Z,Z<) � (Z,Z<) = Vψ ∗ ∗Z. We simulate ≤ (and not <) thus we
define the morphism hψ : ({a} × 2V)∗ → Gψ by

hψ(a, S) :=

(e1, 0) if S = ∅
(e1, 1) if S = {x}
(f>, 0) if S = {y}
(e1, 1)(f>, 0) = (1 · f>, 1) if S = {x, y}

.

where f>(x, y) = 1 if x > 0 and 0 otherwise, and e1 is the constant zero mapping from Z × Z to Z. As
acceptance type we use the set Gψ := {(f, n) | f(0, 0) > 0}. Then the set of all V-structures contained in
h−1
ψ (Gψ) is precisely the set of words where variable x is not positioned after variable y.

In the second step we simulate the formula φ := Majyψ which has the set of free variable V ′ := {x}.
We set (Gφ,Gφ) := (Z,Z<) � (Gψ,Gψ) = Vφ ∗ ∗Z, and define maps g(a,∅) and g(a,{x}) from Gψ ×Gψ to
Z by

g(a,∅)((f1, n1), (f2, n2)) :=

{

+1 if (f1, n1)hψ(a, {y})(f2, n2) ∈ Gψ
−1 otherwise

and

g(a,{x})((f1, n1), (f2, n2))) :=

{

+1 if (f1, n1)hψ(a, {y, x})(f2, n2) ∈ Gψ
−1 otherwise

.

Thus g(a,∅)((f1, n1), (f2, n2)) > 0 iff f1(0, n2)+f>(n1, n2)+f2(n1, 0) > 0 and g(a,{x})((f1, n1), (f2, n2)) > 0
iff f1(0, n2 + 1) + f>(n1 + 1, n2) + f2(n1 + 1, 0) > 0.
For the morphism hφ : ({a} × 2{x})∗ → Gφ defined by hφ(a, ∅) := (g(a,∅), (e1, 0)) and hφ(a, {x}) :=
(ga,{x}, (e1, 1)) and the acceptance type Gφ := {(g, (f, n)) | g((e1, o), (e1, 0)) > 0} the set of all {x}-

structures lying in h−1
φ (Gφ) is exactly the set of words where the variable x is positioned in the first half

of the word and this is the language accepted by formula φ.
In the final step we simulate the whole formula χ which is Majxφ and has no free variables.

7

We set (Gχ,Gχ) := (Z,Z<) � (Gφ,Gφ) = Vχ ∗ ∗Z. Define hχ : {a}∗ → Gχ by hχ(a, ∅) =
(F(a,∅), hφ(a,∅)) where F(a,∅) : Gφ ×Gφ → Z is defined as

F(a,∅)(m1,m2) =

{

1 if m1 · hφ(a, {x}) ·m2 ∈ Gφ
−1 otherwise

We claim that Lχ = h−1(Gχ) for Gχ := {(F, (g, (f, n))) ∈ Vχ ∗ ∗Gφ | F ((e2, (e1, 0)), (e2, (e1, 0))) > 0}
where e2 denotes the constant zero mapping from Gψ × Gψ to Z. Set for the sake of brevity α =
g(a,∅), β = g(a,{x}) and γ = F(a,∅). Then by definition γ((g1, (f1, n1)), (g2, (f2, n2))) > 0 iff g1((e1, 0), (1 ·
f2, n2 + 1)) + β((f1, n1), (f2, n2)) + g2((f1 · 1, n1 + 1), (e1, 0)) > 0. In particular for m = (α, (e1, 0)) we
have γ(mi−1,mn−i) > 0 iff −(i− 1) + β((e1, 0), (e1, 0)) + (n− i) > 0. Since

π1(hχ(a
n))(eGχ

, eGχ
) =

n
∑

i=1

γ(mi−1,mn−i) = ⌊
n+ 1

2
⌋ − n+ ⌊

n+ 1

2
⌋

this yields h−1(Gχ) = (aa)∗a which is the language accepted by formula χ.

Remark 6.1. It is also possible to accept the language L = {an | n ≡ 1 mod (k + 1)} for an arbitrary
natural number k by the group Gχ of the above example. It is readily seen that this can be done by
setting h(a) := (γ, (α, (e1, 0))) where β is as in the above example and where γ and α are essentially
defined as above but now setting the positive value of α to k and the negative value of γ to −k, and using
G = Gχ of the above example as acceptance type.

7 Proof of theorem 5.2

Group quantifiers turn out to be a key ingredient to prove the converse.

Definition 7.1 (Group quantifier). Let G be a group, G ⊆ G, d ∈ N, and φ1(x), . . . , φd(x) formulae.
Further let m : 2d → G be a function such that eG ∈ im(m). Then the following is also a formula:

w |= ΓG,G,m x 〈φ1(x), . . . , φd(x)〉

which is true iff:
(

n
∏

i=1

m(w |= φ1(i), . . . , w |= φd(i))

)

∈ G.

Concerning the mapping m we identify false with 0 and true with 1.

This definition is an extension of the group quantifier over finite groups [2]. The difference to the finite
case is that the map m does not need to be surjective and the accepting set cannot be any element but
has to be a type. We add the map m to the notation of the group quantifier since it strongly influences
its power.

Definition 7.2. (G,G) is definable in Q[X] (Notation: (G,G) D Q[X]) iff ∀d ∈ N, ∀m : 2d → G and
∀G ∈ G:ΓG,G,m is definable in Q[X].

Example. We can write the ∃ quantifier as a group quantifier over Z.

∃x φ(x) = ΓZ,Z+,m x 〈φ(x)〉

where m(false) = 0 and m(true) = 1.

Example. We can write the Maj quantifier as a group quantifier over Z.

Maj x φ(x) = ΓZ,Z+,m x 〈φ(x)〉

where m(false) = −1 and m(true) = 1. This does not quite meet the definition since 0 6∈ im(m), but
we could easily extend the definition to:

Maj x φ(x) = ΓZ,Z+,m′

x 〈φ(x), false〉

where m′(false, false) = −1 and m′(true, false) = 1 and to meet the definition m′(false, true) =
m′(true, true) = 0. This example demonstrates that the requirement 0 ∈ im(m) is not substantial.

8

Definition 7.3 (Relative group quantifier). Let the notation be as in 7.1 and let p, q be two free
variables. Then

w |= ΓG,G,mp..q x 〈φ1(x), . . . , φd(x)〉

is a formula which is true iff:

q
∏

i=p

m(w |= φ1(i), . . . , w |= φd(i))

 ∈ G.

Lemma 7.4. If a group quantifier is definable in Q[<,X] then the relative group quantifier is definable
in Q[<,X], as well.

Proof. We show that we can simulate each relative group quantifier ΓG,G,mp..q x 〈φ1(x), . . . , φd(x)〉. By
definition there is a 〈v1, . . . , vd〉 such that m(〈v1, . . . , vd〉) = eG. Let p, q be two free variables. We define

φ′i(x) = (x < p ∧ vi) ∨ (x > q ∧ vi) ∨ (p ≤ x ≤ q ∧ φi(x))

Then m(〈φ′1(x), . . . , φ
′
d(x)〉) = eG if x < p or x > q and equals φi(x) otherwise. So

ΓG,G,mp,q x 〈φ1(x), . . . , φd(x)〉 = ΓG,G,m x 〈φ′1(x), . . . , φ
′
d(x)〉

If the group quantifier is definable in a logic Q[X] then all inverse morphic images of this group belong
to L(Q[X]):

Lemma 7.5. (G,G) DQ[X] implies that for each morphism h : Σ∗ → G, h−1(G) ∈ L(Q[X]) for all
G ∈ G.

Proof. Let h and G be as above, Σ = {α1, . . . , αr} and set φi(x) = Qαi
(x) for i = 1, . . . , r. We define a

mapping m : 2|Σ| → G by

m(false, . . . , false, true, false, . . . , false) := h(αi)

where i is the position of true. Then w |= ΓG,G,m < ~φ(x) iff h(w) ∈ G for every w ∈ Σ∗

We prove by induction on the block structure that the elements of M< and M<,Sq are definable in
Maj[<] and Maj + Sq[<].

We use extended arithmetic to have vectors of variables ~x = 〈x1, x2, . . . , xr〉, ~y = 〈y1, y2, . . . , yr〉 . . .
to encode numbers between 1 and nr, where n is the length of the input word. We assume that there
are no two different encodings of the same number. Then there are FO[+] and hence Maj[<] formulae
φ<(~x, ~y) and φ+(~x, ~y, ~z) expressing the fact that the number encoded by ~x is smaller than that encoded
by ~y resp. that the sum of the number encoded by ~x and ~y coincides with that of ~z ([7][Theorem2.5]). It
should be mentioned that these simulations hold only for sufficiently large input size. Thus there might
be a finite number of exception. Formally, this means for describing languages by formulae that we would
have to explicitly code these finitely many exception words in the constructed formulae by some sort of
table look-up. But to ease the handling we only consider the case of sufficiently large input size.

Proposition 7.6.
(Z, {Z+,Z−

0 }) DMaj[<]

Proof. Let ΓZ,Z+,m x 〈φ1(x), . . . , φd(x)〉, then there are finitely many possible {0, 1}-vectors ~φ(x), hence

there are finitely many possible numbers m(~φ(x)). For each binary vector v = 〈v1, . . . , vd〉 we let:

ψv = ∃=cv x

(

d
∧

i=1

φi(x) ↔ vi

)

where cv is a free variable.
We now construct the formula simulating the group quantifier. This formula multiplies cv by |m(v)|

then it adds all products with m(v) < 0 and all products with m(v) > 0 and compares the sums to decide
if the group quantifier is fulfilled.

∃ c〈0,0,...,0〉, . . . , c〈1,1,...,1〉
∧

v

ψv ∧

∑

m(v)<0

(|m(v)| · cv) <
∑

m(v)>0

(|m(v)| · cv)

9

Note that we use extended arithmetic in order to compute the involved sums. There are only finitely
many cv so the product cv by |m(v)| is the multiplication with a constant hence expressible by iterated
addition and the sums have only a constant number of terms.

In this way we can construct a formula expressing the group quantifier with type set Z+. For the
type Z

−
0 we simply negate the formula.

Proposition 7.7.
(Z, {S, S}) DMaj + Sq[<].

Proof. We first observe that it is possible to define an extended version Sq ~x of the square quantifier Sq x
just in the way Theorem 2.3.e is proven in [7].

In the following formula ~x ranges over the difference between the positive and the negative terms
computed by the group quantifier.

∃ c〈0,0,...,0〉, . . . , c〈1,1,...,1〉
∧

v

ψv ∧ Sq ~x

∑

m(v)<0

(|m(v)| · cv) ≤ ~x <
∑

m(v)>0

(|m(v)| · cv)

Since the representation of number by vectors of variables is unique the number of fulfilling choices of
~x coincides with

∑

m(v)>0 (|m(v)| · cv) −
∑

m(v)<0 (|m(v)| · cv) =
∑

v (m(v) · cv). This formula is now
equivalent to the group quantifier using the accepting set S. Again with negation we can simulate the
group quantifier with the accepting set S.

Corollary 7.8.
(Z, {S,Z+ \ S,Z−

0 }) DMaj + Sq[<].

Proof. The preceding propositions combined with lemma 4.2 yields the desired result.

We now start with the induction. First, we simulate Cartesian products. This simply reduces to
propositional conjunction:

Proposition 7.9. Let Q[X] be any logic. Assume (G,G), (H,H) DQ[X], then (G,G) × (M,M) DQ[X].

Proof. Let A = G×H be a type of G×H. Let m : 2d → G×H, v 7→ (mg(v),mh(v)), and φ1(x), . . . , φd(x)
be formulae in Q[X].

ΓG×H,A,m x 〈φ1(x), . . . , φd(x)〉

iff
ΓG,G,mg x 〈φ1(x), . . . , φd(x)〉 ∧ ΓH,H,mh x 〈φ1(x), . . . , φd(x)〉

Finally we show that groups constructed by the block product also belong to Maj[<] respectively
Maj + Sq[<].

Theorem 7.10. Let Q[X] be any logic.
Assume (G,G), (H,H) DQ[X], then (G,G) � (H,H) DQ[X].

Proof. Set (W,W) = (G,G) � (H,H) and let W ∈ W and d, m : 2d → W, φ1(x), . . . , φd(x) as in 7.1.

We need to show that ΓW,W,mx ~φ(x) is definable in Q[X].

We need some notation first. For an arbitrary but fixed input w of length n we have m(~φ(·)) :
{1, . . . , n} → W, i 7→ m(w |= φ1(i), . . . , φd(i)) =: (fi, hi). W is a type of W, thus W = {(f, h) ∈ W |
f(eH , eH) ∈ G} for a suitable type G of G.

w |= ΓW,W,mx ~φ(x) ⇔
n
∏

i=1

m(w |= ~φ(i)) ∈ W

⇔ π1

(

n
∏

i=1

m(w |= ~φ(i))

)

(eH , eH) ∈ G

⇔
n
∑

i=1

fi(h1 · · ·hi−1, hi+1 · · ·hn) ∈ G

10

In the following we need to show that we can construct formulae ~ψ(x) and a mapping m′ : 2d
′

→ H

such that m′(~ψ(i)) = fi(h1 · · ·hi−1, hi+1 · · ·hn). Then we can use the group quantifier for G and get:

ΓG,G,m
′

x ~ψ(x)

iff
ΓW,W,mx ~φ(x).

We already have the mapping π1 ◦ m that determines together with ~φ(x) the function fi at any
position. There are only finitely many different function fi since the image of π1 ◦m is finite. So lets fix
a function fi. By 3.3(c) we have fi =

∑

j∈Ji
fi,j for fi,j ∈ V (1) ∪ V (2) and we can determine the value of

fi if we have formulae for cases (i)-(iii) of 3.3(c).
(i) Let s ∈ {sj | j ∈ Ji} and H ∈ H. We define φd+1(x) = x = i with a free variable i and m′′

s (~v, false) :=
π2 ◦m(~v) and m′′

s (~v, true) := s then

w |= Γ
H,H,m′′

s

1..j x 〈~φ(x), φd+1(x)〉

iff
h1 · · ·hi−1 · s ∈ H

Hence we can construct a finite number of formulae to determine the case of clause (i). (ii) Similar to
case (i).

(iii) With the same definitions as above:

w |= ΓH,H,m
′′

s x 〈~φ(x), φd+1(x)〉

iff
h1 · · ·hi−1 · s · hi+1 · · ·hn ∈ H

Hence we can determine the arguments of fi up to an equivalence class that results in the same value
of fi and use a finite case differentiation to build the formulae ~ψ(x) and the mapping m′. This completes
the proof of Theorem 5.2.

Corollary 7.11. H−1(M<) ⊆ L(Maj[<]).

Corollary 7.12. H−1(M<,Sq) ⊆ L(Maj + Sq[<]).

Discussion

We characterized the languages in L(Maj[<]) as inverse morphic images of the elements in M<. By
using the square quantifier it was possible to represent uniform TC0 in the same way. A corresponding
characterization is possible for other complexity classes like AC0 or ACC0, as well. A minor problem is
the simulation of addition. This has to be done by a specific group as initial building block which is not
allowed to be used in the induction step.

The next step should be to prove lower bounds. This should be possible for classes like L(Maj[<]) or
FO[+]-uniform ACC0. Here the representation in terms of groups might be helpful: when transforming
a circuit class into a logical class like L(Q(X)) we often loose a reasonable notion of depth. For example,
we know that Maj[<] can do counting modulo k for each fixed k, but the depth of the corresponding
formula seems inherently to increase with growing k. This is not the case when using groups in M< as
seen in the example in section 6. Thus it might be a reasonable task to try to correlate the (block) depth
notion of a group or monoid to the depth of a circuit.

Another task is to come up with an algebraic theory of finitely typed monoids and groups. For
instance, it might be a reasonable notion to call a finitely typed monoid (M,M) pseudo-aperiodic if for
all m ∈M there is a positive integer k such that the element mk has the same type as mk+1, i.e. we have

∀M ∈ M ∀m ∈M ∃k ∈ Z
+ mk ∈ M iff mk+1 ∈ M.

It is easy to see that all elements in M< of depth 2 or less are pseudo-aperiodic, while the example in
section 6 demonstrates that all finite cyclic groups are divisors of groups in M<.

11

Acknowledgments

We thank Howard Straubing, Pascal Tesson, and Denis Therien for valuable discussions on this topic.

References

[1] D.A. Barrington. Bounded-width polynomial-size branching programs can recognize exactly those
languages in NC1. J. Comp. System Sci., 38:150–164, 1989.

[2] D.A. Barrington, N. Immerman, and H. Straubing. On uniformity within NC1. J. Comp. System
Sci., 41:274–306, 1990.

[3] D.A. Barrington, H. Straubing, and D. Therien. Nonuniform Automata over Groups. Information
and Computation, 89:109–132, 1990.

[4] K.-J. Lange. Some results on majority quantifiers over words. In Proc. of the 19th IEEE Conference
on Computational Complexity, pages 123–129, 2004.

[5] C. Lautemann, P. MCKenzie, T. Schwentick, and H. Vollmer. The descriptive complexity approach
to logcfl. J. Comp. System Sci., 62:629–652, 2001.

[6] M. Lawson. Finite Automata. Chapman & Hall/CRC, 2004.

[7] N. Schweickard. On the Expressive Power of First-Order Logic with Built-In Predicates. Dissertation,
Universität Mainz, 2001.

[8] H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, 1994.

12

