
On the Design of Parallel Programs for Machines with
Distributed Memory ∗

Dominik Gomm, Michael Heckner, Klaus-Jörn Lange, Gerhard Riedle

Technische Universität München, Institut für Informatik, Arcisstr. 21, D-8000 München 2

1 Introduction

The efficient and faultless use of parallel systems, in particular problems concerning the programming
of parallel computers belong to the most important issues of computer science. These problems may
be classified into two main categories: “Distributed Parallelism” deals with mastering concurrency
and “Speed-up Parallelism” tries to improve on computation time by employing many processors to
solve one task. Whereas the former treats questions of correctness, the latter — which is what we are
concerned with — is determined by matters of efficiency. Problems of both areas are even becoming
more difficult by the desire for an easy and clear way of programming parallel systems — if possible,
similar to conventional programming.

These needs are fulfilled more easily on shared memory systems, where “synchronous” programming
with a global clock yields both simplicity and good efficiency. On parallel systems with distributed
memory (like the iPSC/2 Hypercube, Transputer Systems and others) both aims have at least to be
reached independently or may even be considered as conflicting aspects. Programming distributed
systems usually leads to rather coarse grained parallelism as the complexity of synchronization and
communication prohibits a more fine grained implementation. Although this coarse grain approach
is supposed to lead all the way back to conventional programming, we are then left with severe
synchronization and consistency problems. In addition, this approach seems to work with algorithms
that are characterized by a minor communication load, only. But, increasing the number of processors
in a parallel system leads to a situation where technological constraints forbid “clocked” systems with
a shared memory (e.g. [Vit86]).

The aim of this paper is to indicate a procedure for a convenient and machine-independent design of
efficient programs for a large class of algorithms. This will be accomplished by hiding problems con-
cerning concurrency and restrictions due to the communication topology of the underlying machine as
far as possible. We want to point out that we do not think of an efficient implementation of a “univer-
sal” PRAM, but of developing and studying classes of problems or algorithms. These classes can be
implemented in an efficient and convenient way. The expectation that these classes will nevertheless
contain very relevant problems is supported by the fact that at present most computation-intensive
“numerical” algorithms are of very regular structures allowing efficient partitionings.

2 Shared Memory Programming and its Desynchroniza-

tion

In parallel complexity theory, one of the best known models describing parallel algorithms is the
PRAM — the parallel random access machine. (See [Coo85] for an overview.) A PRAM can be

∗This work was carried out within the scope of DFG-SFB 342 by subprojects A3 and A4

thought of as a collection of processors (each of which having local memory) working in a syn-
chronous way controlled by a global clock and communicating via global memory. There is a variety
of PRAM-models depending on how memory-conflicts are resolved. While the most general model,
the concurrent read concurrent write CRCW-PRAM is a system with shared memory, each global
memory cell of a owner read owner write OROW-PRAM is the conception of a directed commu-
nication channel. Hence, an OROW-PRAM is a (clocked) network of processors with distributed
memory (see [Ros90]). We decided to consider the intermediate model, the CROW-PRAM, which
already has some of the features of a real distributed memory computer.

As indicated above, it is relatively simple to design efficient algorithms on a synchronous parallel
system with shared memory (i.e. the speed-up is proportional to the number of processors involved)
and it is relatively simple to show their correctness. However, the PRAM-model makes some drastic
and totally unrealistic assumptions: (A1) PRAMs work synchronously, i.e. the processors execute
statements of unit length in a clock-controlled way. (A2) Processors have unbounded communication,
i.e. each pair of processors can transfer data in unit time via a global (shared) memory. Thus, there is
no difference in the time delay between local and remote communication. (A3) PRAM-algorithms use
an unbounded amount of hardware, i.e. the number of processors involved in a PRAM computation
is not fixed but depends (polynomially) on the length of the input.

Since the number n of virtual processors required by an PRAM-algorithm is usually much bigger than
the number k of real processors of any existing parallel computer, there is the need to execute many
virtual steps on one real node. This implies however that there is an ideal “PRAM-atmosphere” for
these combined PRAM-processors in that there is no synchronization problem and no difference
between local and remote communication, i.e. assumptions A1 and A2 are trivially fulfilled for
PRAM-processors laid onto the same physical node. The problem is, of course, how to handle
communications between PRAM-processors which are laid on different real nodes.

There seem to be two major ways to cope with this inhomogenity. According to one conception, all
of the n virtual PRAM steps, which are to be executed in parallel, are distributed over the k real
processors in a randomized way hoping for an equal load of all remote communications. Then each
processor performs sequentially n

k
steps that were assigned to it. Each remote–step is handled by

a communication–unit, such that (in the average) no processor has to wait for the execution of a
remote–step, but instead can begin to execute the next of its n

k
steps [Val90]. This approach ends

up in a flooding of the underlying network with a huge amount of small messages and in addition
seems to pay off only if the ratio of remote to local communication time is not too far beyond 1. The
other approach uses the fact that in most systems with distributed (nonuniform) memory the high
cost (in terms of time) for a remote communication consists of a comparatively high startup time

added to the usual transmission cost, which is linear in the length of the transmitted information
and roughly corresponds to the cost of a local communication. Furthermore, it is possible to save in
the cost of the startup time by building blocks of communication. Thus, it is very important within
this approach to arrange and cut the n virtual steps in a way, that both the number of such blocks
of communication and their sizes are balanced and equally shaped for all k processors. This is only
possible if the communication structure of a parallel program is determined before run–time, i.e.
we can consider algorithms with data–independent communication structure only. Thus, this second
approach differs from the first one by providing very efficient programs for only a certain subclass of
algorithms and by involving the user in the procedure. This is the most essential step of partitioning
w.r.t. efficiency. The task is presumably unsolvable in an asynchronous environment.
This is why we treat the design of parallel programs in two major steps, partitioning and desynchro-

nizing; this has to be done in this order. At first, in the partitioning step an appropriate PRAM
algorithm is laid out on a synchronous PRAM with a small (i.e. realistic) number of processors in
a way that the cost of inter-processor communication is reduced to a minimum. In order to avoid
confusions we will call this machine in subsequent sections of this paper a synchronous superstep

machine (SSM). Then, in the desynchronizing step the synchronous program is to be transferred
onto an asynchronous distributed memory machine (ADMM) with the same number of processors
using message passing mechanisms. As the global clock-pulse is missing in a distributed system we

have to find means and ways to replace it. It turns out, that even in the case of complete information
about how to build communication blocks optimally, this results in inefficient programs, unless we
restrict ourselves to a small class of parallel algorithms with a very restricted communication struc-
ture. We intend to solve this inefficiency problem by allowing the user to give information concerning
the asynchronous behaviour of certain parameters of his program. The succeeding desynchronizing

transformation desynchronizes correctly and as efficiently as possible according to the given infor-
mation the program resulting from the partitioning step. (In a certain way, data–independency of
communication structure is just one example of this kind of information). These two steps shall now
be presented in more detail.

2.1 Partitioning

Partitioning consists of three substeps: cutting, building blocks of communication and introducing
subbroadcasts. The basic assumptions of the target machine, the SSM, that have to be met are: (S1)
All processors work synchronously, (S2) global memory is still assumed but the OROW quality now
required actually gives it the character of distributed memory and (S3) finally, the number of proces-
sors is restricted to a small (compared to n) value of k with respect to existing parallel architectures.
Given this SSM architecture, we now want to present the three substeps that will carry PRAM
programs onto SSM “hardware”.

2.1.1 Cutting — Building Blocks of RAMs

Naturally, the partitioning starts with a reduction in parallelism. However, this goal is not achieved
by some sort of multitasking of a certain amount of RAM programs on each SSM processor. [Val90].
Our basic idea is to cut the whole PRAM program (usually consisting of an enourmous amount of
n RAM programs) into parts in a way that each SSM processor obtains one program simulating the
work of many RAMs. We want to stress that many RAM programs are merged in one program for
each SSM processor. Consequently, within each piece of the original program there is still the ideal
PRAM athmosphere as described in assumptions A1, A2 and A3. Only the connections crossing
the frontiers of SSM processors will cause severe problems with respect to that model, i.e. commu-
nication and synchronization. We leave synchronization problems essentially to the second major
phase, the desynchronizing step. Hence, the following criteria are of primary concern to achieve an
efficient cutting: a) Equal loads for all SSM processors have to be produced and b) the pattern of
communication, that is the algorithm’s characteristic communication structure (which is pratically
never a fully interconnected one!) has to be considered in order to minimize external communication.

With this substep we introduce the concept of a superstep. A superstep in the program of a SSM
processor comprises the execution of exactly one computational step of each of the RAMs that it has
to simulate.

Having selected one cut of the PRAM algorithm a suitable sequential order of simulation has to be
found. This is the second task that has to be solved within the substep cutting. Again, it may
have considerable influence on the feasibility of building blocks of communication. (See convolution
example).

A third task to be tackled by the cutting substep is the correct handling of non-monotonous algo-
rithms. The following statement is a typical element of non-montonous parallel algorithms: “a :=: b”.
Sequentializing this parallel statement correctly, entails that additional variables are introduced that
protect variables a and b from being overwritten too early. However, given monotonous programs, the
cutting could support a more efficient sequentializing of the PRAM algorithm due to some declaration
given by the user indicating montony.

2.1.2 Building Blocks of Communication

the second substep deals with the analysis of external communication. Within each superstep com-
munication with external sources should be analysed. This is aimed at finding a number of elementary
(i.e. derived from single RAMs) read statements that access the same source SSM processor (but
possibly different RAMs within that SSM program). This allows for reading these values within one
communication setup before the execution of that superstep actually begins. Obviously, a clumsy cut-
ting prohibits a successful building of blocks of communication. Therefore, it is realistic to conceive
the cutting and the building of blocks as the two constituents of a feedback cycle.

This substep can be seen as a kind of local optimizing. For each SSM processor its read access to
other, i.e. external SSM processors has to be optimized. It is the aim to give each SSM program the
most efficient provision with external data (i.e. in blocks of messages).

2.1.3 Subbroadcasts

In contrast to the previous substep the subbroadcast step deals with the global aspect of communi-
cation. As we started with CROW PRAMs and, until now, did not resolve the concurrent reads, a
certain, although reduced, amount of concurrent reads among the SSM processors is retained. To get
in control of this concurrent access, the concept of subbroadcasts is introduced. To put it clear, the
user does not resolve the concurrency. He simply “marks” it by using the subbroadcast statement.
The actual resolution is done within a library function that is called by the subbroadcast statement.

Before having a more detailed look at subbroadcasts, we have to elaborate on the idea of a decom-
position topology. [Fea88]
Keeping in mind the presumptions of hardware-independent programming on the one hand and the
restricted interconnection topology typical of all large-scale parallel systems on the other hand, we
propose standard decomposition topologies. Already indicated by the name this aid offers standard
communication topologies for our decomposed PRAM algorithm, i.e. the algorithm after cutting
and building blocks of communication. These topologies should guarantee the best mapping from
this decomposition topology into any communication topology of real hardware systems. During the
partitioning stage the user can select any of the decomposition topologies given in some sort of a
library suitable for his algorithm. We think especially of grids, hexagonal meshes, hypercubes and
trees. For example, matrix computations usually will be well represented on grids.
A subbroadcast enhances the expressive power of decomposition topologies as follows. Instead of
restricting communication to the direct neighbours within the topology, communication is always
possible in well-formed, distinguished subsets of the topology, e.g. within a 2-dimensional grid it
is possible to address all menbers of a row or a column — the “dimensions” of the topology. The
communication pattern of the algorithm has to fit into the expressiveness of subbroadcasts on the
selected decompostion topology.

Resuming the discussion of concurrent reads, this third substep of partitioning finds all concurrent
reads (that is all one-to-many communication links) and embeds them in subbroadcasts. Please note,
that in our understanding the term subbroadcast does not imply any assumption about the direction
of information flow, i.e. one sender, many receivers. It simply denotes the pattern of communication.

2.1.4 Comments on the Substeps of Partitioning

Considering the sequential order of substeps it is obvious that the partitioning stage has to start
with cutting. But why is the building of blocks prior to subbroadcast treatment? The inverse order
would not only inflict a concurrency of O(n) to be dealt with where n is the enourmous number of
RAMs instead of O(k), the small number of SSM processors but also prohibit a successful building
of blocks of communication in some cases.

All substeps are supposed to be executed prior to any compilation and especially prior to execution
of the program.

It is evident that no data-dependent algorithm such as any kind of pointer jumping will render
this approach useless. There is no basis on which a sound building of blocks could rely. Further-
more, restriction to subbroadcasts cannot possibly be efficient as communication connections are
unpredictable.

2.1.5 Examples

Partitioning will be described by two examples. Not every detail mentioned above will be demon-
strated. The two examples differ in the time-dependence of their communication pattern. The first
example, convolution, is marked by an invariable pattern as time passes on.

Convolution

Pi: repeat g(t) times

⌈ ≪ step ≫
processorswitch i

case 1 : A1 := f(0, A1, Ai+ 1)
case n : An := f(Ai− 1, Ai, 0)
default : Ai := f(Ai− 1, Ai, Ai+ 1)

endswitch

⌊ ≪ endstep ≫

Figure 1: PRAM Convolution Algorithm (for
any PRAM i)

A1 A2 An−1 An

✲ ✲ ✲ ✲
✛✛✛✛

0
0

P1 P2 Pn−1 Pn

Figure 2: Communication Struc-
ture of the PRAM Convolution
Algorithm

Let us assume that we have n RAMs and only k SSM processors (nodes), where n ≫ k. There is
one obvious way to cut this algorithm. It simply combines n

k
neighbouring RAM programs in one

SSM processor program, thus giving us the k programs needed for the SSM. The result of this simple
cutting can be seen in figure 3. Each node simulates the n

k
RAMs laid onto it from left to right

within each superstep. Obviously, there are no elementary read access statements within each SSM
processor Qj that could become blocks because they address the same source SSM processor.
It seems worth mentioning that the change in sequential order of the simulation of RAMs would
yield a possibility of blocking:
Choosing snakelike execution means that each node first simulates the n

k
RAMs within a superstep

from left to right, followed by a superstep reversed in order. Thus the bordering memory location
at the right or left end, respectively is updated twice in two successive computation steps. Both
values are retained and combined in one block of communication. Thus computation only takes
place after each “megastep” comprising to supersteps. This change in the sequential order of events
cuts communication frequency in halves and doubles the length of each communication block which
will make up to a considerable performance increase.
The overlap idea is based on redundancy. An overlap of o can be explained as follows: Each node
starts with simulating not only its own n

k
RAMs but also a certain number of RAMs , precisely 2o

RAMs, that belong to its right and left neighbouring nodes — o of them to each. Thus we can execute
o succeeding computation steps without any communication by simulating a decreasing number of
overlapping RAMs. Therefore we create a “megastep” on each node comprising o computational
steps on n

k
RAMs plus the additional computation necessary for the overlapping RAMs. The message

length is increased from 1 element to o elements, message frequency however is curbed drastically by
factor of o.
In fact, the standard partitioning proposed above is a special case of overlapping: o = 1.

topology grid(dim 1, proc k)
Qj : repeat g(t) times

⌈ ≪ superstep ≫
Al := subbroadcast (row , sender ∀i ∈ row Qi, receiver Qi− 1, value An

k

)

Ar := subbroadcast (row , sender ∀i ∈ row Qi, receiver Qi+ 1, value A1)
for i = 1(1)n

k
do

switch i

case 1 : if j = 1 then A′

1 := f(0, A1, A2) else A′

1
:= f(Al,A1, A2)

case n

k
: if j = k then A′

n

k

:= f(An

k
− 1, An

k

, 0) else A′
n

k

:= f(An

k
− 1, An

k

, Ar)

default : A′

i := f(Ai− 1, Ai, Ai+ 1)

endswitch

end

for i = 1(1)n
k

do Ai := A′

i
end

⌊ ≪ endsuperstep ≫

Figure 3: Obvious Partitioning of the Convolution Algorithm

Warshall

The Warshall algorithm is the most popular algorithm for solving the problem of the transitive
closure. As you can see from figure 5 the Warshall algorithm is characterized by a permanent change
of communication partners. However, the communicating pairs of processors can be anticipated —
they can be derived from the number of the computation step.

Pij : for r = 1(1)n do

⌈ ≪ step ≫
Aij := Aij ∨ (Pir.Air ∧ Prj .Arj)

⌊ ≪ endstep ≫
end

Figure 4: PRAM Algorithm

1 ✲
2✲

1

❄

2

❄

3

❄

8✛ 7✛ 6✛ 5✛ 4✛

8

✻

7

✻

6

✻
5
✻

3✲✛
4✻❄

n

n

Figure 5: Warshall’s Algorithm on an 8 × 8
Matrix (on RAM P43)

We will present two possible cuttings that can be ranked by the ability to build blocks of messages.
For the time being, we will assume that we have n2 RAMs but only k nodes. In the PRAM case
every matrix cell has got a RAM doing the n computation steps necessary to determine the resulting
value of this cell.

Partitioning the matrix by the row
n
k
rows of n RAMs each are merged in one node program. Since each superstep needs the values

of one distinct row of the matrix these values can be transferred in one block and thus increase

communication efficiency.
Note that the case of partitioning by the column is symmetric.

Partitioning the matrix by the tile

One node simulates a square of n
k′
× n

k′
neighbouring RAMs where k′2 = k nodes. This time each

superstep operates on two message blocks: successive values of one section of a row and successive
values of one section of a column. The section size equals the length of a tile. Note that this way of
partitioning reflects the basic structure of the Warshall algorithm. The result is shown in figure 6.

It will turn out that this partitioning by tile results in an even more efficient SSM-algorithm with
respect to communication than the partitioning by the row. (c.f. table 1). The total amount of
information that has to be exchanged is smaller.

topology grid(dim 2, proc k)
Qrs: for t = 1(1)k′ do

for u = 1(1) n

k′
do

⌈ ≪ superstep ≫
(Ainrow1, . . . , Ainrow

n

k′

) := subbroadcast (row , sender Qrow t,

receiver ∀i ∈ row Qrow i, value A1u, . . . , A n

k′
u)

(Aincol1
, . . . , Aincol

n

k′

) := subbroadcast (col , sender Qtcol ,

receiver ∀i ∈ col Qicol , value Au1, . . . , Au n

k′

)

for v = 1(1) n

k′
do

for w = 1(1) n

k′
do Avw := Avw ∨ (Ainrowv ∧ Aincolv

)

⌊ ≪ endsuperstep ≫
end

Figure 6: Partitioning by the Tile

messages
Partitioning

amount of messages length information total

by the tile 2kn = 2k′2n n√
k
= n

k′
2
√
kn2 = 2k′n2

by the line kn = k′2n n kn2 = k′2n2

Table 1: Comparison

2.2 Desynchronizing

In the second major step of transformation, called desynchronization, programs from the syn-
chronous SSM stage are transfered onto an asynchronous distributed memory machine ADMM.
Thereby, all access to global memory has to be replaced by message passing mechanisms. Read and
write operations in a SSM superstep are replaced by asynchronous send and receive operations

on the ADMM level.

As the ADMM is a model of a distributed system we can no longer rely on a global clock signal.
Therefore, we have to use suitable synchronization mechanisms to simulate the missing global clock
pulse such that every node operates on the correct data in each computation step.

The result should always be an efficient program where nodes can perform their local steps as inde-
pendently as possible. Therefore, we are not interested in solutions like barrier–style synchronization
[Val90] where a node can only start a new step if all nodes have performed their corresponding steps,
which in addition requires an enormous overhead of synchronization messages on a distributed ma-
chine. Waiting for input values should be the only acceptable delay. This can be realized generally

but inefficiently if each node stores each computed value of each step in a local list and sends such
a value to another node whenever it receives a corresponding request. Desynchronization should
yield more efficient distributed programs in the case of a more restricted communication structure
of the synchronous program. If the communication structure does not depend on input data, it is
predictable, such that requests for values and local lists can be omitted. Simple submission of values
which must be indicated by the step they are computed at is sufficient to guarantee that all nodes
are working on the correct data. Furthermore, if the communication structure is constant in time,
i.e. the same in every step, indication can be omitted if we assume FIFO buffers.

Besides cheaper synchronization mechanisms, faster message passing system calls can be used to in-
crease efficiency. In the case of a cyclic or even symmetric communication structure, the algorithm
itself has enough inherent synchronization to make precise assumptions about worst case buffer sizes.
Knowing this, we can always find implementations which rely on more efficient plain system calls
than the ones usually provided, because free buffer space can be guaranteed – thus excluding the
sender of having to wait.

We will use Petri nets to analyse runs of non–clock–controlled systems to find correct transformations
using minimal synchronization mechanisms. Petri nets are adequate for the modelling and analysis
of distributed systems. They can be nicely represented as bipartite graphs of passive (conditions
which hold iff they are marked — drawn as circles), and active elements (events which may happen,
thereby changing conditions they are related to — drawn as boxes), and by the notion of the runs
of a net system they have a well-defined partial order semantics. Due to the lack of space we refer
to [Rei85] for all technical details.

Convolution

In the case of the systolic convolution algorithm it can be shown that no additional synchronization
mechanisms are necessary for a correct transformation because variables are accessed symmetri-

cally: Each inner node has two communication partners that never change. In each superstep
there is a send and receive operation — thus forming two communication cycles of minimal length
(i.e., of symmetric shape). The convolution algorithm based on message passing can be modelled
as a Petri net consisting of the behaviour of the k nodes and buffers — drawn as conditions — for
communication as follows:

SEND1

REC1

OP1
❤

❤

❤s

❇❇▼

❈
❈❖

✄
✄✗

✂✂✍ ❇
❇
❇
❇◆

✂
✂
✂
✂✌

SEND2

REC2

OP2
❤

❤

❤s

❇❇▼

❈
❈❖

✄
✄✗

✂✂✍ ❇
❇
❇
❇◆

✂
✂
✂
✂✌

SENDk

RECk

OPk
❤

❤

❤s

❇❇▼

❈
❈❖

✄
✄✗

✂✂✍ ❇
❇
❇
❇◆

✂
✂
✂
✂✌

❤s

❅
❅
❅
❅❅❘

■
❤

�
�

�
��✠

✑
✑

✑
✑

✑
✑✑✰ ❤

◗
◗
◗
◗
◗
◗◗s

❅
❅
❅
❅❅❘

❤

�
�

�
��✠

✑✑✰
❤

◗
◗
◗
◗
◗
◗◗s

❅❅❘

. . . ❤

✑
✑

✑
✑

✑
✑✑✰

��✠

❤
◗◗s

❅
❅
❅
❅❅❘

❤s

�
�

�
��✠

✒

Figure 7: Petri Net Representation of the Partitioned Convolution Algorithm

In doing so, Petri net analysis methods can be applied. The thicker lines in Figure 7 form a place

invariant over the buffers of two neighbouring nodes. The number of tokens on all these conditions
remains constantly 2 under each reachable marking M of the system. Thus, in any system state
there will never be more than two values in any buffer, such that a buffer capacity of 2 is sufficient.
To guarantee correctness (each node operates always on the correct data) it is necessary that these
buffers are having FIFO property. We will show the realization of FIFO-buffers of capacity 2 between
two neighbouring nodes as a Petri net in Figure 8.

SENDi

RECi

OPi
❤

❤

❤s

❇❇▼

❈
❈❖

✄
✄✗

✂✂✍ ❇
❇
❇
❇◆

✂
✂
✂
✂✌

SENDi+ 1

RECi+ 1

OPi + 1
❤

❤

❤s

❇❇▼

❈
❈❖

✄
✄✗

✂✂✍ ❇
❇
❇
❇◆

✂
✂
✂
✂✌

❤

A1

❍❍❍❍❥
❍❍❍❍❥

❤s
A1

❅
❅

❅
❅❅■

✛

❤
A2

PPPPPPq
PPPPPPq❤

A2

s✛◗
◗

◗
◗

◗
◗◗❦

❤
B2

✏✏✏✏✏✏✮
✏✏✏✏✏✏✮ ❤

B2

s✲ ✑
✑
✑
✑
✑
✑✑✸

❤

B1

✟✟✟✟✙
✟✟✟✟✙

❤
B1
s

�
�
�
��✒

✲

Figure 8: FIFO Buffers with Capacity 2 between two Neighbouring Nodes i and i+ 1

The basic idea is to model buffers consisting of two conditions. If all the buffer conditions are
complemented we can now find place invariants for all conditions p in the channel, e.g. A1 and its
complement A1, such that M(p) ≤ 1 which implies FIFO property.

To show the correctness of the system with buffers of capacity 2 we are going to have a look at the
runs of the system, which are acyclic Petri nets: conditions and events are partially ordered. Here,
we will determine on which value — received from neighbour i+ 1 — the node i is operating on in
superstep t.

locali
B2
B2
B1
B1
A1
A1
A2
A2
locali+ 1

❡

❡

❡

❡

❡

❡

✲

✂
✂
✂
✂
✂
✂
✂✍

❇
❇
❇
❇
❇
❇
❇◆✲

SEND

SEND

✲
❆
❆
❆
❆
❆
❆
❆
❆❯

✁
✁
✁
✁
✁
✁
✁
✁✕

✲

❡

❡

❡

❡

✲
✕

❯✲

✕

❯

❡

❡

✲
✕

❯✲

REC

REC

✲

✲

❡

❡

✲

✲

OP

OP

✲

❳❳❳❳❳❳❳❳❳❳❳❳③

PPPPPPPPPq

✏✏✏✏✏✏✏✏✏✶✘✘✘✘✘✘✘✘✘✘✘✘✿

✲

❡

❡

❡

❡

❡

❡

Figure 9: Run of the System Depicted in Figure 8

Figure 9 shows the unique minimal run of the system in which each node computes at least one
value, i.e. an event “op” occurs at least once in both nodes. This run ends in the state it started
with. The one and only maximal run of the system is never-ending. This means that no deadlock
will occur. Within clockcycle t node i computes a new value including the value of the neighbouring
node i+ 1 from clockcycle t− 1. The following relations between events hold:

1. OPt−1
i+1 < SENDt

i+1 due to the cyclical order of local events

2. SENDt
i+1 < RECt

i due to the causality in the run of the system

3. RECt
i < OPt

i due to the order of local events within each superstep

4. OPt
i and OPt

i+1 may occur concurrently, as they are not causally ordered within the run of the
system

It follows from 1 – 3 that OPt−1
i+1 < OPt

i and from 4 that OPt
i+1 6< OPt

i, guaranteeing that node i

computes its tth value by using the t− 1st value of neighbour i+ 1.

This desynchronizing step is optimal with respect to efficiency because we do not need any addi-
tional synchronizing mechanisms. The clock pulse is simulated solely by the values that have to be
exchanged. This idea can be extended to systolic algorithms with cyclic access to variables: The

maximal amount of values in a buffer equals the length of the shortest circle the buffer is located
at. Being aware of that, the implementation of big enough buffers allows the usage of cheaper plain
system calls for message passing. In the case of an implementation with one incoming buffer per
node, messages from two senders will be merged which requires indication of the values by their
senders’ names for correct identification.

Warshall

If we consider the Warshall algorithm, access to variables is weaker synchronized. Although the
communication behaviour changes dynamically in time, it is nevertheless predictable, i.e. does not
depend on the input data. So, messages can be sent by nodes without receiving any requests. But
because a node can receive subsequent messages from several other nodes, FIFO channels are not
sufficient to guarantee the correct order of incoming messages. Therefore, each submitted value needs
indication of the step it is computed at. For this class of algorithm it is sufficient to enhance the
basic model for a superstep of a node at the ADMM level in Figure 7 as follows:

SEND REC

OP

❤

❤❤s
❅❅❘
✘✘✘✘✘✘✘✾❳❳❳❳❳❳❳②

��✒
✲ ✲

clock control
❤ ❤s ❤

❅❅■
✏✏✏✏✏✮ PPPPP✐ ��✠

Figure 10: Petri Net that Models the Node Behaviour Including a Clock-Control

In the case of tile partitioning, each node has two communication partners: one within its line and
one within its column. Both partners may change in any superstep. Furthermore each of these two
communication events can be either a send or a receive event depending on the superstep number,
but never both. Therefore, the clock control is realized as a counter (a natural number, initially 1) in
Figure 11. Send and receive transitions are refined by predicates. Thus, a transition is only activated
if the corresponding predicate is true, i.e. the counter lies inside a previously defined interval.
Depending on x the conflict between the four communication patterns is solved deterministically, i.e.
for any x exactly one of the four predicates is evaluated to true.

Each time a section l of a line (or a section c of column) is sent, it is indicated by the corresponding
superstep number x. The message l (or c) is broadcasted in the column (or line, respectively) of
the sender. Indication guarantees that the receiver will operate on these values in the correct order.
After each communication event the local counter is increased by 1.
Analogously to Figure 9 the runs of the system can be analysed to show that the clock pulse is
simulated correctly.
The capacity of the buffers has to be n − n

k
in the worst case, because during performance of the

algorithm values are sent only from upper to lower tiles and from left to right, respectively. In
particular there is no cycle synchronizing the algorithm by itself. Summarizing, again cheaper plain
system calls for message passing can be used, but only if buffers with their size depending on n

are implemented. In this case, indication of submitted values with the step number is sufficient for
correct desynchronization.
Worst case buffer size needed for plain system calls can be decreased for the price of additional
synchronization. After computation of some values, bottom and right nodes may send reply messages
to upper and left nodes in the matrix, thereby constructing cycles of the desired length. So, buffer
size and explicit synchronization messages can be regarded as two parameters which can be tuned
reciprocally to yield an optimal result for the implementation.

OUT(x) ∧ OUT‘(x)

OUT(x) ∧ IN‘(x)

IN(x) ∧ OUT‘(x)

IN(x) ∧ IN‘(x)

SEND REC

OP

✲X ❤ ✲X

✲X ❤ ✲X

✲X ❤ ✲X

✲X ❤ ✲X

✟✟✟✟✙ �
�

��✠

✡
✡

✡
✡

✡✡✢

✁
✁

✁
✁

✁
✁

✁✁☛X

X

X

X

❤1 X + 1

❍❍❍❍❨

❅
❅

❅❅■

❏
❏

❏
❏

❏❏❪

❆
❆

❆
❆

❆
❆

❆❆❑

❤s�
�
�
�
��✒

✑
✑
✑
✑
✑✑✸

✏✏✏✏✏✏✶

✲

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳②

❤buffer out

❍❍❍❍❨

❅
❅

❅❅■

❏
❏

❏
❏

❏❏❪(c, x) + (l, x)
(c, x)
(l, x)

❤

❅
❅
❅
❅
❅❅❘

◗
◗
◗
◗
◗◗s

PPPPPPq✲✏✏✏✏✏✏✏✏✏✏✏✏✮

❤buffer in
�

�
��✠

✡
✡

✡
✡

✡✡✢

✁
✁

✁
✁

✁
✁

✁✁☛

(l, x)
(c, x)
(c, x) + (l, x)

x: representing the superstep counter
c: representing the values of the column
l: representing the values of the line

For a node Qrs it holds that:
• OUT(x) = true ⇔ x ∈ {(r − 1) · n

k
+ 1 . . . r · n

k
}

• OUT′(x) = true ⇔ x ∈ {(s− 1) · n
k
+ 1 . . . s · n

k
}

• IN(x) = true ⇔ OUT(x) = false
• IN′(x) = true ⇔ OUT′(x) = false

Figure 11: Communication of the Warshall Algorithm Partitioned by the Tile

3 Discussion

Our approach simplifies the design of programs for highly parallel, asynchronous computers by pro-
viding a synchronous view of the system. This is achieved by separating the relevant problems in
two steps — partitioning and desynchronizing. This procedure is only applicable to a certain class
of algorithms. Hence, a classification of algorithms is indispensable. At present parallel complexity
theory does not meet this requirement satisfactorily i.e. the following question is not answered ad-
equately: Is there an efficient parallel solution for a given problem w.r.t. to the restrictions of real
parallel computers? Within the scope of SFB 342 which funded this work the subproject A4 tries to
develop a new complexity theory. This new theory should take into consideration the desynchronizing
types (e.g. periodic, cyclic, symmetric, etc.) and especially characterize data–independent commu-
nications. Based on this model the construction of a stable notion of reducibility which preserves the
characteristic features mentioned above is a primary aim. In a later stage, these reductions could
eventually provide transformations on the synchronous level useful in the partitioning stage.

It is not yet well understood up to which extent partitioning can be automatically supported. Obvious
standard problem structures could lead to a fully automated partitioning. If this is not the case
there should be at least some assessment information provided by the system evaluating partitioning
proposals of the user (e.g. table 1). These questions will determine our future work.

References

[Coo85] Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Information and

Control, 64:2–22, 1985.

[Fea88] G. Fox et al. Solving problems on concurrent processors, Vol. I: General Techniques and

Regular Problems. Prentice Hall, 1988.

[Rei85] Wolfgang Reisig. Petri Nets, volume 4 of EATCS Monographs on Theoretical Computer

Science. Springer, 1985.

[Ros90] Peter Rossmanith. The owner concept for PRAMs. Technical Report TUM-I9028, SFB-
Bericht Nr.342/15/90 A, TU München, 8 1990. To appear in STACS 91.

[Val90] Leslie G. Valiant. A bridging model for parallel computation. Communications of the ACM,
33:103–111, 8 1990.

[Vit86] Paul M.B. Vitányi. Nonsequential computation and laws of nature. In VLSI Algorithms

and Architectures, pages 108–120, 7 1986.

