
On the Complexity of Iterated InsertionsMarkus Holzer and Klaus-J�orn LangeWilhelm-Schickard-Institut f�ur Informatik, Universit�at T�ubingenSand 13, D-72076 T�ubingen, Germanyemail: fholzer,langeg@informatik.uni-tuebingen.deAbstract. We investigate complexities of insertion operations on for-mal languages relatively to complexity classes. In this way, we introduceoperations closely related to LOG(CFL) and NP . Our results relativizeand give new characterizations of the ways to relativize nondeterministicspace.1 IntroductionThere are many close connections between the theory of formal languages andstructural complexity theory [14, 17]. While it is obvious to express the complex-ity of classes of formal languages in terms of completeness results, it is anotherquestion to classify the complexity of operations on formal languages [4, 11, 13].Our approach is to determine relatively to a base complexity class A. In this way,we consider two constructions: on the one hand we analyze the complexity of asingle application of an operator op to A. This leads to the class APPL(A; op)of all languages reducible to op(L) for some L 2 A. The drawback of this classis that it is not necessarily closed under op, even if op is idempotent. Therefore,we consider also the class HULL(A; op) which is the smallest class containing Aand closed under op as well as downward under logspace many-one reducibility.In this notation, for example the relation between the Kleene star (STAR),nonerasing homomorphism (HOM ) and the complexity classes NSpace(logn),NP , and 1DSpace(logn) (the class of languages recognizable by logarithmicallyspace bounded deterministic Turing machines with one-way input tape) are:NSpace(logn) = APPL(1DSpace(logn); STAR)= HULL(1DSpace (logn); STAR);whereas for nonerasing homomorphisms we �ndNSpace(logn) = APPL(1DSpace(logn);HOM ) andNP = HULL(1DSpace (logn);HOM ):There are many more relations like this, nearly all pertaining to the classesNSpace(logn) and NP . We remark that LOG(CFL), the complexity class gen-erated by the context-free languages, has not been characterized in this way.One of the main results of this paper will be the construction of an operationon formal languages �lling this gap. The key observation to do this will be to



consider operations which are iterations of simpler operations. As an example,Kleene's star operation may be regarded as the iterated application of the oper-ation of concatenation. We will now replace concatenation by the more complexoperation of (monadic) insertion of languages. A similar approach was made in[6, 7, 10, 15] in terms of iterated substitution. The di�erence is that we here areinterested in complexity theoretical aspects.Since insertion is not associative there are several possibilities to iterate theoperation of insertion. One is to do it outside-in (OI), i.e., to insert atomic wordsinto composed ones, while inside-out (IO) iteration of insertion inserts composedwords into atomic ones. It will turn out that outside-in iterated insertion charac-terizes NP , while inside out iterated insertion characterizes NSpace(logn). Theanticipated operation characterizing LOG(CFL) is now obtained by iterating theoperation of binary insertion. Again the outside-in iteration of binary insertioncharacterizes NP , while the inside-out iteration now characterizes LOG(CFL).In particular we obtain the following equations:1. NSpace(logn) = APPL(1DSpace(logn); IOMON)= HULL(NSpace(logn); IOMON);2. LOG(CFL) = APPL(1DSpace (logn); IOBIN) = HULL(LOG(CFL); IOBIN),3. LOG(CFL) = APPL(1DSpace (logn); OI),4. NP = APPL(DSpace(logn);OI ) = HULL(NP ;OI ), and5. NP = HULL(1DSpace (logn);OI ).In a second part we show that all these relations relativize. It is interest-ing to see how the di�erent ways to iterate insertions characterize the di�erentways to equip space bounded complexity classes with oracles: the two mostimportant possibilities to relativize nondeterministic space are that of Ladnerand Lynch [12] and that of Ruzzo, Simon, and Tompa [18]. These two notionscarry over in a natural way to time and space bounded auxiliary pushdown au-tomata. It turns out that the outside-in iteration of insertion corresponds toLL-relativizations while inside-out iterations pertain to RST-relativizations.2 PreliminariesWe assume the reader to be familiar with the basics of complexity theory ascontained in [1, 9, 20]. In particular, we will deal with the well-known sequenceof complexity classes:1DSpace (logn) � DSpace(logn) � NSpace(logn) � P � NP :Here 1DSpace(logn), DSpace(logn), NSpace(logn), P , and NP , respectively,denote the set of all problems recognizable in one-way logarithmic space, loga-rithmic space, nondeterministic logarithmic space, polynomial time, and nonde-terministic polynomial time, respectively.Completeness and hardness results are always meant with respect to deter-ministic logspace many-one reducibilities, unless otherwise stated. L �logm M is



used to denote the fact that L is reducible to M . For a class A let LOG(A) :=fL j 9M2A : L �logm M g. In addition, we use � to denote the empty word, jwjfor the length of a word w, and wR for the mirror image of w.In the following, we will often make use of the concept of auxiliary pushdownautomaton [2, 9]. Let NauxPDA-TimeSpace(t(n); s(n)) denote the set of all prob-lems accepted by O(t(n)) time- and O(s(n)) space-bounded nondeterministicpushdown automata. The importance of this automaton model is demonstratedby its ability to represent the classesP = NauxPDA-TimeSpace(2O(n); logn) [2] andLOG(CFL) = NauxPDA-TimeSpace(nO(1); logn) [19].Throughout this paper, we will consider complexities of operations on formallanguages. In this context, we introduce a \measure" for the complexity of anoperation relative to a complexity class.De�nition1. Let op be an operation on formal languages and A some class,then op(A) := f op(L) j L 2 A g.We de�ne APPL(A; op) to be the logspace many-one closure of op(A), i.e.,APPL(A; op) is the set LOG(op(A)). For iterating the APPL-operation on aclass A of languages we de�ne APPL0(A; op) := A and APPLi+1(A; op) :=APPL(APPLi(A; op); op).Finally, let HULL(A; op) be the smallest complexity class closed under opthat contains A. In other words HULL(A; op) := Si�0APPLi(A; op).Obviously APPL(A; op) � HULL(A; op) and sometimes we refer to A inAPPL(A; op) or HULL(A; op) as the base class.3 Iterated InsertionsWe show that several nondeterministic complexity classes can be characterizedin terms of formal language theoretical operations. One of the main results ofthis section will be the characterization of LOG(CFL). The formal languageoperations which will be studied in this section are natural generalizations ofthe concatenation operation, the so called insertion operations. Thus we de�ne:De�nition2. Let L1 and L2 be arbitrary languages. The monadic insertionof L1 into L2 is de�ned as L1 ! L2 := fw1vw2 j v 2 L1 and w1w2 2 L2 g.In contrast to operations like concatenation or shu�e, the above operation isnot associative. Hence, there are several ways to iterate it. The �rst possibilityis to insert composed words into \atomic words," i.e., to make the iteration inan inside-out manner. Thus, for monadic insertion we de�neInside-Out monadic insertion1. Let IOMON(L; 0) := f�g and IOMON(L; (i + 1)) := IOMON(L; i)! L.2. Finally set IOMON(L) := Si�0 IOMON(L; i).



The other possibility to iterate the insertion process is in a so called outside-inmanner, i.e., to insert \atomic words" into composed ones. Thus, for the monadicinsertion we de�ne:Outside-in monadic insertion1. Set OIMON(L; 0) := f�g and OIMON(L; (i + 1)) := L! OIMON(L; i).2. Finally set OIMON(L) := Si�0OIMON(L; i).Example 1. Let F be the �nite set f()g. Then IOMON(F ) is a linear languagegenerated by the grammar G = (fSg; f(; )g; P; S) with the productions P =fS ! �; S ! (S); S ! S(); S ! ()S; S ! ()g. On the other hand one readilyveri�es that OIMON(F ) equals to the Dyck set D1.In next subsections, we will see that the complexity of these two iteratedmonadic insertions lead not to the class LOG(CFL), but again to NSpace(logn)and NP , only. Thus, in order to �nd a complete operation for LOG(CFL) wehave to de�ne a more \complicated" version of insertion.De�nition3. Let L1, L2, and L3 be arbitrary languages. The binary insertionof L1 and L2 into L3 is de�ned as(L1; L2)! L3 := fw1uw2vw3 j u 2 L1, v 2 L2, and w1w2w3 2 L3 g:Again, we have to possibilities to iterate the insertion process:Inside-Out binary insertion1. Set IOBIN(L; 0) := f�g, IOBIN(L; 1) := L, andIOBIN(L; (i + 1)) := S0�j�i�IOBIN(L; j); IOBIN(L; (i � j))�! L.2. IOBIN(L) := Si�0 IOBIN(L; i).Outside-In binary insertion1. Let OIBIN(L; 0) := f�g, IOBIN(L; 1) := L, andIOBIN(L; (i + 1)) :=S0�j�1�OIBIN(L; j);OIBIN(L; (1� j))�! OIBIN(L; i).2. OIBIN(L) := Si�0OIBIN(L; i).For the outside-in binary insertion OIBIN(L) one shows that this insertionprocess coincides with the outside-in monadic one. Thus, we have:Lemma4. OIMON(L) = OIBIN(L) for arbitrary language L.Because of this lemma, we deal only with one outside-in operation in thesequel, and de�ne OI (L) := OIMON(L) for an arbitrary language L. Let us givea further example.Example 2. Let F be the set of the previous example. By Lemma 4 and thede�nition of the OI -operation we have OI (F ) = D1 and an easy induction onthe iteration process shows that IOBIN(F ) = D1, too.



3.1 Closure under iterated insertionIn this subsection, we show that several complexity classes are closed underiterated insertion. First, we consider inside-out iterated monadic and binaryinsertion. In both cases, the main idea for an algorithm to check IOMON(L) orIOBIN(L) is the same. The machine that checks IOMON(L) membership worksas follows: on input w it guesses a decomposition w = w1uw2, checks whetherw1w2 2 L, and recursively veri�es that v belongs to IOMON(L). Then followingproposition is easy to see:Proposition5. If s(n) � logn, then IOMON(NSpace(s(n))) � NSpace(s(n)).utIn case of binary inside-out iterated insertion we do similarly, but now usingan auxiliary pushdown automaton. On input w the machine guesses a decompo-sition w1uw2vw3, checks whether w1w2w3 2 L, and recursively veri�es whetherboth words u and v belong to IOBIN(L). To do so the machine stores the be-gin and end of the subwords u and v on its pushdown. If the nondeterministicauxiliary pushdown automaton that accepts L is O(t(n))-time and O(s(n)) spacebounded, then the machine that checks IOBIN(L) membership is O(n�t(n))-timeand O(s(n)) space bounded.Theorem6. Let s(n) � logn and t(n) � nO(1). If L is a member of theclass NauxPDA-TimeSpace(t(n); s(n)), then the language IOBIN(L) belongs toNauxPDA-TimeSpace(n � t(n); s(n)). utObserve that with a little bit more advanced algorithm we can even checkOI (L) membership inNauxPDA-TimeSpace(2O(s(n)); s(n)) ifL 2 1DSpace (s(n)).The only modi�cation in the construction is, that the automaton which ac-cepts OIMON(L), guesses a decomposition u0w1u1w2u2 : : :ut�1wtut+1 while theinput head scans the input from left to right, and checks by simulating the one-way nondeterministicO(s(n)) space bounded Turingmachine whether w1w2 : : :wtbelongs to L. Then the machine recursively veri�es|as described above|whetherthe words ui, for 0 � i � t+ 1, belong to OIMON(L).As an immediate consequence of the characterization of LOG(CFL) and Pin terms of nondeterministic auxiliary pushdown automata [2, 19] we get theclosure of both classes under inside-out iterated binary insertion.Corollary7. IOBIN(LOG(CFL)) � LOG(CFL) and IOBIN(P) � P. utAt this point we want to mention two things: (1) The construction presentedto check IOBIN-membership can be generalized to IO-membership for insertionswhere the possible insertion points into a word is constantly bounded. Hence,e.g., LOG(CFL) is also closed under iterated inside-out ternary insertion. (2)Moreover, we want to point out that DSpace(log2 n) is closed under both typesof inside-out iterated insertion.Finally, we mention the closure of NP under OI -operation. This proof isstraight-forward and is left to the reader.Proposition8. OI (NP) � NP. ut



3.2 Hardness of iterated insertionFor technical reasons we introduce a notation, the so-called insertion tree, whichis helpful in analyzing inside-out iterated monadic and binary insertion.De�nition9. An insertion tree over a terminal alphabet T is a construct I =(V; h; x0; label; T ), where1. (V; h; x0) is a tree rooted in x0 2 V , i.e., h : V ! V points every node toits father, h(x0) = x0 and for all x 2 V there exists an n � 0 such thathn(x) = x0.2. label : V ! T �(V T �)� is the labelling function.For an insertion tree I we de�ne the functions1. word : V ! T �, by word(x) := w0w1 : : :wt, if label(x) = w0x1w1 : : :wt�1xtwt,2. yield : V ! T� inductively by yield(x) = w0yield(x1)w1 : : :wt�1yield(xt)wt,if label(x) = w0x1w1 : : :wt�1xtwt.An insertion tree I is called (1) monadic if the mapping label only takesimages in T �[T �V T � and (2) binary if it only takes images in T �[T �V T �V T �.Obviously, for any language we have:Lemma10. Let L � T � and w 2 T �. The word w belongs to IOMON(L)(IOBIN(L), OI (L), respectively) if and only if there exists a monadic (binary,arbitrary, respectively) insertion tree I = (V; h; x0; label) such that yield (x0) = wand for all x 2 V we have word(x) 2 L [ f�g. utHardness of the IOMON-operation The following theorem shows close rela-tion of IOMON and NSpace(logn). We state it without proof, since it is very sim-ilar to that on showing the analogous results of the Kleene star operation [4, 16].Theorem11. There is a language LM in 1DSpace(logn) such that IOMON(LM )is NSpace(logn)-complete. utEssentially the strings in LM are of the form bn$(a�$b�$)�#($a�$b�)�$an.The Kleene closure of this language is NSpace(logn)-complete. But the powerof the IOMON-operation makes it necessary to extend the construction in orderto avoid \wrong" insertion. The details are similar to, although less extensivethan, those provided in Theorem 14. Using Proposition 5 we get:Corollary 12. NSpace(logn) = APPL(1DSpace(logn); IOMON)= HULL(NSpace(logn); IOMON): utThis implies the following equalities: APPL(1DSpace (logn); IOMON) =APPL(DSpace(logn); IOMON) = HULL(1DSpace (logn); IOMON). Later wewill see that the OI -operation is much more sensitive with respect to this di�er-ence.



Hardness of the IOBIN-operation Before we come to one of the main resultsof this paper establishing a close link between iterated binary insertion andpolynomially time bounded auxiliary pushdown automata we need the followinglemma.Lemma13. There exists a LOG(CFL)-complete context-free language which isgenerated by a context-free grammar G = (N; T; P; S), with nonterminals N ,terminals T , axiom S, and production set P � N � (T [ TN2).Observe, that context-free grammars which satisfy P � N � (T [ TN2) canonly generate words of odd length. Hence such a normal-form for context-freegrammars does not exist in general.Proof. Without loss of generality one can assume that the LOG(CFL)-completecontext-free language L is generated by a grammar G = (N; T; P; S) being in2-standard Greibach normal-form, i.e.,P � N � �(T [ T (N n fSg) [ T (N n fSg)2�:We will use new symbols #, X with subscripts which are not contained in Nand T . We �rst modify the production set P in the following way:P1 := fA! aa j A! a 2 P g [ fA! aaB j A! aB 2 P g [fA! aaBC j A! aBC 2 P g:Observe that the language G1 = (N; T; P1; S) is LOG(CFL)-complete, too. Thenlet us construct a grammar G2 with L(G2) = L(G1)f#g. Every word that be-longs to L(G1)f#g has odd length. SetP2 := fXa ! a j a 2 T g [fXAb ! aXaXb; XbA ! bXaXa; XbDA ! bXDaXa j A! aa 2 P1 g [fXAb ! aXaXBb; XbA ! bXaXaB ; XbDA ! bXDaXaB jA! aaB 2 P1 g [fXAb ! aXaBXCb; XbA ! bXaXaBC ; XbDA ! bXDaXaBC jA! aaBC 2 P1 gand letG2 = (N[fXS#g[fXa; XaB; XaBC j a 2 T and B;C 2 N g; T[f#g; P2; XS#):Then P2 has the expected normal-form, and obviously L(G2) is LOG(CFL)-complete. utTheorem14. There is a set LB in 1DSpace(logn) such that both OIMON(LB)and IOBIN(LB) are LOG(CFL)-complete.



Proof. We start with a LOG(CFL)-complete language L1 which is generated bya context-free grammarG = (N; T; P; S) satisfying the requirement of the abovelemma.Observe that we do not require L1 to be a hardest language in the senseof Greibach [6], but only to be LOG(CFL)-complete. Our construction closelyfollows that one of Greibach although we have to be more careful due to thenonsequential nature of iterated insertion (compared to inverse homomorphism).In the following we will need new symbols $, #, 0, 2, and F contained inneither N nor T . In addition, let �N := f �A j A 2 N [fFg g be a disjoint copy ofN [ fFg.For an arbitrary a 2 T consider all productions p1; : : : ; pk such that pi 2N � (a [ aN2) for each 1 � i � k. For each i � 0 and each 1 � j � k de�nefai (j) := � �A2CB$i if pj equals A! aBC1�A0$i if pj equals A! aand f 0ai (j) := �� if pj equals A! aBC�A2FF$i if pj equals A! a.Further on we setgai := $ifai (1)fai (2) : : : fai (k) and g0ai := $if 0ai (1)f 0ai (2) : : : f 0ai (k):For a word w = a1 : : :an 2 T � with ai 2 T we de�neh(a1 : : :an) := S#ga11 #ga22 # : : :#gan�1n�1 #g0ann #$n+1 �F0$n+1#$n+2 �F0:Obviously, the mapping is computable in deterministic logarithmic space.Now we de�ne the language LB . First letR := f �A0 j A 2 N [ fFg g[ f �A2BC j A 2 N and B;C 2 N [ fFggand for i � 0 set Ri := $i(R$i)�. Finally, de�neLB := fA�#� �Ac j 9i � 1 : � 2 Ri�1; � 2 Ri;A 2 N [ fFg; c 2 f0; 2g g:Obviously, LB is a member of 1DSpace(logn).The idea underlying this construction is to translate a derivation tree of Ginto an insertion tree as follows: if A is a nonterminal labelling the root of asubderivation tree D and B and C are the root-labels of the left and right sub-trees DL and DR, there will be three elements of LB , namely wA := A�#� �A2,wB := B�0#�0 �Bc0, and wC := C�00#�00 �Cc00. The corresponding part of the in-sertion tree will consist of wA on top, wC inserted at the very right end of wA,and wC inserted after the �rst symbol of wC, which is the symbol C. That isleft brothers become the left sons of the right brothers. This is illustrated inFigure 1.0 Observe the inversion of B and C.
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B C �00#�00 �Cc00�0#�0 �Bc0Fig. 1. The conversion of a derivation tree into an insertion tree.Now we have to prove w 2 L1 if and only if h(w) 2 OI (LB) if and only ifh(w) 2 IOBIN(LB). It is easy to show that w 2 L1 implies h(w) 2 IOBIN(LB)and hence h(w) 2 OI (LB). The converse makes use of the many additionalfeatures which we added to Greibach's construction [6].Let us assume h(w) 2 OI (LB). Then there exists an insertion tree I =(V; h; x0; label) with yield(x0) = h(w) and word(x) 2 LB for all x 2 V . Weproceed in several stages:Step 1 Let x 2 V and label(x) = w0x1w1 : : :xtwt. Due to the increasing lengthof the $i-blocks it is easy to see that for a typical element A�#� �Ac 2 LBthere are only three places to perform insertion: before A, behind A, or afterthe c. Otherwise the resulting word could no longer be a subword of h(w).Step 2 We can rearrange I in the following way: First, I no longer has nodesinserting the empty word, and second whenever two nodes in I are directlyneighboured, i.e., the concatenation of the yields is a subword of h(w), theright one is inserted as a son at the very right end of the left one. The wayto rearrange I is indicated in the Figures 2 and 3.Step 3 After the rearrangement, each node x of I is either a leaf or has at mosttwo sons, one inserted at the right end of word(x) and one after the �rstsymbol of word(x). Let x be in V and word(x) = A�#� �Ac 2 L0. Then weset nonterminal (x) := A and index (x) := i if � 2 Ri (and � 2 Ri�1). It isnot hard to work out that nonterminal(x0) = S.Step 4 The structure of the mapping h enforces the following claim:Claim1. If x 2 V with word(x) = A�#� �Ac possesses a right son y, in-serted after the symbol c, then (1) c = 2 and (2) y possesses a left son zinserted after the �rst symbol of word(y).
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JJJJJJtree B... �#� �Actree A A @@��Fig. 2. First rearrangement of the insertion tree I.Proof. If word(y) = C�00#�00 �Cc00, then �AcC must be a subword of h(w),since otherwise nothing is inserted left of C. Hence c cannot be 0, but mustbe 2. But then we need a second nonterminal following the symbol 2. Thiscan be only provided by the insertion of a left son z after symbol c. utStep 5 Inductively we de�ne the mapping derive : V ! T � by derive(x) := ai,if x does not possess a right son in I. Here i := index (x). If i � n + 1,we set ai := �. If x possesses a right son y we know by the previous stepthat y in turn possesses a left son z. In this case we de�ne derive(x) :=aiderive(z)derive(y). The reader may verify that derive(x0) = w!Step 6 For each x 2 V with index (x) � n we have A)�G derive(x). In partic-ular S = nonterminal(x0))�G w, i.e., w 2 L1.Proof. If x has no right son, then word(x) = A�#� �A0 for some � 2 Ri�1,� 2 Ri, and i := index (x). Hence, $i �A0 is a subword of h(w) and gaii . Thisimplies that A! ai is in P . Hence A)1G a1 = derive(x).If x possesses a right son y with nonterminal(y) = C, then by Step 4 thenode y has a left son z with nonterminal(z) = B. Then we have that $i �A2CBis a subword of h(w) and hence of gaii . This impliesA! aiBC is in P . Hence,by induction A)1G aiBC )�G aiderive(z)derive(y) = derive(x). utUsing Corollary 7 we get:Corollary 15. 1. LOG(CFL) = APPL(1DSpace (logn); IOBIN)= HULL(LOG(CFL); IOBIN):2. LOG(CFL) = APPL(1DSpace (logn); OI). ut
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JJJJJJ ��@@�#� �Actree AA Fig. 3. Second rearrangement of the insertion tree I.Hardness of the OI -operation In this sub-subsection, we will exhibit somecrucial di�erences in the structural behaviour of OI compared with IOMONand IOBIN .Theorem16. NP = APPL(DSpace(logn);OI )= HULL(1DSpace(logn);OI ) = HULL(NP ;OI ):Proof. We �rst show the inclusion NP � APPL(DSpace(logn);OI ). Let L1 andL2 bet the sets:L1 := f $a1$$a2$$ : : :$$ak$#b# j a1; : : : ; ak; b are binary numberswith Pki=1 ai = bg andL2 := f $a$ j a is a binary number g:Now set LOI := L1[L2. Obviously, LOI belongs to DSpace(logn) and languageOI (LOI )\�($f0; 1g�$)�#f0; 1g�#� is the NP-complete subset-sum problem (see,e.g., [20]). Hence, OIMON(LOI) is NP-complete, too.The inclusion APPL(DSpace(logn);OI ) � HULL(1DSpace (logn);OI ) fol-lows since the former class is included in APPL2(1DSpace (logn);OI ). Finally,HULL(1DSpace (logn);OI ) � HULL(NP ;OI ) is trivial and to close the circle weuse Proposition 8 and the fact that NP is closed under deterministic logarithmicspace bounded reducibilities, which gives us HULL(NP ;OI ) � NP . utWe want to mention that the above given construction even works with an\unbounded" variant of insertion, i.e., the number of insertion points are notbounded any more. Moreover, if one modi�es set L2 to be f $a1$$a2$$ : : :$$ak$ j



a1; a2; : : : ; ak are binary numbers g, then one obtains subset-sum with the shu�eoperation (SHU ). Since NP is closed under shu�e it equals the complexity classAPPL(DSpace(logn); SHU ). This strengthens a result in [8].In the light of construction following Theorem 6 we should not hope to �nd alanguage L in 1DSpace(logn) with an NP-complete set OI (L), since this wouldimply LOG(CFL) = P = NP .This sensitivity of the OI -operation with respect to the used base classleads to surprising phenomena: OI compared to IOMON is idempotent, i.e.,OI (OI (L)) = OI (L) while in general IOMON(L) � IOMON(IOMON(L)) for alanguage L. But on the other hand, we have APPL(1DSpace (logn); IOMON) =APPL2(1DSpace (logn); IOMON) whileAPPL(1DSpace (logn);OI ) = LOG(CFL)seems to be di�erent from the class APPL2(1DSpace (logn);OI ) = NP .3.3 RelativizationsWe show that all the relations found in the previous section relativize. For spacebounded complexity classes, there are two main possibilities to relativize them,i.e., to equip space bounded machines with an oracle mechanism. In the approachof Ladner and Lynch [12], further called LL-relativization, the machine may useall of its power to generate oracle queries, while in the approach of Ruzzo, Si-mon, and Tompa [18], further called RST-relativization, the queries have to begenerated deterministically. As usual, the use of parentheses is reserved for theLL-mechanism, while the use of the RST-relativization is indicated by using an-gles. Hence, for an arbitrary oracle set A one gets, e.g., in case of nondeterminis-tic logspace bounded Turing machines the LL-relativized class NSpace(logn)(A)and the RST-relativized version NSpace(logn)hAi, respectively. Observe that incase of deterministic logspace bounded machines both relativizations coincide.In [13] it was shown that the relations1. NP = APPL(DSpace(logn);HOM ) = HULL(DSpace (logn);HOM ),2. NSpace(logn) = APPL(1DSpace(logn);HOM ),3. NP = HULL(1DSpace (logn);HOM ), and4. NSpace(logn) = APPL(DSpace(logn); STAR)= HULL(DSpace(logn); STAR)relativize, i.e, for an arbitrary oracle set A we have:1. NP (A) = APPL(DSpace(logn)(A);HOM ) = HULL(DSpace (logn)(A);HOM ),2. NSpace(logn)(A) = APPL(1DSpace(logn)(A);HOM ),3. NP (A) = HULL(1DSpace (logn)(A);HOM ), and4. NSpace(logn)hAi = APPL(DSpace(logn)(A); STAR)= HULL(DSpace (logn)(A); STAR):Observe that in the fourth relation the RST- and and in the second relation theLL-relativization is used.We will see this pattern again, when replacing nonerasing homomorphismby outside-in iterated insertion and the Kleene closure by inside-out iteratedinsertion. Before we can state our theorem, we need the following de�nition:



De�nition17. A doubly RST-restricted nondeterministic polynomially timebounded logspace auxiliary oracle pushdown automaton is a nondeterministicpolynomially time and logspace bounded pushdown automaton equipped withan oracle mechanism (tape, query- and answer states), which is not allowed touse nondeterminism or its pushdown store while writing on its oracle tape2.The class of languages reducible to an oracle set A via a doubly RST-restrictednondeterministic polynomially time bounded logspace augmented oracle push-down automaton is denoted by NauxPDA-TimeSpace(nO(1); logn)hAi.Theorem18. For an arbitrary oracle set A we have:1. NP (A) = HULL(1DSpace(logn)(A);OI ).2. NP (A) = APPL(DSpace(logn)(A);OI ) = HULL(DSpace (logn)(A);OI ).3. NSpace(logn)hAi = APPL(1DSpace (logn)(A); IOMON)= HULL(1DSpace(logn)(A); IOMON):4. NauxPDA-TimeSpace(nO(1); logn)hAi = APPL(1DSpace(logn)(A); IOBIN)= HULL(1DSpace (logn)(A); IOBIN):Idea of Proof. In the cases 1 till 3 it is possible to put oracle queries in thesets constructed in the Theorem 12 and 16, very similar to the methods usedin [13]. The idea to prove 4 is a bit more complicated since one has to deal withpushdown automata instead of grammars. That is, one has to combine the triple-construction with the inside-out iterated binary operation. ut4 ConclusionsWe investigated the computational power of operations on formal languageswith respect to simple complexity classes. We introduced two new operationswhich were closely related to LOG(CFL) and NP . We mention in passing thatsimilar results can be obtained when iterating the operation of deletion, de�nedin correspondence to that of insertion.There are several questions left open. An interesting aspect is the treatmentof abstract storage types. Most results concerning context-free languages andpushdown automata have been shown to remain valid if we replace in the au-tomaton the pushdown store by another arbitrary storage device. For languagesthis led to the notions of abstract families of automata or of automata withabstract storage [3, 5]. Essentially this led to the construction of permissible se-quences of basic instructions of a storage type. For instance, the Dyck sets arethe languages of correct computations of a pushdown store. In our frameworkthis leads to the task to construct to an abstract storage type X a characteristicoperation opX, which would play for X that role which inside-out iterated binaryinsertion plays for the context-free languages. The advantage of this approach isthat all results obtained in this way would relativize.2 This is equivalent to a logarithmic bound on the oracle queries, if the oracle hasaccess to the input word.
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