
StUSPACE(log n) ⊆ DSPACE(log2 n/ log log n)

Eric Allender⋆1 and Klaus-Jörn Lange⋆⋆2

1 Department of Computer Science
Rutgers University

P.O. Box 1179
Piscataway, NJ 08855-1179

USA
allender@cs.rutgers.edu

2 Wilhelm-Schickard Institut für Informatik
Universität Tübingen

Sand 13
D-72076 Tübingen

Germany
lange@informatik.uni-tuebingen.de

Abstract

We present a deterministic algorithm running in space O
(

log2 n/ log log n
)

solv-
ing the connectivity problem on strongly unambiguous graphs. In addition, we
present an O(log n) time-bounded algorithm for this problem running on a par-
allel pointer machine.

1 Introduction

One of the most central questions of complexity theory is to relate determin-
ism and nondeterminism. Our inability to exhibit the precise relationship be-
tween these two notions motivates the investigation of intermediate notions such
as symmetry or unambiguity. In this paper we concentrate on unambiguity in
space-bounded computation, and present improved deterministic and parallel
simulations.

Recently, surprising results have indicated that “symmetric” space bounded
computation is weaker than nondeterminism. In particular, symmetric logspace
has been shown to be contained in parity logspace [12], in SC 2 [18], and in
DSPACE(log1.5 n) [19]. None of these upper bounds is known to hold in the
nondeterministic case. If we consider these questions for space bounded unam-
biguous classes, we are confronted with the fact that there are several ways to
define notions of unambiguity that apparently do not coincide [3]. In this pa-
per we will concentrate on the notion of unambiguity (in the sense of unique
existence of computation paths), and of strong unambiguity (in the sense of

⋆ Supported in part by NSF grant CCR-9509603.
⋆⋆ Supported in part by NSF grant CCR-9509603.

uniqueness of computations between any pair of configurations). This yields the
two classes USPACE(log n) and StUSPACE(log n).

By definition, USPACE(log n) is a subclass of parity logspace; this is not
known to hold for NSPACE(log n) (although see [23]); there is no additional
nontrivial containment known for USPACE(log n). However, StUSPACE(log n)
is contained in SC 2, since strongly unambiguous logspace languages can be ac-
cepted by deterministic auxiliary pushdown automata in polynomial time [3,5].
Still, it was unknown whether there are o(log2 n) space algorithms for strongly
unambiguous logspace languages. We answer this question affirmatively by show-
ing that StUSPACE(log n) is contained in DSPACE(log2 n/ log log n).

Since StUSPACE(log n) is a subclass of DAuxPDA-TIME
(

nO(1)
)

we know
that there are logtime CROW-algorithms for the elements of StUSPACE(log n)
[7]. To give better relative upper bounds on the complexity of StUSPACE(log n)
it is interesting to consider intermediate classes between DSPACE(log n) and
DAuxPDA-TIME

(

nO(1)
)

.
Trying to find these classes with sequential models could be difficult, since

the usual restrictions of a pushdown store (e.g. the one-turn property, or using a
counter instead of a push down) all collapse to logspace. Here, parallel machine
models seem helpful, leading to two intermediate classes: the parallel pointer
machine [6,14] and the OROW-PRAM [20]. As a consequence of our main re-
sult we get OROW algorithms for the elements of StUSPACE(log n) taking time
O(log2 n/ log log n). We are also able to show that all sets in StUSPACE(log n)
are accepted in logarithmic time on a parallel pointer machine. This latter con-
tainment is somewhat surprising, because there are characterizations in terms
of parallel programs indicating that the class PPM-TIME(log n) is rather close
to DSPACE(log n) [16].

2 Preliminaries

We assume the reader to be familiar with the basic notions of complexity theory
(e.g. [10]). In addition, let DTISP(f, g) be the set of all languages accepted by
O(g) space-bounded Turing machines in time O(f). NTISP(f, g) denotes the
corresponding nondeterministic class.

We refer the reader to the survey article of Karp and Ramachandran [13] for
coverage of the many varieties of parallel random access machines and their rela-
tionship to sequential classes. Let us remark here, that we deal in this paper only
with algorithms and classes using PRAMs with a polynomial number of proces-
sors. The notion of a CROW-PRAM was introduced by Dymond and Ruzzo [7]
and provides the tightest possible connections to deterministic machines [9].

CROW-PRAMs need only logarithmic time to recognize any given language
in DSPACE(log n); There are two important ways to restrict CROW-PRAMs
and still maintain this property. One way is to restrict the concurrent read
access to the global memory, which leads to the OROW-PRAMs of Rossmanith
[20]. The other way is to restrict the arithmetical capabilities of the instruction
set leading to rCROW-PRAMs and to parallel pointer machines [6,14].

3 Unambiguity

A concept intermediate in power between determinism and nondeterminism is
Unambiguity. A nondeterministic machine is said to be unambiguous, if for ev-
ery input there exists at most one accepting computation. This leads to the
classes UP and USPACE(log n); we have P ⊆ UP ⊆ NP and DSPACE(log n) ⊆
USPACE(log n) ⊆ NSPACE(log n). The notion of ambiguity should be distin-
guished from that of Uniqueness, which uses the unique existence of an ac-
cepting path not as a restriction but as a tool. The resulting language classes
1NSPACE(log n) and 1NP consists of languages defined by machines that accept
their inputs if there is exactly one accepting path. Thus, the existence of two
or more accepting computations is not forbidden, but simply leads to rejection.
In the polynomial time case we have Co–NP ⊆ 1NP [2]. In the logspace case
inductive counting [11,22] shows 1NSPACE(log n) = NSPACE(log n).

A more restrictive form of unambiguity is Strong Unambiguity. A nonde-
terministic machine is said to be strongly unambiguous, if for every pair of
configurations there exits at most one computational path connecting these con-
figurations. An ordinary unambiguous machine makes this restriction only for
the initial and the accepting configurations of the machine.

While these two concepts coincide (yielding the class UP) in the case of time
bounded computations, this is not known to be true in the space bounded case.
There we end up with an additional class StUSPACE(log n) which is located
between DSPACE(log n) and USPACE(log n). Correspondingly, StUTISP(f, g)
is the class of all languages accepted by strongly unambiguous Turing machines
that are simultaneously O(g) space- and O(f) time-bounded. In fact, there are
several more versions of unambiguity that are not known to coincide (depending
for instance on whether or not there can be more than one accepting configura-
tion, see [3]), but in this work we consider only the two classes USPACE(log n)
and StUSPACE(log n). Our algorithms work for all unambiguous classes for
which the unfoldings of the configuration graphs to trees are of polynomial size.
This is the case for StUSPACE(log n) but not for USPACE(log n).

In the time-bounded setting, problems such as factoring and primality have
efficient unambiguous algorithms but are not known to possess deterministic
algorithms with a comparable running time [8]. Recently, Lange presented a
problem that is complete for a subclass of USPACE(log n) [15]; this is the first
explicit presentation of a problem in USPACE(log n) that is not known to be
in DSPACE(log n). (Completeness is a tool that is not often available in study-
ing unambiguous classes. None of UP, USPACE(log n), or StUSPACE(log n) is
known or believed to have complete sets.)

No problem is known to be in StUSPACE(log n) that is not known to be
in DSPACE(log n). Nonetheless, there is an important class of languages with
this property: The class of unambiguous linear languages, ULIN, is contained in
StUSPACE(log n) [3], and it is not known to be contained in DSPACE(log n).
To date, however, no explicit example of a language in ULIN has been exhibited
for which a DSPACE(log n) algorithm is not known. (Note in this regard that
the linear context free languages are NSPACE(log n)–complete.)

Logspace classes are closely connected to graph accessibility problems. These
connectivity problems in directed graphs, undirected graphs, and in trees are
complete for NSPACE(log n), SSPACE(log n), resp. DSPACE(log n). For un-
ambiguous classes the corresponding connectivity problems do not seem to be
complete. Nevertheless it is useful to explain these notions in terms of directed
graphs, since this will make the demonstration of our algorithms easier.

Let G = (V, E) be a directed acyclic graph. If G has n nodes we assume V
to be {1, 2, · · · , n} and we will be interested in the existence of a path leading
from 1 to n. For each pair of nodes (x, y) let d(x, y) be the length of the shortest
path between x and y. If x and y are not connected, d(x, y) is infinite; d(x, x) is
0. In the following we will work with complete binary graphs; that is, each node
of G is either a leaf with no outgoing edges, or an inner node with two outgoing
edges. We assume the leaves to be accepting or rejecting. This is determined by
a mapping φ : V −→ {+,−, i}, which takes the value + for accepting leaves, −
for rejecting leaves and i otherwise. In particular, 1 is an inner node (unless the
graph has only one vertex) and we assume n to be the only accepting leaf, since
we are only interested in paths from 1 to n. The two successors of an inner node
x will be denoted by L(x) and R(x).

Let PE := {(a0, a1)(a1, a2) · · · (ak−1, ak)|k ≥ 1, (ai−1, ai) ∈ E} be the set of
all paths in G. We define a mapping C : PE −→ V × V by mapping a path
leading from node x to node y to the pair (x, y), i.e.: we set

C((a0, a1)(a1, a2) · · · (ak−1, ak)) := (a0, ak).

For x ∈ V let T (x) :=
{

y ∈ V |C−1((x, y)) 6= ∅
}

∪ {x} be the set of all nodes
reachable from x.

G is called unambiguous if there is at most one path from 1 to n, i.e.: if
∣

∣C−1((1, n))
∣

∣ ≤ 1. G is called strongly unambiguous or a Mangrove if for any
pair (x, y) of nodes there is at most one path leading from x to y, i.e.: if
∀x,y∈V

∣

∣C−1((x, y))
∣

∣ ≤ 1. Although a mangrove does not need to be a tree,
for each x the subgraph of G induced by T (x) is indeed a tree and the same is
true for the set of all nodes from which x can be reached.

The following three examples show different version of unambiguous graphs.
The first one is a very simple mangrove with a positive result since there is a
path from node 1 to node 5. The second one is also a mangrove, but a negative
one, since there is no path from 1 to 8. The third graph is unambiguous and
positive, since there is exactly one path from 1 to 6, but it is not a mangrove,
since there are two different paths from node 1 to node 5.

4

1

3

5

2

�
�✠

❅
❅❘

❅
❅❘

�
�✠

2

5

1

4 6

3

�
�✠

❅
❅❘

❅
❅❘

❅
❅❘

�
�✠

�
�✠

3

6

1

7

4

2

5

8

�
�✠

❅
❅❘

�
�✠

❅
❅❘

❍❍❍❍❍❥❄ ❄

✟✟✟✟✟✙

Typical examples of mangroves are butterfly graphs or the Reinhardt Graphs

Rn := (V r
n , Er

n) with V r
n := {1, 2, · · · , n}2 and Er

n is {(〈i, j〉, 〈i, j + 1〉)|1 ≤ i ≤

n, 1 ≤ j < n} ∪ {(〈i, j〉, 〈i + j mod n, n〉)|1 ≤ i ≤ n, 1 ≤ j < n}. (Observe that
the Reinhardt Graph is not a complete binary graph.)

By definition a Turing machine is unambiguous if for each input word the
reachability graph of its configurations is unambiguous. It is strongly unambigu-
ous if for every input this graph forms a mangrove.

4 Contracting Mangroves

The class StUSPACE(log n) has been shown to be contained in DAuxPDA-

TIME(pol) by unfolding the reachability graph of a mangrove to a tree of poly-
nomial size [3]. This tree can be searched with the help of a push-down store
in polynomial time. The DAuxPDA-TIME

(

nO(1)
)

-completeness of DCFL[21] to-
gether with the algorithm of Cook for deterministic context free languages [5]
implies StUSPACE(log n) ⊆ SC 2. Elements of Cook’s algorithm were later used
by Dymond and Ruzzo [7] and independently by Monien et al [17] to show
DCFL ⊆ CROW-TIME(log n) (see also [9]). As a consequence, the elements of
StUSPACE(log n) possess logtime algorithms running on a CROW–PRAM. But
these algorithms for mangroves, generated by composing the constructions in
[3] with those of [7,9,17], are rather complicated. Below, we give a very simple
logtime algorithm that runs on a parallel pointer machine (which is a restricted
CROW-PRAM).

Theorem 1.

StUSPACE(log n) ⊆ PPM-TIME(log n)

Proof: We first describe the parallel algorithm and then indicate how to
run it on a parallel pointer machine. Let A be a strongly unambiguous logspace
machine and G = (V, φ, L, R) be its configuration mangrove induced by some
input w of size n. For each x ∈ V the tree T (x) is of polynomial size in n. What
we would like to do on each T (x) is pointer jumping. Unfortunately its pointers
are directed towards the leaves instead of towards the root. The alternative is
to perform the shunt operation (see e.g. [13]). This would need backpointers
directed towards the root, which are usually provided by establishing an Euler
tour through a tree. This is also not possible in a mangrove. The simple way
out of this is to perform the shunt operation not by the parent node of a leaf
but by its grandparent node, in parallel in each tree. Of course, these opera-
tions destroy any tree structure unless they are synchronized. But obviously the
property of being a mangrove is invariant under the parallel application of shunt
operations. Hence there is no need to do some sophisticated arrangement of the
working processors as in [1,4]. (It should be remarked that the shunt operation
preserves the outdegrees of the nodes to be either zero or two. This is not true
for indegrees.) This is explained in more detail below.

For each x ∈ V that is not a leaf, i.e. φ(x) = i, we first check whether one of
its children is an accepting leaf, in this case we set φ(x) := +. If both children
are rejecting we set φ(x) := −. Otherwise, one of the children has to be an
inner node. If φ(L(x)) = i we check if the left grandson via the left subtree is

a rejecting leaf. In that case we set L(x) := R(L(x)). If this was not the case
we see whether the right grandson is a rejecting leaf which would lead to the
assignment L(x) := L(L(x)). This is then repeated for the right son of x. After
performing this parallel transformation O(log n) times, there is no inner node
left; for each x ∈ V we have either φ(x) = + or φ(x) = −. The existence of an
accepting path is then equivalent to φ(1) = +.

Formally, the algorithm is expressed by the following statements:

for j = 1, 2, · · · , O(log n) do

for all x ∈ V do in parallel

if φ(x) = i then

if φ(L(x)) = + or φ(R(x)) = + then φ(x) := +;

if φ(L(x)) = − and φ(R(x)) = − then φ(x) := −;

if φ(L(x)) = i then

if φ(L(L(x))) = − then L(x) := R(L(x))

else

if φ(R(L(x))) = − then L(x) := L(L(x));

if φ(R(x)) = i then

if φ(L(R(x))) = − then R(x) := R(R(x))

else

if φ(R(R(x))) = − then R(x) := L(R(x));

if φ(1) = + then accept

else reject

We now shortly indicate how to put all this on a parallel pointer machine. Obvi-
ously, the algorithm itself is already suitable for a PPM. It remains only to show
how to build the mangrove of configurations in logarithmic time, given the input
word. As in the corresponding construction of Cook and Dymond [6] the initial
PPM unit starts to build in logarithmic time a tree of logarithmic depth such
that each leaf unit corresponds to a configuration of A on w. Then the leaves
are interconnected according to the successor relation of A. But instead of one
pointer leading to a successor, each leaf unit will now have two pointers L and
R representing the two subtrees hanging below an inner node of a mangrove. ✷

Let us remark here that the number of PPM units, i.e. processors, is lin-
ear in the size of the mangrove. For the special case of ULIN, this leads to a
quadratic number of processors. The best known sequential algorithm for solving
membership questions in ULIN needs quadratic time.

Our algorithm makes intensive use of concurrent reads and therefore does not
pertain to owner read PRAMs. It works via O(log n) applications of the opera-
tions of searching and pruning trees of depth 2. Increasing this depth to O(log n)
is the first step in reducing the number of iterations to O(log n/ log log n). This
yields an algorithm using o(log2 n) space (or parallel time).

Theorem 2.

StUSPACE(log n) ⊆ DSPACE(log2 n/ log log n)

PROOF: Let A be a strongly unambiguous logspace machine and let w be
an input of length n. This yields a reachability problem in a mangrove G =
(V, φ, L, R) of polynomial size.

We will now construct a mangrove G′ = (V, φ′, L′, R′) of smaller size. Let
t ≥ 1 be an integer that determines the rate of contraction of G′ compared to G.
We will fix the value of t later. First we map each node x to one of its successors
which we call f(x).

If in the following procedures an accepting leaf (i.e. a node y with φ(y) = +)
is found, the search is stopped, and we set φ′(x) := + and f(x) := x. We search
for each x ∈ V the tree Tt(x) := {y ∈ V |d(x, y) ≤ t} of all nodes of distance to
x not greater than t.

Let z be a pointer initialized to x. Consider the set M of all nodes y in Tt(z)
with d(z, y) = t and φ(y) = i, i.e. of all leaves of Tt(z) that are not leaves in
T (z). If M is empty, that is if T (z) = Tt(z) then set φ′(x) := − and f(x) := x.
If M is nonempty we replace z by the least common ancestor z′ of M in Tt(z). If
z = z′ we stop the procedure for x and set f(x) := z and φ′(x) := i. Otherwise
we replace z by z′ and continue the process.

This algorithm computing f and φ′ in a more formal way looks as follows,
where LCA(M) denotes the least common ancestor of a set M of nodes in a
tree:

z := x;

M := {y ∈ Tt(z) |d(z, y) = t, φ(y) = i} ;

while + ∈/ φ(Tt(z)) and M 6= ∅ and LCA(M) 6= z do

begin

z := LCA(M);

M := {y ∈ Tt(z) |d(z, y) = t, φ(y) = i}

end

if + ∈ φ(Tt(z))

then φ′(x) := +; f(x) := x

else if M = ∅

then φ′(x) := −; f(x) := x

else φ′(x) := i; f(x) := z

After this process, for each x ∈ V either φ′(x) = +, i.e. an accepting leaf has been
found in T (x), or φ′(x) = −, i.e. T (x) has been totally searched and contains
rejecting leaves, only, or φ′(x) = i. In this case x points to f(x) which is a node
such that both subtrees of f(x) contain nodes of a distance larger than t to
f(x). That is, both subtrees are of height not smaller than t, and, since both are
complete binary trees, both of them are of a size not smaller than 2t + 1.

Clearly, the computation of f can be done in space t + O(log n). (Note that
M need not be stored explicitly.) We now construct G′ by setting L′(x) :=
f(L(f(x))) and R′(x) := f(R(f(x))) for each x with φ′(x) = i. We have for each
x ∈ V with φ′(x) = i:

(P1) |T (L(f(x)))| ≥ 2t + 1 and |T (R(f(x)))| ≥ 2t + 1.

Furthermore, the construction implies

(P2) f(f(x)) = f(x) and (P3) φ′(x) = φ′(f(x))

for every x ∈ V .
Now let T ′(x) be the tree below x in G′. Although there may be nodes in V

that are not finished (i.e. φ′(x) = i) and that are not contracted, (i.e. f(x) = x)
the mangrove in total is smaller by a factor of t; we claim for each x ∈ V with
φ′(x) = i:

|T ′(x)| ≤ |T (x)| /t

Proof of the claim: Let L′(z) be a left leaf in the tree T ′(x). That is,
φ′(z) = i and φ′(L′(z)) 6= i. Then by (P3), we have that φ′(L(f(z))) =
φ′(f(L(f(z)))), and by definition of L′ this is equal to φ′(L′(z)) 6= i.
Thus L′(z) = f(L(f(z))) = L(f(z)) by the construction of f . Hence by
(P1), |T (L′(z))| = |T (L(f(z)))| ≥ 2t + 1. Hence for each left leaf L′(z)
in T ′(x) there are at least 2t nodes that are removed from T (x). And
the same holds for right leaves. Hence T (x) is not smaller than 2t times
the number of leaves of T ′(x). Since at least half of the elements of a
complete binary tree are leaves the result follows.

Repeating this process of shrinking G ends in a mangrove of depth O(1) after
O(logt n) phases. Setting t := log n we obtain O(log n/ log log n) phases, each
of which uses O(log n) space, to obtain a procedure to search a mangrove using
O(log2 n/ log log n) space. ✷

We remark here, that the resulting algorithm is in general not polynomial
time-bounded.

Corollary 3.

ULIN ⊆ DSPACE(log2 n/ log log n)

All of DSPACE(f) can be recognized by OROW-PRAMs in O(f) steps. But gen-
erally these algorithms need cO(f) many processors, which in our case would be
superpolynomial. But due to the recursive or iterative structure of our algorithm
a polynomial number suffices, as we now show.

Corollary 4.

StUSPACE(log n) ⊆ OROW-TIME
(

log2 n/log log n
)

Proof: The PRAM works in log n/ log log n phases, each taking O(log n) steps.
In each phase the work of a logarithmically space bounded TM is simulated in
logarithmic time by an OROW-PRAM with a polynomial number of processors
[20]. The difference is here that we don’t simulate an accepting machine, but
one producing some output. This output is stored in global memory. In order
to use this output as input of the next phase, we first have to distribute it to
polynomially many processors in a tree-like way in O(log n) steps. In total this
costs O(log2 n/ log log n) steps on an OROW-PRAM. The number of processors

corresponds to the number of configurations of the simulated logspace machine
and hence is polynomial. ✷

We mention in passing that this result, applied to the unambiguous linear
languages, leads to algorithms using O(n2) processors since this is the size of the
corresponding mangrove.

We end this section by remarking that our main theorem generalizes in the
following way: It is well-known that NTISP(f, g) is a subset of DSPACE(g log f).
If we restrict the nondeterminism to be strongly unambiguous we get the sharper
bound StUTISP(f, g) ⊆ DSPACE(g · log f/ log g).

5 Discussion and open questions

The most basic open question is, of course, to clarify the relationship between
StUSPACE(log n) and DSPACE(log n). It might very well be that these two
classes coincide. Indeed, there seem to be no drastic consequences implied by
such a collapse. A first step in this direction would be to exhibit a logtime
OROW-algorithm for StUSPACE(log n) (or even for ULIN).

Another open issue concerns the class USPACE(log n). Is it possible to place
it in SC 2 or to give an o(log2 n) space algorithm as it has been possible for
symmetric logspace and the class StUSPACE(log n)?

A third line of investigation is to consider these questions for polynomial time
bounded auxiliary pushdown automata where results like our theorems 1 and 2
are probably harder to obtain. The complexity of UCFL, the class of unambigu-
ous context free languages, is uncertain since we do not know whether they are
complete for the strongly unambiguous auxiliary pushdown class, just as we don’t
know whether ULIN is complete for StUSPACE(log n). Since StUSPACE(log n)
⊆ DAuxPDA-TIME

(

nO(1)
)

and since DCFL is complete for the later class, we
know StUSPACE(log n) ⊆ LOG(UCFL). It is not known whether UCFL is also
hard for USPACE(log n). On the other hand it might well be the case that UCFL

is contained in SC 2.

References

1. R. J. Anderson and G. L. Miller. Deterministic parallel list ranking. In VLSI
Algorithms and Architectures, Proc. 3rd Aegean Workshop on Computing, number
319 in LNCS, pages 81–90. Springer, 1988.

2. A. Blass and Y. Gurevich. On the unique satisfiability problem. Inform. and
Control, 55:80–88, 1982.

3. G. Buntrock, B. Jenner, K.-J. Lange, and P. Rossmanith. Unambiguity and few-
ness for logarithmic space. In Proc. of the 8th Conference on Fundamentals of
Computation Theory, number 529 in LNCS, pages 168–179, 1991.

4. R. Cole and U. Vishkin. Approximate parallel scheduling, part i: the basic tech-
nique with applications to optimal parallel list ranking in logarithmic time. SIAM
J. Comp., 17:128–142, 1988.

5. S. Cook. Deterministic CFL’s are accepted simultaneously in polynomial time
and log squared space. In Proc. of the 11th Annual ACM Symp. on Theory of
Computing, pages 338–345, 1979.

6. S. Cook and P. Dymond. Parallel pointer machines. Computational Complexity,
3:19–30, 1993.

7. P. Dymond and W. Ruzzo. Parallel RAMs with owned global memory and de-
terministic context-free language recoginition. In Proc. of 13th International Col-
loquium on Automata, Languages and Programming, number 226 in LNCS, pages
95–104. Springer, 1986.

8. M. Fellows and N. Koblitz. Self-witnessing polynomial-time complexity and prime
factorization. In Proc. of the 7th IEEE Structure in Complexity Conference, pages
107–110, 1992.

9. H. Fernau, K.-J. Lange, and K. Reinhardt. Advocating ownership. In Proc. of the
17th FST&TCS, 1996. to be published.

10. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Language, and
Computation. Addison-Wesley, Reading Mass., 1979.

11. N. Immerman. Nondeterministic space is closed under complementation. SIAM J.
Comp., 17:935–938, 1988.

12. M. Karchmer and A. Wigderson. On span programs. In Proc. of the 8th IEEE
Structure in Complexity Theory Conference, pages 102–111, 1993.

13. R.M. Karp and V. Ramachandran. A Survey of Parallel Algorithms for Shared-
Memory Machines. In J. van Leeuwen, editor, Handbook of Theoretical Computer
Science, Vol. A, pages 869–941. Elsevier, Amsterdam, 1990.

14. T. Lam and W. Ruzzo. The power of parallel pointer manipulation. In Proc. of the
1st ACM Symposium on Parallel Algorithms and Architectures (SPAA’89), pages
92–102, 1989.

15. K.-J. Lange. An unambiguous class possessing a complete set. Manuscript, 1996.
16. K.-J. Lange and R. Niedermeier. Data-independences of parallel random access

machines. In Proc. of 13th Conference on Foundations of Software Technology and
Theoretical Computer Science, number 761 in LNCS, pages 104–113. Springer,
1993.

17. B. Monien, W. Rytter, and H. Schäpers. Fast recognition of deterministic cfl’s
with a smaller number of processors. Theoret. Comput. Sci., 116:421–429, 1993.
Corrigendum, 123:427,1993.

18. N. Nisan. RL ⊆ SC. In Proc. of the 24th Annual ACM Symposium on Theory of
Computing, pages 619–623, 1992.

19. N. Nisan, E. Szemeredi, and A. Wigderson. Undirected connectivity in O(log1.5 n)
space. In Proc. of 33th Annual IEEE Symposium on Foundations of Computer
Science, pages 24–29, 1992.

20. P. Rossmanith. The owner concept for PRAMs. In Proc. of the 8th STACS, number
480 in LNCS, pages 172–183. Springer, 1991.

21. I. Sudborough. On the tape complexity of deterministic context-free languages. J.
Assoc. Comp. Mach., 25:405–414, 1978.

22. R. Szelepcsényi. The method of forcing for nondeterministic automata. Acta
Informatica, 26:279–284, 1988.

23. A. Wigderson. NL/poly ⊆ ⊕L/poly. In Proc. of the 9th IEEE Structure in Com-
plexity Theory Conference, pages 59–62, 1994.

