
Parallel Complexity of Iterated Morphisms

and the Arithmetic of Small Numbers

�

Carsten Damm

y

Markus Holzer

y

Klaus-J�orn Lange

y

Abstract

We improve several upper bounds to the complexity of the membership problem

for languages de�ned by iterated morphisms (D0L systems). The complexity bounds

are expressed in terms of DLOGT IME -uniform circuit families. We prove: 1) For

polynomially growing D0L systems the membership problem is contained in AC

0

.

2) For arbitrary D0L systems the membership problem is contained in NC

1

. 3) The

latter can be improved to T C

0

if and only if upper bounds to a number of natural

arithmetic problems can be improved to T C

0

. 4) The general D0L membership

problem (the D0L system is part of the input) is contained in Cook's class DET .

1 Introduction

We investigate languages de�ned by iterated homomorphisms or substitutions, i.e.: con-

text-free Lindenmayer languages. They provide a whole framework of classes which have

properties similar to the context-free (Chomsky) languages. The complexity of the mem-

bership problem for these languages is in most cases well determined, as it is for context-

free languages. This can be seen by the following completeness-results

1

, since the class

of T0L languages is NP-complete [15], the class of DT0L languages is NSPACE(logn)-

complete [12], and the class of 0L languages is LOGCFL-complete [18].

For the case of D0L systems, i.e., of one iterated homomorphism, no such precise

complexity bounds are known. Sudborough exhibited in [18] a logarithmically space

bounded algorithm for the D0L membership problem. But at present there is no lower

bound, i.e., no hardness result. This is caused by the fact, that LOG-reducibility used

in [13, 18] is not adequate to treat classes below DSPACE(log n). In addition, D0L

languages are sparse. Sparseness is a concept of growing interest in the �eld of complexity

theory. A set L � X

�

is said to be sparse, if the cardinality of L\ X

n

is bounded by some

polynomial in n. Hardness results for sparse sets often would imply unlikely consequences.

Thus, it is in general di�cult to provide lower bounds for sparse sets (for an overview

on results of this kind see [2, 10]). The best-known example for sparse sets are Tally

languages, which are build over a one-letter alphabet.

D0L languages now represent one further natural example for sparseness. A slight

extension of Sudborough's algorithm in [18] shows that D0L languages are not only sparse

but indeedDSPACE(log n)-printable, that is somehow \constructively sparse" (see [11]).

Thus, D0L languages are of a very low complexity. In order to characterize their

membership problem, we have to look for complexity classes and reducibility notions

�

Supported by DFG-La 618/1-1

y

Institut f�ur Informatik, Technische Universit�at M�unchen, Arcistr. 21, W-8000 M�unchen 2 (Germany)

1

Usually, only extended systems are considered, which select only generated words over a terminal

alphabet. Obviously, this is not important with respect to membership problems



below DSPACE(log n). This leads us in a natural way to parallel complexity theory

and to classes and reductions de�ned by Boolean circuits, in particular to AC

0

, T C

0

and

NC

1

(see [6]).

Because of the printability properties of D0L languages the construction of e�cient

DSPACE(log n)-uniform circuits for the D0L membership problem is easy. But we

achieve more: The upper bounds for the D0L membership problem heavily rely on upper

bounds for certain arithmetic problems (multiplication, polynomial evaluation, etc.). The

observation that only small, i.e., polynomially bounded numbers have to be dealt with,

enables us to construct e�cient and highly uniform, i.e., DLOGT IME -uniform circuits

to solve the problem.

We further prove that D0L membership is as hard as small number arithmetic in some

sense: w.r.t. T C

0

-reductions recognition of D0L languages is equivalent to a number of

arithmetic problems on small numbers. As a side result we obtain that recognizing tally

D0L languages is as hard as recognizing arbitrary D0L languages.

Finally, we consider general membership problems, where the L system is part of the

input. By [13] we know that GM

T0L

as well as GM

DT0L

are PSPACE-complete and that

GM

0L

is NP-complete. Again, the D0L case is open. By [13, 14] we know

NSPACE(logn) �

LOG

GM

D0L

2 P \DSPACE(log

2

n):

We improve this in showing containment in the class DET de�ned by Cook in [6].

2 Some facts about D0L systems

Most of the following material is well known (see [16]).

De�nition 1 A D0L system G = (�; h; �) consists of a �nite alphabet �, a homo-

morphism h : �

�

�! �

�

, and an \axiom" � 2 �

�

. The language L

G

generated

by G is the set of words obtained by iteratively applying the homomorphism h to �:

L

G

= h

�

(�) = f�; h(�); h

2

(�); h

3

(�); : : :g. The class of D0L languages is denoted by

D0L = fL

G

j G is a D0L systemg:

L

G

is also called the membership problem of the D0L system G (G �xed). Most

complexity questions dealt with in this paper refer to this situation.

De�nition 2 The function f

G

(n) = j h

n

(�) j is called the growth function of G.

Lemma 3 For each D0L system G there is either a constant c > 1 such that for all n

holds f

G

(n) � c

n

or there is a polynomial p(n) such that for all n holds f

G

(n) � p(n).

Let us call the D0L systems with polynomial upper bound on the growth function

polynomial and the other ones exponential D0L systems. A D0L system G = (�; h; �) is

called conservative if each letter a appears in every word in L

G

. For special D0L systems

Lemma 3 can be strengthened.

Lemma 4 ([7]) Let G = (�; h; �) be a polynomial conservative D0L system such that for

all a 2 � holds h(a) 2 �

�

a�

�

or h(a) = �. Then there is a polynomial p(n) with rational

coe�cients and a number n

0

such that for each n � n

0

holds f

G

(n) = p(n).



By a technique called \slicing" or \tuning" each language generated by a polynomial

D0L system can be decomposed into a disjoint union of languages, generated by D0L

systems satisfying the assumptions of Lemma 4 (see [7]). We will assume therefore that

all polynomial D0L systems under consideration ful�ll the assumptions of Lemma 4: since

we start from a �xed D0L system we can take the decomposition for free and need only

to run the algorithms making the decision for the components of the decomposition.

3 Uniform circuits and small number arithmetic

The membership problem for D0L systems will be studied in terms of circuits. We assume

familiarity with the de�nition of Boolean circuits as developed in [6].

A circuit C

n

on n inputs in the usual way computes an n-variable function f

C

n

:

f0; 1g

n

�! f0; 1g, a circuit family C = (C

n

) accordingly computes a function f

C

:

f0; 1g

�

�! f0; 1g, where the nth circuit processes inputs of length n. The language or

problem decided by C is the set of words in f0; 1g

�

mapped to 1 under f

C

.

This de�nition covers only two-letter languages, since Boolean circuits are based on

two-valued logic. By binary encodings circuit families can also recognize more general

languages. We will tacitly make use of this as a convention, without specifying the

encoding.

We will also consider computation problems, e.g.: given two numbers, compute their

product. In these cases the circuits to be considered have several output gates.

To de�ne uniformity we make use of the terminology of [17]: Let C = (C

n

) be a circuit

family. The direct connection language of C is the set L

DC

(C) of tuples h1

n

; g

1

; g

2

; � i where

g

1

and g

2

are names of gates in C

n

, g

2

is a child of g

1

and � is the type of g

1

(for gates g

1

without predecessors g

2

is dummy). If A is an arbitrary class of languages we call a circuit

family C to be A-uniform if L

DC

(C) 2 A. We will consider DLOGT IME -uniform cir-

cuits. Here the direct connection language is recognized by deterministic Turing machines

with logarithmic time bound (see [1]).

De�nition 5 AC

0

is the set of problems solvable by DLOGT IME -uniform unbounded

fan-in polynomial size circuits of constant depth. If the uniformity-condition is re-

moved, this class is denoted nonuniform-AC

0

. NC

1

consists of all problems solvable

by DLOGT IME -uniform bounded fan-in polynomial size circuits of logarithmic depth.

We will show that certain arithmetic problems can be solved in AC

0

or NC

1

in case

the numerical inputs are small compared to the input length n. \Small" means here to be

polynomial bounded in n. This can formally be met by supplying the numbers in unary

notation: input number m � n is given in the form 1

m

0

n�m

. Further one considers 1

n

to

be part of the input.

We consider the following problems (all numbers are nonnegative integers):

1. UNARY-TO-BINARY (BINARY-TO-UNARY): given m, compute bin(m) (the

opposite to the former)

2. MULTIPLY-SMALL-NUMBERS: given (l;m), compute bin(lm) if lm � n, return

a fault signal otherwise

3. POLYNOMIAL-EVALUATION-ON-SMALL-NUMBERS: givenm, compute bin(p(m))

for a �xed polynomial p(x) with integer coe�cients



4. DIVISION-OF-SMALL-NUMBERS: (l;m), compute (bin(d); bin(r)), with l =

dm+ r; 0 � r � m� 1

5. GCD-OF-SMALL-NUMBERS: given (l;m), 0 < l;m, compute bin(GCD(l;m)).

6. POWER-TO-SMALL-NUMBERS: given m, for a �xed integer a > 0 compute

bin(a

m

) if a

m

� n, otherwise return a fault signal

7. MATRIX POWER-TO-SMALL-NUMBERS: given m, for a �xed s � s matrix A

and a �xed number a > 1 compute a binary representation of A

m

if a

m

� n and all entries

of A

m

do not exceed n, otherwise return a fault signal

Please note that 3, 6, and 7 are classes of problems rather than single problems.

Proposition 6 The above mentioned problems are computable in NC

1

. Problems 1. {

5. are even computable in AC

0

Sketch of proof: We give only the proof for Problem 2. For Problem 1. the reader

is referred to [3]. For the other problems one makes use of the following observation:

once circuits have been proved to be DLOGT IME -uniform they can be used as parts

(modules) of new circuits, which turn out to be DLOGT IME -uniform if the local in-

terconnection structure between the modules can be recognized in DLOGT IME . So

starting with a \small-numbers-multiplier" one can construct highly uniform circuits for

more complex problems. The multiplier circuit works as follows:

W.l.o.g. we assume lm � n. The problem can easily be reduced to computing in

parallel all products l

1

�m (where l

1

ranges from 0 to n) by �xed factor multipliers M

l

1

n

and simultaneously testing whether. The proper result will be passed through. We are

left with constructing the �xed-factor multipliersM

l

1

n

. M

0

n

is easily constructed. Suppose

l

1

> 0. We consider copy gates C

i;j

n

for 1 � i � l

1

; 1 � j � n. For each i gate C

i;j

n

simply reproduces the jth bit (from left) of 1

m

0

n�m

. Obviously for each j all gates in

block (C

1;j

n

; C

2;j

n

; : : : ; C

l

1

;j

n

) output 1 if j � m and 0 otherwise. Therefore the outcome of

the gates

(C

1;1

n

; C

2;1

n

; : : : ; C

l

1

;1

n

); (C

1;2

n

; C

2;2

n

; : : : ; C

l

1

;2

n

); : : : ; (C

l

1

;j

n

; C

l

1

;j

n

; : : : ; C

l

1

;j

n

)

(in this order) is 1

l

1

m

0

l

1

(n�m)

. A �nal UNARY-TO-BINARY yields the desired output. 2

Corollary 7 Given D0L system G, the problem to decide upon input 1

n

, whether there

is some k such that n = f

G

(k) and, if so, to compute the least such k, is computable in

NC

1

. If G is polynomial, the problem is even computable in AC

0

, depth 11.

4 The Membership Problem for D0L systems is in

NC

1

In this section, we �rst give the idea to the proof that the membership problem for

polynomial D0L systems is contained in AC

0

. After this we proof that the membership

problem for arbitrary, but �xed D0L systems is solvable in NC

1

, by showing that every

language generated by an exponential D0L system is contained in NC

1

.



Let G be a conservative D0L system G = (�; h; �) as described in Lemma 4. First we

introduce some notations. Let P be the predicate

P (k; i; a)() the ith letter of h

k

(�) is a.

Observe that

w = b

1

b

2

: : : b

n

2 L

G

() 9 k8

1�i�n

P (k; i; b

i

);where b

j

2 � with 1 � j � n:

The idea of the proof will be to determine the value of the predicate P (k; i; b

i

) very

e�ciently. In the polynomial case we make use of a special structure of the words generated

by G (see [7]).

To determine the value of the predicate P , we make use of the structure of the words

generating process. One can show by induction, that every position i in a word w

generated by a polynomial D0L system G of rank

2

� can be described by a sequence

(g

1

; p

1

) : : : (g

s

; p

s

) with s � � + 1, where g

j

, for 1 � j � s, only depends on the D0L

system G, and p

j

, for 1 � j � s, on the derivation length of w.

Now the crucial observation, which is stated without proof, is the following.

Fact 8 Let G = (�; h; �) be a D0L system of rank �. Then there exists a constant

number of polynomials fq

1

; : : : ; q

t

g such that for every valid

3

sequence (g

1

; p

1

) : : : (g

s

; p

s

)

with s � �+1 there is a polynomial q

j

with 1 � j � t such that q

j

((g

1

; p

1

) : : : (g

s

; p

s

)) = i,

and a letter a 2 � such that the ith letter of h

n

(�) is the letter a.

Knowing this, it is easy to designAC

0

circuits for the predicate P , since the parameters

of the polynomials involved are position numbers in a string of length at most n (hence

they are small numbers) and all the computations can be performed inAC

0

by Proposition

6. Note that the constructed circuit is of �xed depth. This lead us to:

Proposition 9 The membership problem for polynomial D0L systems is solvable in

AC

0

with depth 14. 2

Now letG be a �xed exponential D0L systemG = (�; h; �). By the exponential growth

the derivation length k is bounded by c � log(f

G

), where c is a constant only depending on

the G. Therefore w = b

1

b

2

: : : b

n

2 L

G

is equivalent to: There exists a k � c � log n such

that for every 1 � i � n holds P (k; i; b

i

).

We follow here the ideas of Sudborough [18]. The basic idea of his algorithm is,

that if b

i

is the appropriate letter on position i, then there exists a sequence of letters

a

0

; a

1

; : : : ; a

k

2 � such that a

0

is the i

0

th letter in the initial string �, every a

j

, with

1 � j � k, is the i

j

th letter in h(a

k�1

), and a

k

is equal to b

i

.

Note that every i

j

with 0 � j � k is bounded by the constant m = max

a2�

fj h(a) jg.

So the �rst and second conditions can be tested very easily once the a

j

's and i

j

's are chosen.

Therefore we concentrate on the third condition | the test whether these sequences lead

to the ith letter in w.

It is easy to see, that the global position number i is uniquely determined by the

sequences a

0

; a

1

; : : : ; a

k

and i

0

; i

1

; : : : i

k

. This dependence can be described in a very

2

The rank � corresponds to the degree of the growth function (see [7]).

3

A sequence is called valid, if it corresponds to a position number i.



concise manner. To do this we introduce the following notation. Let pref

i

(v) be the

pre�x of length i of the word v. Using this, we get for the position i of a

k

in the word

h

k

(�) the following formula

4

:

(�(pref

i

0

�1

(�))(A

G

)

k

+ �(pref

i

1

�1

(h(a

0

)))(A

G

)

k�1

+ : : :

: : :+ �(pref

i

k�1

�1

(h(a

k�2

)))(A

G

) + �(pref

i

k

�1

(h(a

k�1

))))�

T

+ 1:

The �rst three conditions above are easy to test with the DLOGT IME circuit con-

structor. Since all parameters of the formula without k are constants, and k is bounded

by O(n) and therefore k is a small number, this computation can be performed in NC

1

by

Proposition 6.

We describe the circuit for the predicate P . First model with OR-gates the existential

branch for the sequences a

0

; a

1

; : : : ; a

k

and i

0

; i

1

; : : : ; i

k

and then test with an AND-gate

whether i is equal to the value of the formula above by using the above NC

1

circuit and

test that the ith letter is a

k

. Now it is easy to design NC

1

circuits for the membership

problem for G.

Proposition 10 The membership problem for exponential D0L systems is in NC

1

. 2

Theorem 11 The membership problem for D0L systems is solvable in NC

1

. 2

5 Possible improvements

The higher the growth rate of a D0L system, the more sparse is its language. Thus

exponentially growing D0L languages are more sparse than polynomially growing ones.

BUT the upper bounds proved so far in this paper seem to contradict the feeling that the

more sparse a language is the more easy is it to recognize it. Indeed our upper bound

for polynomial D0L systems is AC

0

, �xed depth and for the exponential case, where the

languages under consideration contain at most O(log n) words of length n we could not

do better than NC

1

.

On the other hand there is no language generated by a D0L system that is complete

for NC

1

under DLOGT IME -reductions

5

.Both observations indicate that D0L might al-

ready be contained in some subclass of NC

1

. A candidate is T C

0

, the class of problems

solvable by constant depth, polynomial size DLOGT IME -uniform

6

circuit families con-

taining NOT- and MAJORITY-gates (see [9]). A MAJORITY-gate outputs 1 if more

than halve of its inputs are 1.

The key point for any improvement seems to be to avoid matrix powering in the

algorithm for the exponential case. But it turns out that with respect to T C

0

-reductions

(de�ned below) recognizing D0L languages is as hard as MATRIXPOWER-TO-SMALL-

NUMBERS. So the answer to the above question is NO, unless this problem can be placed

into T C

0

.

We use a reducibility notion similar to the AC

0

-reductions of Chandra et al. [4].

4

The growth function f

G

(n) can be expressed by �(�)(A

G

)

n

�

T

, where �(�) is the Parikh-vector of

the initial word �, A

G

is a matrix depending on the D0L system, and � is the all-one vector (see [16]).

5

This because D0L � nonuniform-AC

0

, but PARITY 2 NC

1

n nonuniform-AC

0

([8]).

6

The direct connection language has to be de�ned appropriately { also multiple wires is have to be

dealt with.



De�nition 12 Problem L is said to be T C

0

-reducible to problems L

1

; L

2

; : : : ; L

m

if there

is a T C

0

circuit family with additional L

1

-, L

2

-, : : :, and L

m

-oracle gates which solves L.

A set C of problems is T C

0

-reducible to a set C

0

of problems if for any problem L in C there

are problems L

1

; L

2

; : : : ; L

m

in C

0

, such that L is T C

0

-reducible to L

1

; L

2

; : : : ; L

m

. Two

problems or sets of problems are said to be equivalent with respect to T C

0

-reductions if

they are T C

0

-reducible to each other.

Theorem 13 The following classes of problems are equivalent with respect to T C

0

-

reductions: D0L, POWER-TO-SMALL-NUMBERS, MATRIXPOWER-TO-SMALL-

NUMBERS.

Hence D0L � T C

0

i� POWER-TO-SMALL-NUMBERS � T C

0

i�

MATRIXPOWER-TO-SMALL-NUMBERS � T C

0

.

Sketch of Proof: Computing the sum of n numbers, polynomially bounded in n can

be computed in T C

0

: compute the unary representation of the summands, concatenate

these, and use the reduction of UNARY-COUNT to MAJORITY in [4] to compute the

sum.

By this observation and the proof of Proposition 10 D0L is T C

0

-reducible to

MATRIXPOWER-TO-SMALL-NUMBERS. The latter in turn is T C

0

-reducible to

POWER-TO-SMALL-NUMBERS (expand the entries of the mth power of a �xed matrix

A into a sum of products of A's entries and rearrange these products into products of

powers.)

For the reduction of POWER-TO-SMALL-NUMBERS to D0L let a be an arbi-

trary positive integer and let G = (f1g; f1 7! 1

a

g; 1). Let f1

l

2 L

G

j l � ng =

f1; 1

a

; 1

a

2

; : : : ; 1

a

r

g: From the following two facts one can easily construct T C

0

circuits

with L

G

-gates that compute the mth power of a, when 1

m

0

n�m

is given as input :

- a

m

� n i� m � r i� m + 1 � #f1

l

2 L

G

j l � ng. This can be easily tested by

T C

0

-circuits with L

G

-gates.

- If a

m

� n, then a

m

equals the length of the (m + 1)st string in the sequence

1; 1

a

; 1

a

2

; : : : ; 1

a

r

that belongs to L

G

.

Remembering that polynomial D0L systems are in AC

0

which is contained in

T C

0

completes the proof. 2

Corollary 14 D0L is T C

0

-equivalent to T ALLY -D0L = fL 2 D0L and L � f1g

�

g. 2

6 The General Membership Problem for D0L sys-

tems is in DET

In the previous sections we constructed algorithms which solved the membership problem

for an arbitrary, but �xed D0L system. If we regard G as a part of the input we come

to a general membership problem (see [13]). In the following we will use an appropriate

coding hGi 2 �

?

of a system G for some �xed alphabet � without giving any details.

De�nition 15 The general membership problem for D0L systems is the set

GM

D0L

:= fhG;wi j G = (�; h; �) is a D0L system, w 2 �

?

and w 2 L

G

g:



Jones and Skyum provided upper and lower bounds for this problem.

Theorem 16 ([13, 14]) GM

D0L

2 P\DSPACE(log

2

n) and it is NSPACE(logn)-hard.

Theorem 16 says that there exists both a polynomial time-bounded algorithm and

one which uses O(log

2

n) space. We should not look for an algorithm which obeys both

resource bounds simultaneously, i.e. an algorithm showing membership in SC

2

, since the

second part would then give the unexpected inclusion NSPACE(logn) � SC

2

(see [6]).

We improve the upper bound of Theorem 16 by showing that GM

D0L

is contained in

the subclass DET of P \DSPACE(log

2

n). DET was originally de�ned by Cook in [5] |

it is the class of all problems NC

1

-reducible to the computation of integer determinants.

Theorem 17 GM

D0L

2 DET .

Idea of proof : The gist of the construction is to use the algorithm of Jones and Skyum

in [14]. They distinguish the two cases whether the given D0L system is in�nite or �nite

7

.

It is not to hard to show, that their procedure to treat the in�nite case, is computable

by a DET function. A careful analysis shows, that the constructions given in [14, 19] to

settle the �nite case, can be replaced by DET computable functions. The details cannot

be given here for lack of space. 2

Very essential for the NSPACE(log n)-hardness in [14] was the use of erasing pro-

ductions in the constructing D0L system. In fact, we were not able to show this for D0L

systems without erasing, i.e. PD0L systems

8

. Nevertheless, we get DSPACE(log n)-

hardness, which we state without proof.

Theorem 18 GM

PD0L

is DSPACE(log n)-hard with respect to AC

0

-reductions

9

.

This leaves open the possibility that GM

PD0L

might be contained in SC

2

. Theorems

16 and 18 express that general membership problems are provable more di�cult than �xed

ones for (P)D0L systems, since the latter are contained in ALOGT IME-uniform-AC

0

which is a proper subset of DSPACE(log n) (see [8]).

Acknowledgments We would like to thank the following people for many hints and

helpful discussions: Birgit Jenner, Bernd Kreu�ler, Peter Rossmanith, Wojciech Rytter,

and Thomas Zeugmann.

References

[1] D. A. M. Barrington, N. Immerman, and H. Straubing. On uniformity within NC

1

.

Journal of Computer and System Sciences, 41:274{306, 1990.

[2] R. V. Book. Sparse sets, tally sets, and polynomial reducibilities. In Proc.of 13th

MFCS, volume 324 of LNCS, pages 1{13. Springer, 1988.

7

The in�nity problem is well known to be NP-complete { but with respect to ED0L languages. For

D0L systems this question can easily be seen to be NSPACE(logn)-complete. Hence the question can

be decided by a DET procedure.

8

The letter P stands for propagating; see e.g. [16]

9

In fact, it is possible to use many-one DLOGT IME -reducibilites !



[3] S. R. Buss. The boolean formula value problem is in ALOGTIME. In Proc. 19th

Ann. ACM Symp. on Theory of Computing, pages 123{131, 1987.

[4] A. K. Chandra, L. Stockmeyer, and U. Vishkin. Constant depth reducibility. SIAM

Journal on Computing, 13(2):423{439, May 1984.

[5] S. A. Cook. Towards a complexity theory of synchronous parallel computation.

L'Enseignement Math�ematique, XXVII(1{2):75{100, 1981.

[6] S. A. Cook. A taxonomy of problems with fast parallel algorithms. Information and

Control, 64(1{3):2{22, 1985.

[7] A. Ehrenfeucht and G. Rozenberg. D0L system with rank. In L Systems, volume 15

of LNCS, pages 136{141. Springer, 1974.

[8] M. Furst, J. B. Saxe, and M. Sipser. Parity circuits and the polynomial-time hierar-

chy. In Proc. 22th IEEE Symp. FOCS, pages 260{270, 1981.

[9] A. Hajnal, W. Maass, P. Pudlak, M. Szegedy, and G. Turan. Threshold circuits of

bounded detph. In Proc. 28th IEEE Symp. FOCS, pages 99{110, 1987.

[10] J. Hartmanis. Some observations about NP complete sets. In Proc. of 6th FCT,

volume 278 of LNCS, pages 185{196. Springer, 1987.

[11] B. Jenner and B. Kirsig. Alternierung und Logarithmischer Platz. Dissertation (in

German), Universit�at Hamburg, 1989.

[12] N. D. Jones and S. Skyum. Recognition of deterministic ET0L languages in logarith-

mic space. Information and Computation, 35:177{181, 1977.

[13] N. D. Jones and S. Skyum. Complexity of some problems concerning L systems.

Math. Systems Theory, 13:29{43, 1979.

[14] N. D. Jones and S. Skyum. A note on the complexity of general D0L membership.

SIAM Journal on Computing, 10(1):114{117, February 1981.

[15] Jan Van Leeuwen. The membership problem for ET0L-languages is polynomially

complete. Information Processing Letters, 3(5):138{143, May 1975.

[16] G. Rozenberg and A. Salomaa. The Mathematical Theory of L Systems, volume 90.

Academic Press, 1980.

[17] W. Ruzzo. On uniform circuit complexity. Journal of Computer and System Sciences,

22:365{338, 1981.

[18] I. Sudborough. The time and tape complexity of developmental languages. In Proc.

of 4th ICALP, volume 52 of LNCS, pages 509{521. Springer, 1977.

[19] P. M. B. Vint�anyi. Lindenmayer Systems: Structure, Languages, and Growth Func-

tions. PhD thesis, University of Amsterdam, 1978.


