
An unambiguous class possessing a complete set

Klaus-J�orn Lange

Wilhelm-Schickard-Institut, T�ubingen

Topics : Computational and structural complexity theory

Abstract

In this work a complete problem for an unambiguous logspace class is presented.

This is surprising since unambiguity is a `promise' or `semantic' concept. These

usually lead to classes apparently without complete problems.

1 Introduction

One of the most central questions of complexity theory is to compare deter-

minism with nondeterminism. Our inability to exhibit the precise relationship

between these two features motivates the investigation of intermediate features

such as symmetry or unambiguity. In this paper we will concentrate on the notion

of unambiguity.

Unfortunately, unambiguity of a device or of a language is in general an unde-

cidable property. Unambiguous classes are not de�ned by a `syntactical' machine

property but rather by a `semantical' restriction. A nasty consequence is the ap-

parent lack of complete sets. In the case of time bounded computations there are

relativizations of unambiguity which provably have no complete problem ([10]).

For space bounded computations the concept of unambiguity is not as uni-

form as in the time bounded case. There are several versions of it, which probably

are di�erent for space classes, while they coincide for time bounded computa-

tions. This is the case, since it is possible to keep track of the complete history of

a computation without increasing the running time. It is remarkable, that this is

precisely the same construction which shows the equivalence of nondeterminism

with symmetry and of determinism with reversability in the time bounded case

([14,3]).

The main result of this work is to show that the unambiguous logspace class

RUSPACE(logn) possesses a complete problem. The proof makes intensive use

of the space-speci�c possibility to cycle through all con�gurations of a machine

without increasing the resource bound. The proof doesn't seem to work for other

versions of unambiguity or for other related semantic classes but nevertheless

leaves the hope to exhibit complete problems for other semantic logspace classes

de�ned by concepts like unambiguity and randomization.

As an interesting consequence of this result we get the �rst case of a single

and explicit problem which can be solved by an unambiguous logspace algorithm

but which is not known to be solvable in logarithmic space deterministically.

It was known before that the family ULIN of unambiguous linear context-free

languages is contained in USPACE(logn) and it is still open whether ULIN �

DSPACE(logn) (see [4]). But there was no speci�c candidate known within

ULIN, which was not known to be in DSPACE(logn).

2 Preliminaries

The reader is assumed to be familiar with the basic notions of complexity theory

as they are contained in the standard text books on theoretical computer science.

2.1 Turing machines and con�guration graphs

For a Turing machine T with input alphabet X we denote the graph of con�gu-

rations over an input w 2 X

�

by G

T

(w). If T is logarithmically space-bounded

G

T

(w) has a size polynomial in the length of w. Without loss of generality we

assume all machines considered here to be non-looping. Hence all con�guration

graphs are acyclic. In order to ease the presentation of our constructs we assume

that in nondeterministic machines each non nonterminating con�guration has

exactly two successor con�gurations, which can be reached in one step. It should

be remarked that this normal form can be reached without changing the number

of accepting computations, i.e.: without changing properties like umambiguity.

Let G = (V;E) be a directed acyclic graph. For two nodes x and y we denote

by N (x; y) the number of di�erent paths leading from x to y in G. For x = y

we set N (x; y) := 1. For each pair of nodes (x; y) let d(x; y) be the length of

the shortest path between x and y. The length of a path is the number of its

edges. If x and y are not connected, d(x; y) is in�nite. d(x; x) is 0 for each

x 2 V . In the following we will work with complete binary graphs, that is, each

node of G is either a leaf with no outgoing edges, or an inner node with two

outgoing edges. This is determined by a mapping � : V �! fi; lg, which takes

the value l for leaves and i for inner nodes. The two successors of an inner node

x will be denoted by L(x) and R(x). In the following we assume all graphs like

G

T

(w) to be given in this form as (V; �; L;R). Thus the edge set E would be

f(x; L(x))j�(x) = ig [f(x;R(x))j�(x) = ig. Since G is acyclic, it contains no

self-loop, i.e.: L(x) 6= x 6= R(x) for x 2 V . In addition, we assume without loss

of generality that G contains no double edges (i.e.: L(x) 6= R(x) for all x). If

G has n nodes we assume V to be fv

1

; v

2

; � � � ; v

n

g. We will be interested in the

existence of paths between nodes v

1

and v

n

. We will assume v

1

to be an inner

node and v

n

to be a leaf. Hence n > 1.

We call G accepting i� N (v

1

; v

n

) > 0, i.e.: if there is a path from v

1

to v

n

.

Otherwise we call G rejecting.

For x 2 V let T (x) := fy 2 V jN (x; y) � 1g be the set of all nodes reachable

from x. For d � 0 we set T

d

(x) := fy 2 T (x)jd(x; y) � dg. Obviously, we have

T (x) = T

n�1

(x) for every x 2 V . Throughout the paper we will identify T (x)

and T

d

(x) with the subgraphs of G induced by T (x) and by T

d

(x).

3 Unambiguity

A concept intermediate in power between determinism and nondeterminism is

Unambiguity. A nondeterministic machine is said to be unambiguous, if for ev-

ery input there exists at most one accepting computation. This leads for in-

stance to the classes UP and USPACE(logn); we have P � UP � NP and

DSPACE(logn) � USPACE(logn) � NSPACE(logn) where none of these inclu-

sions is known to be strict. The notion of unambiguity should be distinguished

from that of Uniqueness, which uses the unique existence of an accepting path

not as a restriction but as a tool. The resulting language classes 1NSPACE(logn)

and 1NP consists of languages de�ned by machines that accept their inputs if

there is exactly one accepting path. Thus, the existence of two or more accept-

ing computations is not forbidden, but simply leads to rejection. In the polyno-

mial time case we have Co{NP � 1NP. In the logspace case inductive counting

([11,19]) shows 1NSPACE(logn) = NSPACE(logn).

3.1 Space bounded unambiguous classes

The concept of unambiguity of space bounded computations is not as uniform

as that for time bounded classes. Instead we are confronted with a variety of

probably di�erent concepts of unambiguity. In the following we classify three

notions of unambiguity for con�guration graphs and complexity classes. For

more varieties of unambiguities see [4].

A con�guration graph G = (V; �; L;R) is called unambiguous if there is

at most one path from v

1

to v

n

, i.e.: if N (v

1

; v

n

) � 1. G is called reach-

unambiguous if for any x there is at most one path from v

1

to x, i.e.: if for

each x 2 V N (v

1

; x) � 1. G is called strongly unambiguous or a mangrove if

for any pair (x; y) of nodes there is at most one path leading from x to y, i.e.:

if 8

x;y2V

N (x; y) � 1. Every mangrove is reach-unambiguous and every reach-

unambiguous graph is unambiguous. Although a mangrove does not need to be

a tree, for each x the subgraph T (x) is indeed a tree and the same is true for

the set of all nodes from which x can be reached. Some examples:

v

2

v

5

v

1

v

4

v

6

v

3

�

�	

@

@R

@

@R

@

@R

�

�	

�

�	

v

3

v

6

v

1

v

7

v

4

v

2

v

5

v

8

�

�	

@

@R

�

�	

@

@R

H

H

H

Hj

? ?

�

�

�

��

v

3

v

5

v

1

v

4

v

6

v

7

v

2

�

�	

@

@R

�

�	

@

@R

@

@R

�

�	

?

The left con�guration graph is accepting and unambiguous since there is exactly

one path from v

1

to v

6

. It is not reach unambiguous since there exist two di�er-

ent paths between nodes v

1

and v

5

. The second one is reach-unambiguous and

accepting, but not a mangrove since there are two di�erent paths between nodes

v

2

and v

7

. The third example is a mangrove, which is rejecting since there is no

path from v

1

to v

8

.

Let T be a nondeterministic Turing machine with input alphabet X. T is

called unambiguous, if for all inputs w 2 X

�

the con�guration graph G

T

(w)

is unambiguous. T is reach-unambiguous, if for all w 2 X

�

the con�guration

graph G

T

(w) is reach-unambiguous. Finally, T is strongly unambiguous, if for

all w 2 X

�

the con�guration graph G

T

(w) is a mangrove. Of course, both for

the language and Turing machines each of this properties is undecidable. These

concepts lead to the following classes:

De�nition 1. a) USPACE(logn) is the class of all languages accepted by un-

ambiguous logspace machines.

b) RUSPACE(logn) is the class of all languages accepted by reach-unambiguous

logspace machines.

c) StUSPACE(logn) is the class of all languages accepted by strongly unambigu-

ous logspace machines.

We mention in passing that in the case of time bounded classes these three

concepts coincide.

By de�nition, these three classes ful�ll: StUSPACE(logn) � RUSPACE(logn)

� USPACE(logn) � NSPACE(logn): In addition, by [4] we know

Proposition 2. i) RUSPACE(logn) � LOG(DCFL)

ii)Both RUSPACE(logn) and StUSPACE(logn) are closed under complement.

Here LOG(DCFL) denotes the class of all languages reducible to determinis-

tic context-free languages by deterministic many-one reductions. As a conse-

quence of part i) both RUSPACE(logn) and StUSPACE(logn) are contained in

SC

2

:=DTIMESPACE(pol; log

2

n), the second level of the SC hierarchy ([6,7]).

The inclusion StUSPACE(logn) � DSPACE(log

2

n= log logn) was shown in

[2]. But as remarked there, the proof uses only the fact, that the unfolding

of the reachability graph, i.e.: the number of all paths starting in the root, is

of polynomial size. While this is not true for USPACE(logn), this property is

ful�lled by reach-unambiguous graphs. Hence we have:

Proposition 3. RUSPACE(logn) � DSPACE(log

2

n= log logn)

It should be remarked, that nothing like Proposition 2 or 3 is known for

USPACE(logn).

3.2 Sets of unambiguous reachability problems

The unambiguous classes de�ned in the previous subsection are semantic or

promise classes. They are de�ned via machines which are subject to an unde-

cidable restriction. As a consequence, they probably don't posses complete sets.

There are relativizations in the time bounded case excluding the existence of

complete sets ([10]).

For logarithmically space bounded classes the typical complete problems are

reachability or connectivity problems in graphs. The question for existence of

a connecting path in directed graphs is complete for NSPACE(logn), that in

undirected graphs for SymSPACE(logn), and that in forests for DSPACE(logn).

In connection with the three unambiguous classes the corresponding connectivity

problems would be:

L

u

:= fG = (V; �; L;R) jN (v

1

; v

n

) = 1g;

L

ru

:= fG = (V; �; L;R) jN (v

1

; v

n

) = 1 ; 8

x2V

N (v

1

; x) � 1g;

L

su

:= fG = (V; �; L;R) jN (v

1

; v

n

) = 1 ; 8

x;y2V

N (x; y) � 1g;

Obviously, these sets are hard for the corresponding complexity classes:

Proposition 4. i) L

u

is USPACE(logn){hard, ii) L

ru

is RUSPACE(logn){

hard, and iii) L

su

is StUSPACE(logn){hard.

But to show the completeness of these languages we have to exhibit unam-

biguous logspace algorithms. But while the uniqueness of a computational path

is used as a restriction in the de�nition of the complexity classes, this unique-

ness is used as a tool (i.e.: as an acceptance criterion) in the de�nition of the

connectivity problems. In fact, it turns out, that L

u

seems to be harder than

USPACE(logn), since it is complete for 1NSPACE(logn) = NSPACE(logn), as

mentioned above:

Proposition 5. L

u

is NSPACE(logn){complete.

Proof: Obviously, L

u

2 NSPACE(logn) by the closure of NSPACE(logn) un-

der complement. On the other hand, the usual NSPACE(logn){complete GAP

problem asking for the existence of a path from v

1

to v

n

in an unrestricted graph

is reduced to the complement of L

u

by adding the edge (v

1

; v

n

). 2

This seems to indicate that L

u

is probably not a member of USPACE(logn).

It is tempting in this situation to increase this appearence by trying to de-

rive structural upper bounds as they were obtained for StUSPACE(logn) and

RUSPACE(logn) ([4,2]). But by a result of Wigderson ([20]) this would imme-

diately carry over to nonuniform NSPACE(logn).

4 Main Result

We will now show L

ru

2 RUSPACE(logn). The idea of proof will be as follows:

assume T (v

1

) to be a tree and to perform a breadth �rst search for violations of

this assumption while inductively using the fact that the parts searched so far

are indeed trees. If no violation exists T (v

1

) is a tree and hence the input graph

is reach-unambiguous. The problem is to traverse the tree since logspace doesn't

su�ce to keep track of the whole path leading from v

1

to the currently visited

node. To traverse T (v

1

) as a tree we use nondeterminism. If in fact T (v

1

) is a

tree, all paths are unique and guessing paths turns out to be reach-unambiguous.

If the input graph is not a tree we will �nd the smallest counterexample in an

reach-unambiguous way.

We will use the procedure NEXT(y; h; d), given in Table 1, which in case

T

d

(v

1

) is a tree computes the preorder successor of a node y 2 T

d

(v

1

) which

1 IF �(y) = i AND h < d THEN

2 (y; h) := (L(y); h+ 1)

ELSE

3 z := v

1

;

4 j := 1;

5 WHILE j < h AND �(z) = i DO

6 z := R(z);

7 j := j + 1

OD;

8 IF R(z) = y THEN

9 (y; h) := (v

1

; 0)

ELSE

10 GUESSUNCLE(y,h,d)

Table 1. Procedure NEXT(y; h; d)

has depth h wrt v

1

. Procedure NEXT �rst deterministically checks the easy

cases that y is an inner node inside of T

d

(v

1

) or that y = R

h

(v

1

). If this is not

successful NEXT uses the nondeterministic procedure GUESSUNCLE. It should

be remarked, that in line 8 the condition R(z) = y is not allways well-de�ned

since not necessarily �(z) = i holds. In this case we regard the condition as not

ful�lled leading to a call of GUESSUNCLE. This procedure, given in Table 2 is

invoked if on the path from v

1

to y an R-edge is used. Nondeterministically this

path and in particular its last occurring R-edge are guessed. This situation is

illustrated in Figure 1. Procedure GUESSUNCLE has two types of exits: either

x

v

1

L(x) R(x)

y = R

�

(L(x))

�

�

depth h

depth g

T

d

(v

1

)

@R

�

�

�

�

�

�

�

�

�

�

@

@

@

@

@

@

@

@

@

@

�

�	

@

@R

@

@

@R

Hj

�

��

S

Sw

?

On the unique path from v

1

to y, x is the least predeces-

sor of y which is followed by

an L-successor. GUESSUNCLE

guesses x and the path from v

1

to x. The rest is checked deter-

ministically. As a result y is re-

placed by R(x).

Fig. 1. The work of procedure GUESSUNCLE

it successfully computes the successor of y in inorder traversal of T

d

(v

1

) or it

ends its computation in a state STOPi for i = 1; 2; 3; or 4. To reach one of the

STOP states means that the previous nondeterministic computation was not able

to �nd the node y. If T (v

1

) is not a tree, the behaviour of GUESSUNCLE is

ambiguous. But if T (v

1

) is a tree, we can show that GUESSUNCLE works reach-

unambiguously. Further on, if it avoids a STOP state, the computed successor

of (y; h) is uniquely determined.

1 GUESS g 2 f0; 1; � � � ; h� 1g;

2 z := v

1

;

3 FOR j = 1; 2; � � � ; g DO

4 GUESS b 2 f0; 1g;

5 IF b = 0 THEN

6 z := L(z)

ELSE

7 z := R(z);

8 IF �(z) 6= i THEN STOP1(d; y; h; g; z; j)

OD;

9 x := z;

10 z := L(z);

11 IF g + 1 = hTHEN

12 IF y 6= z THEN STOP2(d; y; h; x);

13 (y; h) := (R(x); h)

ELSE

14 FOR j = g + 2; � � � ; h DO

15 IF �(z) 6= i THEN STOP3(d; y; h; g; x; z; j);

16 z := R(z)

OD;

17 IF y 6= z THEN STOP4(d; y; h; g; x; z);

18 (y; h) := (R(x); g + 1)

Table 2. Procedure GUESSUNCLE(y; h; d)

Proposition 6. If for an input graph (V; �; L;R) the subgraph T

d

(v

1

) is a tree,

then NEXT(y; h; d) works reach-unambiguously for each 0 � h � d and each

y 2 T

d

(v

1

).

Proof: NEXT is deterministic except for its subprocedure GUESSUNCLE,

which is activated in the situation of Figure 1: There is a node x with d(v

1

; x)) =

g for some g < h such that R

h�g�1

(L(x)) = y. Since g < d and T

d

(v

1

) is a tree,

there is exactly one path leading from v

1

to x. First, this path is guessed non-

deterministically. After that the condition R

h�g�1

(L(x)) = y can be checked

deterministically.

During the nondeterministic process there are several possibilities to make

wrong guesses which all end up in STOP states. STOP1 is reached if the current

node is a leaf and thus has no outgoing edge. That is, while trying to guess a

path of length g we got stuck after j steps. STOP2 indicates in the case g = h�1

that the guessed path didn't hit y. STOP3 is reached, if R

h�g�1

(L(x)) does not

exist. Finally, STOP4 means that we guessed a path of length h which doesn't

lead to y.

In all these cases the actual values of the program variables uniquely deter-

mine the computational history which led to the STOP state, since T

d

(v

1

) was

assumed to be a tree. To make this more precise, with each STOP state the rele-

vant variables are explicitly listed. Thus the computation is reach-unambiguous.

2

It should be remarked that we couldn't replace NEXT and GUESSUNCLE

by something using the Immerman-Szelepcs�eyi procedure ([11,19]) since this in-

herently admits an exponential number of possible computation before reaching

an ACCEPT, REJECT, or STOP state. Thus it could only be unambiguous but

never reach-unambiguous. The advantage of NEXT and GUESSUNCLE is that

they stop early enough such that the complete computational history is uniquely

determined by the program variables and the input. In this way we are able to

avoid a superpolynomial number of (rejecting) computations.

With the help of the previous proposition we are now able to prove our main

result.

Theorem 7. L

ru

2 RUSPACE(logn):

Proof: The logspace algorithm for checking that T (v

1

) is a tree for a given

input graph G = (V; �; L;R) is given in Table 3. Obviously, this algorithm uses

1 reached:= false;

2 FOR d = 1; 2; � � � ; n� 2 DO

3 (y; h) := (v

1

; 0);

4 just-begun := true;

5 WHILE (y; h) 6= (v

1

; 0) OR just-begun = true DO

6 just-begun := false;

7 IF v

n

2 fL(y); R(y)g THEN reached:= true;

8 IF h = d AND �(y) = i THEN

9 (y

0

; h

0

) := (v

1

; 0);

10 just-begun

0

:= true;

11 WHILE (y

0

; h

0

) 6= (v

1

; 0) OR just-begun

0

= true DO

12 just-begun

0

:= false;

13 IF y

0

2 fL(y); R(y)g THEN REJECT1(d; y; y

0

; h

0

);

14 IF h

0

= d AND y 6= y

0

AND �(y

0

) = i THEN

15 IF fL(y

0

); R(y

0

)g \ fL(y); R(y)g 6= ; THEN

16 REJECT2(d; y; y

0

);

17 NEXT(y

0

; h

0

; d)

OD;

18 NEXT(y; h; d)

OD

OD;

19 IF reached THEN ACCEPT ELSE REJECT3

Table 3. Program to check the tree property of T (v

1

)

only O(logn) space. Further on, there exists an accepting computation if and

only if T (v

1

) is a tree and v

n

2 T (v

1

). That is, this a nondeterministic logspace

algorithm recognizing L

ru

. It is deterministic except for the calls of NEXT in

lines 17 and 18. The cooperation of the main programm with its subroutines

works in a way that the control is given back to the main program unless a

STOP occurred. In that case the whole computation stops without acceptance.

If a REJECT is reached in the main program the computation is terminated as

well, but with the knowledge that this input doesn't belong to L

ru

.

We will now show that the algorithm sketched in the previous tables works

reach-unambiguously. First, we may assume the graphs T

0

(v

1

) and T

1

(v

1

) to be

trees, since by assumption our graphs contain neither double edges nor self-loops.

(This could be tested deterministically in advance.)

The program searches in a breadth �rst way for ambiguities in the graphs

T

2

(v

1

); T

3

(v

1

); � � � ; T

n�1

(v

1

). It doesn't start to look over T

d+1

(v

1

) unless d � 1

or T

d

(v

1

) turned out to be a tree in the previous \stop-free" execution of the

FOR loop in line 2. If this was the case, we traverse T

d

(v

1

) with the help of

NEXT in line 18. For every node y 2 T

d

(v

1

) on this tour with d(v

1

; y) = d

and �(y) = i, that is for every leaf of T

d

(v

1

) which is not a leaf in T (v

1

), L(y)

and R(y) are compared with every y

0

2 T

d

(v

1

). In case of any coincidence we

end up in state REJECT1 which indicates the existance of two paths of di�erent

length from v

1

to y

0

. Otherwise, we compare L(y) and R(y) with L(y

0

) and R(y

0

)

for every y

0

2 T

d

(v

1

) with d(v

1

; y

0

) = d; �(y

0

) = i, and y 6= y

0

. In case of any

coincidence we end up in state REJECT2 which indicates the existance of two

di�erent paths of the same length leading from v

1

to either L(y

0

) or R(y

0

). If

both REJECT1 and REJECT2 have been avoided, we know that T

d+1

(v

1

) is a

tree. After doing this for d = 1; � � � ; n � 2 without reaching a STOP state we

know that T

n�1

(v

1

) = T (v

1

) is a tree. Finally, we accept if a path from v

1

to v

n

had been detected. Otherwise, we end up in state REJECT3.

Since procedure NEXT and hence GUESSUNCLE are only activated on sub-

graphs T

d

(v

1

) which have been shown to be trees before, they work reach-unam-

biguously. Thus the whole program, being deterministic except for the call of

NEXT, works reach-unambiguously, as well, since NEXT computes a single-

valued function by either stopping or computing a successor value which is

uniquely determined by the input. 2

Corollary 8. L

ru

is RUSPACE(logn){complete.

With [13] this implies that we can constructively enumerate the reach-unam-

biguous logspace languages:

Corollary 9. RUSPACE(logn) is recursively presentable

By changing the main program to check the tree property of T (x) not only for

x = v

1

but for every x 2 V gives us a reach-unambiguous program to recognize

mangroves:

Corollary 10. L

su

2 RUSPACE(logn)

We remark, that this program is not strongly unambiguous.

We summarize the relations between unambiguous classes and hardest lan-

guages in the Figure 2.

NSPACE(log n) �

L

u

USPACE(log n)

RUSPACE(log n)
�

L

ru

L

su

StUSPACE(log n)

�

�

@

@

@

@

!

!

!

!

!

The three unambiguous classes seem to

be weaker than the corresponding reach-

ability problems. The NSPACE(log n)-

completeness of L

u

indicates that we

should not expect USPACE(log n)-

completeness. The more surprising is the

RUSPACE(log n)-completeness of L

ru

Fig. 2. Unambiguous logspace classes and reachability problems

5 Discussion and open questions

Considering the results of the previous section, it is natural to ask whether

StUSPACE(logn) or even RUSPACE(logn) collapse down to DSPACE(logn).

One fact speaking against equivalence, is that the unambiguous linear context-

free languages are contained in StUSPACE(logn) but still are not known to be

in DSPACE(logn).

Theorem 7 and Corollary 10 presented reach-unambiguous algorithms to rec-

ognize L

ru

and L

su

. None of the two works strongly unambiguous since the

unreachable situation that GUESSUNCLE is activated on a nontree-like sub-

graph inherently results in an ambiguous behaviour. The open question here is,

whether L

su

could be RUSPACE(logn)-complete, too.

The approach of Theorem 7 neither works for USPACE(logn) and L

u

. But

nevertheless we obtain with L

ru

the �rst example of a single and explicit lan-

guage which is known to be in USPACE(logn) and which is not known to be

in DSPACE(logn). Compare this with the situation of the primality problem

which is known to be in UP but not known to be in P ([9,15]). In view of the

lack of complete problems for UP the primality problem and its relatives are the

natural candidates for a problem in UP n P. This role could now be played for

USPACE(logn) vs. DSPACE(logn) by L

ru

.

Finally, we would like to draw the attention of the reader to the struc-

tural similarity of reach-unambiguity and symmetry. Both RUSPACE(logn) and

the symmetric logspace class SymSPACE(logn) possess complete problems and

share nearly the same structural upper bounds, which seem to distinguish them

fromNSPACE(logn); they are contained in parity logspace, DSPACE(o(log

2

n)),

and SC

2

([12,16,4,17,2]). Open questions here are: what is the relationship

between SymSPACE(logn) and RUSPACE(logn). Can the inclusion of

SymSPACE(logn) in randomized logspace ([1]) be extended toRUSPACE(logn)?

If so, the deterministic space bound of O(log

2

n= log logn) for RUSPACE(logn)

could be improved to O(log

1:5

n) ([18]). Can the inclusion RUSPACE(logn) �

LOG(DCFL) be extended to SymSPACE(log n)? If so, the currently best known

CREW-PRAM running time for SymSPACE(logn) of O(logn � log logn) demon-

strated in [5] would be improved to O(logn) and, in addition, the new algorithm

would run on the simpler CROW-PRAM [8].

References

1. R. Aleliunas, R. Karp, R. Lipton, L. Lovasz, and C. Racko�. Random walks,

universal sequences and the complexity of maze problems. In Proc. of 20rd FOCS,

pages 218{223, 1979.

2. E. Allender and K.-J. Lange. StUSPACE(log n) in DSPACE(log

2

n/loglog n). In

Proc. of the 17th ISAAC, 1996. In print.

3. C. Bennet. Time/Space trade-o�s for reversible computation. SIAM J. Comp.,

18:766{776, 1989.

4. G. Buntrock, B. Jenner, K.-J. Lange, and P. Rossmanith. Unambiguity and few-

ness for logarithmic space. In Proc. of the 8th Conference on Fundamentals of

Computation Theory, number 529 in LNCS, pages 168{179, 1991.

5. Ka Wong Chong and Tak Wah Lam. Finding connected components in

O(log n log log n) time on the EREW PRAM. In Proceedings of the Fourth An-

nual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 11{20, 1993.

6. S. Cook. Deterministic CFLs are accepted simultaneously in polynomial time

and log squared space. In Proc. of the 11th Annual ACM Symp. on Theory of

Computing, pages 338{345, 1979.

7. S. Cook. A taxonomy of problems with fast parallel algorithms. Inform. and

Control, 64:2{22, 1985.

8. P. Dymond and W. Ruzzo. Parallel RAMs with owned global memory and de-

terministic context-free language recoginition. In Proc. of 13th International Col-

loquium on Automata, Languages and Programming, number 226 in LNCS, pages

95{104. Springer, 1986.

9. M. Fellows and N. Koblitz. Self-witnessing polynomial-time complexity and prime

factorization. In Proc. of the 7th IEEE Structure in Complexity Conference, pages

107{110, 1992.

10. J. Hartmanis and L. Hemachandra. Complexity classes without machines: on com-

plete languages for UP. Theoret. Comput. Sci., 58:129{142, 1988.

11. N. Immerman. Nondeterministic space is closed under complementation. SIAM J.

Comp., 17:935{938, 1988.

12. M. Karchmer and A. Wigderson. On span programs. In Proc. of the 8th IEEE

Structure in Complexity Theory Conference, pages 102{111, 1993.

13. W. Kowalczyk. Some connections between presentability of complexity classes

and the power of formal systems of reasoning. In Proc. of 10th Symposium on

Mathematical Foundations of Computer Science, number 201 in LNCS, pages 364{

368. Springer, 1984.

14. P. Lewis and C.H. Papadimitriou. Symmetric space-bounded computation. Theo-

ret. Comput. Sci., 19:161{187, 1982.

15. G. Miller. Riemann's hypothesis and tests for primality. J. Comp. System Sci.,

13:300{317, 1976.

16. N. Nisan. RL � SC. In Proc. of the 24th Annual ACM Symposium on Theory of

Computing, pages 619{623, 1992.

17. N. Nisan, E. Szemeredi, and A. Wigderson. Undirected connectivity in O(log

1:5

n)

space. In Proc. of 33th Annual IEEE Symposium on Foundations of Computer

Science, pages 24{29, 1992.

18. M. Saks and S. Zhou. RSPACE(s) � DSPACE(s

3=2

). In Proc. of 36th FOCS,

pages 344{353, 1995.

19. R. Szelepcs�enyi. The method of forcing for nondeterministic automata. Acta

Informatica, 26:279{284, 1988.

20. A. Wigderson. NL/poly �

L

L/poly. In Proc. of the 9th IEEE Structure in

Complexity Conference, pages 59{62, 1994.

