
Unambiguity of Circuits

Klaus{J�orn Lange

�

Institut f�ur Informatik

Technische Universit�at M�unchen

Arcisstr. 21

D-8000 M�unchen 2

Abstract

The concept of unambiguity of circuits is considered. Several classes of unambiguous circuitfamilies within

the NC-hierarchy are introduced and related to unambiguous automata and to PRAM's with exclusive write-

access. In particular, we show CREW-TIME(log

k

n) = UnambAC

k

for each positive integer k.

1 Introduction

A central object of interest of parallel complexity theory is the class NC (see e.g. [7]), which can be characterized

by several devices, among them: parallel random access machines (see [9] or [10]), boolean circuits (see [3]),

alternating Turing machines (see [5]), and deterministic and nondeterministic auxilliary push-down automata

(see [6]).

With appropriate complexity bounds these devices recognize exactly the languages in NC. If we take a closer

look on the time or depth bounds, by considering functions of order O(log

k

n) for any �xed k instead ofO(log

O(1)

n)

we get several intertwining hierarchies, the union of which is NC. Located between DSPACE(log n) and P,

these two classes would be separated if those hierarchies could be shown to be proper, i.e.: if it could be shown,

that the increase of time or depth from O(log

k

n) to O(log

k+1

n) leads to di�erent classes for some k. Some of

these hierarchies coincide, thus characterizing the relation between di�erent models of parallel computations. In

particular, the following equivalences have been obtained:

� Time of a CRCW-PRAM, depth of alternation on a Turing machine, and depth of an uniform circuit of

unbounded fan-in (see [21]),

� Time of an nondeterministic auxilliary push-down automaton, Treesize of an alternating Turing machine,

and depth of an uniform circuit of semi-unbounded fan-in (see [18] and [24]), and

� Time of an alternating Turing machine and depth of an uniform circuit of bounded fan-in (see [19]).

In addition, on a less general level, Dymond and Ruzzo showed in [8] a similar relation between time of an

CROW-PRAM and time of a deterministic auxilliary push-down automaton. As we see, this list contains neither

CREW nor EREW-PRAMs, which are not characterized by any other parallel or sequential device, albeit most

PRAM algorithms are working on PRAMs of these types. Our idea to break this isolation is by pursuing the

following relationship between context-free languages and PRAM-types:

{ CFL � CRCW-TIME(log n) [18],

{ UnambCFL � CREW-TIME(log n) [20],

{ DCFL � CROW-TIME(log n) [8].

�

work supported by the Deutsche Forschungsgemeinschaft, SFB 342: TP A4, and by the International Computer Science Institute

It is the aim of this paper to further relate the concepts of exclusiveness and of unambiguity. This we want to

do by considering the concept of unambiguity of circuits. Here we have to distinguish the notions of unambiguity

and of uniqueness. While the �rst one uses uniqueness of an acceptance path as a restriction of computational

power, the second one increases computational power by using uniqueness of an acceptance path as a tool. That

is, in the �rst case we forbid the existence of multiple acceptance pathes while in the second case we might

use this fact to reject a computation. Thus the concept of uniqueness applied to circuits would lead us to use

something like unbounded fan-in gates for unique existence. In contrast to that, an unambiguous circuit has to

restrict ways of multiple acceptance. We will do this in the following way: Just as in a CREW- or EREW-PRAM

we assume the machine and the algorithm to avoid any multiple access to a memory cell and may think, that

in case of violation of this rule the corresponding cell might be destroyed, we assume the circuit to avoid any

multiple 1-Input to OR-gates of unbounded fan-in (resp. multiple 0-Input to AND-gates of unbounded fan-in).

Otherwise, that is if an OR-gate of unbounded fan-in gets two or more 1's as Input, we have no information of

the output of this gate. Unambiguous circuit classes de�ned in this way show very close relationships not only

to CREW-PRAMs but also to unambiguous Turing machines and auxilliary push-down automata (see also [14]

and [15]).

In particular, we will characterize CREW-PRAM's in terms of unambiguous circuits by the equationCREW-

TIME(log

k

n) = UnambAC

k

. This answers an open question posed in [21].

2 Preliminaries

The reader is assumed to be familar with the basic concepts and notations in formal language and computational

complexity theories as they are contained for instance in [11] or [25]. In addition, we often use the notion LOG(A)

to denote the class of all languages reducible by logspace many-one reductions to members of the class A. If

X(f(n)) denotes a complexity class with a resource bound f(n) we let X(pol) be the union of all X(p(n)) over

all polynomials p(n).

In the following we are going to review shortly some concepts and facts of parallel complexity theory. Detailed

de�nitions and constructions may be found in [7], [1], [2], and in [16] or in the cited references.

Circuits

In this subsection we present some basic facts concerning boolean circuits. A circuit C is a �nite acyclic graph.

Nodes of indegree (outdegree) zero are called inputs (outputs). Inner nodes are labelled by boolean functions,

throughout this paper by negations, disjunctions, and conjunctions. The inner nodes are often called gates and

the edges wires. Given an assignement of boolean values to all inputs each gate evaluates to either TRUE (or

1) or FALSE (or 0) according to the interconnection structure of C. If C has just one output, we might use

C to recognize binary languages de�ning L(C) to be the set of assignements to the inputs which let the output

evaluate to TRUE. The size of C is the number of its gates (i.e.: not counting the inputs).

1

The depth of C is

the length of the longest path connecting an input with an output.

A circuit family C is a set fC

n

jn � 0g of circuits, where each C

n

has exactly n inputs. C has polynomial

size i� for some polynomial p(�), the size of each C

n

is bounded by p(n). Similarly, the depth of C is bounded

by log

k

n i� for some constant c > 0 the depth of each C

n

is bounded by c � log

k

n. Further on, C is of bounded

fan-in i� for some positive integer (usually 2) the indegree of each gate in each C

n

is bounded by m. C is of

semi-unbounded fan-in i� no C

n

contains a negation

2

and for some positive integer m in each C

n

the indegree of

each gate labelled as a conjunction is bounded by m. If there is no bound on the indegrees we say that C is of

unbounded fan-in. When working with unambiguous circuits we will distinguish between gates of bounded and

of unbounded fan-in, since these will have to be treated di�erently. Thus, when necessary, we will denote OR

and AND-gates of unbounded fan-in as 9 and 8-gates. This means, that with C there exists a positive integer

1

Sometimes the number of wires is a more appropriate measure. But since we will work with circuits of polynomial and not of

polylogarithmic size, this would make no di�erence

2

To make this concept reasonable we have to assume, that all inputs are given together with their negations, i.e.: each C

n

has

2 � n inputs.

m such that in each C

n

each OR and each AND-gate has a fan-in bounded by m, while each 9 and each 8-gate

within some C

n

may have a fan-in as large as the size of C

n

.

In order to relate classes of languages de�ned by circuits with complexity classes it is necessary to consider

uniform circuit families by requiring that the members of a circuit family are \su�ciently similar" with each

other. There are several uniformity conditions which fortunately turned out to be equivalent in most cases (see

[19]). Throughout this paper we will use the notion ofDSPACE(log n)-uniformity: C is called DSPACE(log

n)-uniform i� the mapping n 7! hC

n

i is computable within logarithmic space. Here hC

n

i denotes an adequate

coding of a circuit. We call the logspace machine computing this mapping the uniformity machine.

For k � 1 we will denote by NC

k

(SAC

k

, AC

k

respectively) the families of languages recognizable by

DSPACE(log n)-uniform, polynomially sized, O(log

k

n)-depth bounded circuit families of bounded (semi-

unbounded, unbounded respectively) fan-in

3

. The following relations are well-known:

NC

k

� SAC

k

� AC

k

� NC

k+1

and

NC

1

� DSPACE(logn) � NSPACE(logn) � SAC

1

� AC

1

:

It has to be mentioned, that throughout this paper only layered circuits are considered. That is, we assume

that for every gate a in a circuit C there exists a height h(a) such that every directed path from any input to

a has length h(a); in particular, each predecessor of a has height h(a) � 1. (Some authors demand, that in a

layered circuit existential and universal gates alternate. In addition, it seems reasonable to include the height

of gates into the description of a layered circuit, i.e.: to let the height function in a uniform circuit family be

computable by the uniformity machine.) This is no restriction for NC, SAC, or AC-circuits. But we were unable

to show a corresponding `normal form' result for the case of unambiguous AC-circuits, introduced in the next

section. On the other hand, all constructions of unambiguous circuits in this paper are of a levelled structure,

in which each level is a circuit of bounded depth and its outputs are given as inputs either to the next level or

to the �nal one. A circuit of this structure can be transformed easily into a layered circuit.

Parallel Random Access Machines

The concept of a PRAM goes back to [9] and [10]. Roughly, a PRAM is a set of Random Access Machines ,called

Processors, working synchronously and communicating via a Global Memory. Each step takes one time unit

regardless whether it performs a local or a global (i.e.: remote) operation. All processors execute in parallel the

same sequence of statements S

1

, S

2

, : : : , S

K

which is independent of the input. Let each processor have Local

Memory cells L

1

, L

2

, : : :, L

q(n)

, and let G

1

, G

2

, : : :, G

q(n)

be the cells of global memory, where n is the length

of the input, which is given in G

1

,: : :,G

n

, and q is a polynomial. A computation has ended if all processors have

reached a HALT -statement. Each Statement S

�

is of one of the following types:

Indirect Writes:

G

L

a

= L

b

and L

L

a

= L

b

Indirect Reads:

G

a

= L

L

b

and L

a

= L

L

b

Binary Operation:

L

a

= L

b

� L

c

4

Constants:

L

a

= hconstanti; L

a

= LENGTH

5

; or L

a

= PIN

6

Jumps:

GOTO S

a

or IF L

a

> 0 THEN GOTO S

b

3

Actually, a reasonable de�nition of NC

1

seems to require a uniformity notion more delicate thanDSPACE(log n)-uniformity

yielding the probably smaller class ATIME(log n) (see [19]).

4

Since the wordlength is logarithmically bounded and since we deal with DSPACE(log n)-uniform circuits, we can admit

arbitrary DSPACE(log n)-computable functions.

5

This gives the length of the input, i.e.: n

6

This gives the Processor Identi�cation Number

Others:

HALT orNOOP :

Throughout this paper we will consider PRAMs where both the number of processors and all occuring

data and addresses are bounded polynomially in the length of the input; the later condition is equivalent to a

logarithmic bound on the word length of all global and local memory cells.

There are several versions of this device concerning the way how the simultaneous memory access is handled.

There are three versions concerning the write access: a machine with Concurrent Write access allows the simul-

taneous write access of several processors to the same memory cell in one step. There are several conventions

how to solve this conict, i.e.: how to determine which will be the new value of the referenced cell. Fortunately,

in our context all these methods are equivalent. A machine with Exclusive Write access forbids simultaneous

writes and requires that in each step at most one processor may change the contnent of a global memory cell. A

machine with Owner Write access is even more restricted by assigning to each cell of global memory a processor,

called the Write-Owner, which is the only one to have write access to this memory cell. Correspondingly, we get

three ways to manage read access to the global memory: Concurrent Read, Exclusive Read, and Owner Read. In

this way we get nine versions of PRAMs, denoted as XRYW-PRAMs with X;Y 2 fO;E;Cg, where XR speci�es

the type of read access and YW that of the write access, where the access types are designated by their initials.

By XRYW-TIME(f(n)) we denote the class of all languages recognizable in time f by XRYW-PRAMs with

a polynomial number of processors. By de�ntion we know that XRYW-TIME(f) � X'RY'W-TIME(f) for

X,X',Y,Y' 2 fO;E;Cg if X � X' and Y � Y' where we set O � E � C.

By [21] and [17] we have the following relationships for k � 1:

CRCW � TIME(log

k

n) = AC

k

;

NC

k

� OROW� TIME(log

k

n) ;

DSPACE(logn) � OROW�TIME(log n) ;

ORCW �TIME(f) = ERCW �TIME(f) ; and

OREW � TIME(f) = EREW � TIME(f) :

Remark 1 In the most powerful model, the CRCW-PRAM, the global memory behaves like a shared memory,

since each processor can access each cell of global memory. In the most restricted model, the OROW-PRAM,

however, the global memory is deteriorated to a set of one-directional channels between pairs of processors. Thus

an OROW-PRAM is something like a completely connected synchronous network. Although this model seems

to be much more restricted, the relation

NC

k

� OROW� TIME(log

k

n) � CRCW �TIME(log

k

n) = AC

k

�NC

k+1

indicates that it is a model as \parallel" as a CRCW-PRAM.

Auxilliary Push-Down Automata

Another device interesting in this context is the Auxilliary Push-Down Automaton which might be thaught

of as a push-down automaton augmented with a S(n)-space bounded working tape and two-way access to its

input. Cook showed in [6] that both the deterministic and the nondeterministic version of this automaton type

recognize exactly the class

S

c>1

DTIME(c

S(n)

) of languages acceptable in deterministic time expontial in S(n).

Throughout this paper we will work with the case S(n) = dlog ne.

By restricting this device with an additional time bound we get classes down in the NC-hierarchy. Let

DAuxPDA-TIME(f(n)) be the class of all languages recognizable by deterministic auxilliary push-down au-

tomata with logarithmically space bounded working tapes which are time bounded by O(f(n)). NAuxPDA-

TIME(f(n)) denotes the corresponding nondeterministic class. By [24], [19], and [8] we have the following

relationships for k � 1:

DAuxPDA� TIME(pol) = CROW� TIME(logn);

NAuxPDA� TIME(c

log

k

n

) = SAC

k

; and

NC

k

� DAuxPDA� TIME(c

log

k

n

):

Further on, Sudborough showed in [23]

DAuxPDA� TIME(pol) = LOG(DCFL) andNAuxPDA�TIME(pol) = LOG(CFL):

Finally, we mention in passing, that many classes de�ned by circuits, PRAMs, or APDAs possess charac-

terizations in terms of alternation. Thus CRCW-TIME(log

k

n) = AC

k

corresponds to depth of alternation,

NAuxPDA-TIME(c

log

k

n

) = SAC

k

corresponds to treesize bounded alternation, and NC

k

corresponds to

alternating time (see [18], [19], [21], and [24]).

3 Unambiguity

The notion of unambiguity is well known with respect to automata and grammars. Usually, an nondeterministic

automaton M is said to be unambiguous, if for every input there is at most one accepting computation in

M . Of course, every deterministic automaton is unambiguous. This leads in a natural way to the classes

UnambSPACE(f) and UnambAuxPDA-TIME(f).

This concept is sometimes called weak unambiguity to distinguish it from the alternative notion of strong

unambiguity, in which between any two con�gurations there is at most one computation path, which leads from

the �rst con�guration to the second one. Weak unambiguity demands this for pairs of initial and accepting

con�gurations, only. In this way we get the classes StUnambSPACE(f) and StUnambAuxPDA-TIME(f)

(see [4]). By de�nition we have

DSPACE(f) � StUnambSPACE(f) � UnambSpace(f) �NSPACE(f) and

DAuxPDA�TIME(f) � StUnambAuxPDA�TIME(f) �UnambAuxPDA�TIME(f) � NAuxPDA�TIME(f):

Considering the families CFL of context-free languages, DCFL of deterministic context-free languages, LIN of

linear context-free languages, and DLIN

7

of languages accepted by deterministic push-down automata, which

do not push a symbol after a pop-move was performed, the following equations are well-known [22], [23]:

(*)

NAuxPDA-TIME(pol) = LOG(CFL),

DAuxPDA-TIME(pol) = LOG(DCFL),

NSPACE(logn) = LOG(LIN), and

DSPACE(logn) = LOG(DLIN).

Hence, one might be tempted to assume

(**)

UnambAuxPDA-TIME(pol)

?

= LOG(UnambCFL) and

UnambSPACE(log n)

?

= LOG(UnambLIN)

where UnambCFL (UnambLIN resp.) is the family of languages generated by unambiguous (linear)

context-free grammars. Unfortunately, the corresponding constructions in (*) preserve determinism, but not

unambiguity.

If we want to transfer these concepts to boolean circuits, we have to exchange the notion of an accepting

computation by that of an accepting subcircuit. In this way we would consider circuits, which for all inputs have

at most one accepting subcircuit, which is equivalent to the fact, that no member of a certain, input-dependent

set of \relevant" OR-gates is ever reached by more than one predecessor carrying a 1. A closer investigation

shows, that a more adequate notion is obtained by demanding this only for gates of unbounded fan-in and, in

addition, by putting a dual restriction on AND-gates, too. Thus, we come to the following de�nition.

7

DLIN, which is easily seen to be DSPACE(log n)-complete even with respect to NC

1

-reductions, is to be distinguished from

the Deterministic Linear Languages introduced in [12], which are contained in NC

1

De�nition 1 Let C be a circuit on n inputs built up by AND- and OR-gates of bounded fan-in and by 9- and

8-gates of unbounded fan-in. C is unambiguous if for all 2

n

assignment of the inputs no 9-gate receives a 1 by

two or more of its predecessors and no 8-gate receives a 0 by two or more predecessors. A circuit family C

= fC

n

jn � 0g is called unambiguous if C

n

is unambiguous for each n.

This notion may be illustrated by the idea of a `vulnerable gate': We might think that all gates of unbounded

fan-in in an unambiguous circuit are vulnerable, i.e.: may be destroyed if not handled properly. Thus, a vulnerable

9-gate will correctly output a 0 if none of its inputs is equal to 1 and will output a 1 if exactly one of its inputs

is a 1. But if there are more than one inputs carrying a 1 the gate is overloaded and, being vulnerable, will be

destroyed. After that, we have no information concerning the output of this gate. Thus, in an unambiguous

circuit all gates of unbounded fan-in are vulnerable and the unambiguity of the circuit implies that for no input-

assignement any vulnerable gate is overloaded. Thus, we see that this notion of unambiguity corresponds to

strong unambiguity. When constructing unambiguous circuits, terms like unambiguous disjunctions will be used

to indicate that certain OR-gates will for no input receive more than one value 1 from their predecessors.

We mention in passing that in analogy to unambiguous context-free grammars, both the unambiguity of a

circuit family and the exclusiveness (concerning read or write access) of a PRAM algorithm are undecidable.

Let us at this point stress the fundamental di�erence between the notions of unambiguity, that is demanding

the uniqueness of certain computations, and of uniqueness, that is excluding inputs which are accepted by more

than one computation. While the �rst one is a restriction and thus unambiguous classes are contained in the

corresponding nondeterministic classes, the later one is a tool and usually classes de�ned by uniqueness are

incomparable with or containing the corresponding nondeterministic classes.

Using De�nition 1 to de�ne an unambiguous version of AC

k

, k � 0, leads straightforward to the family

UnambAC

k

. For SAC

k

, however, we have two di�erent possibilies which will lead to the familiesUnambSAC

k

and UnambS

E

AC

k 8

:

De�nition 2 Let UnambAC

k

be the family of all languages recognizable by logspace-uniform unambiguous

circuit families of polynomial size and depth bounded by O(log

k

n) using both AND-gates and OR-gates of

bounded as well as of unbounded fan-in. UnambSAC

k

denotes the class of all languages recognizable by the

corresponding circuit families using only 9-gates of unbouded fan-in and AND-gates of bounded fan-in. (Thus,

in this case all disjunctions are \vulnerable"). Finally, UnambS

E

AC

k

consists of all languages recognizable

by the corresponding circuit families using 9-gates of unbounded fan-in, AND-gates of bounded fan-in, and in

addition OR-gates of bounded fan-in.

Thus the di�erence between UnambSAC and UnambS

E

AC-circuits is that in the later ones we may use small

OR-gates which are not vulnerable.

Proposition 3 NC

k

� UnambSAC

k

for k � 1.

Proof: Let C be an NC

k

-circuit.Without loss of generality we may assume C to be layered. Since we can

modify an NC

k

-circuit C without leaving NC

k

in such a way that for every gate a in C there exists a gate �a

computing the complement of a, we can replace a robust OR of two gates a and b by the OR of a^ b, �a^ b, and

a ^

�

b, which can never get a multiple input of 1's. This results in an layered UnambSAC

k

-circuit (which does

not contain gates of unbounded fan-in!). 2

As a consequence the UnambXAC

k

-hierarchies intertwine with the NC-hierarchy:

NC

k

� UnambSAC

k

� UnambS

E

AC

k

� UnambAC

k

� AC

k

� NC

k+1

and UnambS

E

AC

k

� SAC

k

� AC

k

:

SAC

k

and UnambAC

k

seem to be incomparable, since SAC

k

coincides with NAuxPDA-TIME(c

log

k

n

)

([24]) and UnambAC

k

will be shown to be equal to CREW-TIME(log

k

n).

8

The superscript \E" stands for \extended". In [13] and [14] UnambSAC

k

was called UnambRAC

k

and UnambS

E

AC

k

was called UnambSAC

k

. But meanwhile the former UnambRAC-families turned out to be the more appropriate unambiguous

version of the SAC-families

4 Results

In this main section we will investigate unambiguous circuits and thereby relate the concepts of unambiguity

and of exclusiveness. Let us �rst consider the following relations known in the nondeterministic case:

NL � SAC

1

= NAuxPDA�TIME(pol):

We are now going to show the following in the unambiguous case:

StUnambSPACE(logn) � UnambSAC

1

� UnambAuxPDA(pol):

Proposition 4 StUnambSPACE(log n) � UnambSAC

1

Idea of proof: Given a logspace machine A with polynomial upper bound p(n) of the running time, we let

a uniformity machine B �rst compute n := jvj and T := p(n) for a given input v. B works with gates labelled

hK;K

0

; ti meaning that the con�guration K of A reaches K

0

in exactly t steps. The output is a vulnerable

disjunction of all hK

0

;K

f

; ti, where 1 � t � T , K

0

is the starting con�guration, and K

f

is a �nal con�guration.

The usual Savitch-decomposition of hK;K

00

; ti into hK;K

0

; dt=2ei AND hK

0

;K

00

; bt=2ci is unambiguous since

there can be at most one con�guration K', which is reachable from K in exactly dt=2e steps and which reaches

K" within exactly bt=2c steps. Otherwise A wouldn't be strongly unambiguous. Thus, the corresponding gate

labelled hK;K

00

; ti is a vulnerable disjunction (of unbounded fan-in) over all conjunctions of hK;K

0

; dt=2ei with

hK

0

;K

00

; bt=2ci. To make the construction layered, we assume hK;K

00

; ti to belong to the level dlog te. If the levels

of dt=2e and bt=2c are di�erent, we have to insert appropriate delays between the conjunction belonging toK

0

and

hK

0

;K

00

; bt=2ci for each K

0

. In addition, delays are needed between the hK

0

;K

f

; ti-gates and the output 9-gate.

Obviously, the constructed circuit is DSPACE(log n)-uniform (In fact, it is even DLOGTIME-uniform!). 2

Remark 2 This construction does not work for unambiguous logspace Turing machines, since there might

be ambiguous partial computations which are not part of any accepting computation, but might lead to the

destruction of a vulnerable gate. Meanwhile in [4] it was shown, that StUnambSPACE(log n) is even contained

in DAuxPDA-TIME(pol), which is a subset of UnambSAC

1

as will be shown in Theorem 9 below.

Remark 3 As a consequence of proposition 4 we get DSPACE(log n) � UnambSAC

1

. Thus,

DSPACE(log n)-uniformity seems to be an adequate notion, when working with unambiguous circuits of

unbounded or semi-unbounded fan-in.

Since it is possible in a similar way to build for each i UnambSAC

1

-circuits C

i

and C

0

i

which compute whether

the i-th bit of f(v) is 1 or 0 for some logspace computable function f , we get:

Corollary 5 For each k � 1 UnambSAC

k

, UnambS

E

AC

k

, and UnambAC

k

are closed under

LOG-reducibilities.

Proposition 6 UnambSAC

k

� UnambAuxPDA-TIME(c

log

k

n

) for k � 1.

Idea of proof: We apply the corresponding algorithm for showing SAC

k

� NAPDA-TIME(c

log

k

n

). Working

recursively (top-)down from the output gate to input-gates of an UnambRAC

k

-circuit we evaluate an AND-gate

by two recursive calls to its predecessors. For a vulnerable 9-gate we guess nondeterministically but unambigu-

ously the uniquely existing predecessor carrying a 1. 2

Observe that this algorithm does not work strongly unambiguously: in case of rejection there are several

paths leading to the same (rejecting) con�guration!

Remark 4 It seems to be at least di�cult to extend Proposition 6 to the class UnambS

E

AC

1

. The trick to

evaluate gates of bounded fan-in `deterministically' by working through both predecessors does not work for OR-

gates: If an OR-gate has two vulnerable 9-gates as predecessors, one of them carrying a 1, then the OR-gate will

get a 1, too, regardless which (computation) path we will follow for the 9-gate carrying a 0. Thus our simulating

machine would no longer work (weakly) unambiguously. This explanation shows that UnambAPDA-machines

can simulate languages accepted by UnambS

E

AC-circuits under the restriction, that no OR-gate is least common

ancestor of any two vulnerable 9-gates. (It could be remarked here that the technique of Proposition 3 to get

rid of robust OR-gates is not applicable here, since we do not have negations in SAC-circuits).

In the following we will relate CREW-PRAM's and unambiguous AC-circuits.

Theorem 7 UnambAC

k

� CREW-TIME(log

k

n) for k � 1.

Idea of Proof: As in the usual evaluation of uniform circuits by PRAMs we �rst simulate the uniformity-

machine and associate with each gate a a cell of global memory Result(a) and with each wire a processor. In

addition, we use for each gate a a global memory cell Reached(a) which is initially set to 1 for all input gates, and

to 0 otherwise. This can be performed by a CREW-PRAM since the uniformity-machine is logspace bounded

and DSPACE(logn) � CREW-TIME(logn). Then, as in [21], we run through a loop of length equal to the

depth of the simulated circuit. For the simulation of a gate a of bounded fan-in the process associated with the

wire leading to the �rst son of a sequentially asks the Reached-bits of all predecessors of a. As soon, as they are

set, it computes Result(a) and sets Reached(a) to 1.

The simulation of an 9-gate a of unbounded fan-in is done in the following way: As soon, as the predecessors

of a are marked as reached (simultaneously, since the simulated circuit is layered!), the corresponding processors

overwrite Result(a) with a 1, if their predecessor carries a 1 in its result-cell. Then the �rst son of a sets

Reached(a) to 1.

Since the simulated circuit is unambiguous, there can be at most one successful predecessor, which gives us

a CREW-algorithm. 8-gates are treated in a dual way. 2

This leaves open the question for showing CREW-TIME(log

k

n) � UnambAC

k

in analogy to CRCW-

TIME(log

k

n) � AC

k

. To do so, it might seem necessary to do the AC

0

-computations in [21] with vulnerable

gates, which should be a hard task. But by making intensive use of the logarithmic bound of the word length, it

will be possible to show the converse of Theorem 7. As a preparation we begin with considering CROW-PRAM's.

First of all, we get as a consequence of Corollary 5:

Corollary 8 CROW-TIME(log n) � UnambAC

1

Proof: CROW-TIME(log n) � DAuxPDA-TIME(pol) (by [8]) � LOG(DCFL) (by [23])

� LOG(UnambCFL) � LOG(UnambAC

1

) (see [20]) � UnambAC

1

(by Corollary 5.) 2

We now strengthen this result by showing:

Theorem 9 CROW-TIME(log

k

n) � UnambSAC

k

for k � 1.

Proof: The proof is based on the recognition of CROW-TIME(logn)-languages by deterministic auxilliary

push-down automata in polynomial time due to Dymond and Ruzzo. The simulation following ideas of Fortune

and Wyllie or Goldschlager begins with DAuxPDA-TIME(pol)-computable functions STATE, GLOBAL, and

LOCAL, stating

i) STATE(p,t) = j , Processor p executes at step t program line j,

ii) GLOBAL(t,a) = b , The global memory cell a contains after step t the value b, and

iii) LOCAL(p,t,a) = b , The memory cell a of processor p after step t contains the value b

Here 1 � p < P , where P is the number of processors, which is polynomial in n, 1 � t � T , where T is the

running-time, which is O(logn), and 1 � j � K, where K is the length of program of each processor, which is

O(1).

The values of these equations are determined recursively in the following way:

Recursion for STATE(p,t) = � :

We set STATE(p,1) = 1 and for t � 1 STATE(p,t) = j ,

Unconditional jump:

�

9

1���K

Statement S

�

is of the form \GOTO S

j

": STATE(p; t � 1) = �

�

OR

Successful conditional jump (only for t � 2):

�

9

1���K

Statement S

�

is of the form \IF L

a

> 0 THEN GOTO S

j

" :

STATE(p; t � 1) = � AND NOT LOCAL(p; t� 2; a) = 0

�

OR

Unsuccessful conditional jump (only for t � 2):

�

If statement S

j�1

is of the form \IF L

a

> 0 THEN GOTO S

b

":

STATE(p; t � 1) = j � 1 AND LOCAL(p; t � 2 ; a) = 0

�

OR

Otherwise:

�

If statement S

j�1

is not a jump : STATE(p; t � 1) = j � 1

�

:

Recursion for GLOBAL(t,i) = j :

Let p be the (index of the) write-owner of global memory cell G

i

. p is computable in logarithmic space ac-

cording to our model of a CROW-PRAM and thus can be �nd out by the uniformity machine of the circuit to be

constructed. We set GLOBAL(0,i) = j if j is the i-th bit of the input for i � n, GLOBAL(0,i) = 0 for i > n, and

for t � 1 we have GLOBAL(t,i) = j ,

The content of G

i

was rewritten in step t:

�

9

1���K

Statement S

�

is of the form \G

L

a

= L

b

":

STATE(p; t) = � AND LOCAL(p; t � 1 ;a) = i :AND LOCAL(p; t � 1 ; b) = j

�

OR

p accessed the global memory without a�ecting G

i

:

�

9

1���K

Statement S

�

is of the form \G

L

a

= L

b

":

STATE(p; t) = � AND NOT LOCAL(p; t � 1 ;a) = i AND GLOBAL(t � 1 ; i) = j

�

OR

Otherwise:

�

9

1���K

Statement S

�

is not of the form \G

L

a

= L

b

": STATE(p; t) = � AND GLOBAL(t � 1 ; i) = j

�

:

Recursion for LOCAL(p,t,i) = j :

The de�nition of LOCAL(p,t,i) is a bit more extensive. By de�nition we know LOCAL(p,0,i) = 0 and for t � 1 we

have LOCAL(p,t,i) = j ,

Read from global memory:

�

9

1���K

Statement S

�

is of the form \L

i

= G

L

b

" :

STATE(p; t) = � AND (9

0�a�q(n)

LOCAL(p; t � 1 ; b) = a AND GLOBAL(t � 1 ;a) = j)

�

OR

Read from global memory without a�ecting L

i

:

�

9

1���K

Statement S

�

is of the form \L

a

= G

L

b

", a 6= i :

STATE(p; t) = � AND LOCAL(p; t � 1 ; i) = j

�

OR

Indirect local write:

�

9

1���K

Statement S

�

is of the form \L

L

a

= L

b

":

STATE(p; t) = �AND LOCAL(p; t � 1 ; a) = i AND LOCAL(p; t � 1 ; b) = j

�

OR

Indirect local write withou a�ecting L

i

:

�

9

1���K

Statement S

�

is of the form \L

L

a

= L

b

":

STATE(p; t) = �AND NOT LOCAL(p; t � 1 ;a) = i AND LOCAL(p; t � 1 ; i) = j

�

OR

Indirect local read:

�

9

1���K

Statement S

�

is of the form \L

i

= L

L

b

":

STATE(p; t) = �AND (9

0�a�q(n)

LOCAL(p; t � 1 ; b) = a AND LOCAL(p; t � 1 ;a) = j)

�

OR

Indirect local read without a�ecting L

i

:

�

9

1���K

Statement S

�

is of the form \L

a

= L

L

b

",a 6= i :

STATE(p; t) = � AND LOCAL(p; t � 1 ; i) = j

�

OR

Binary operation:

�

9

1���K

Statement S

�

is of the form \L

i

= L

a

� L

b

" : STATE(p; t) = � AND

(9

0�a

0

�q(n)

9

0�b

0

�q(n)

j = a

0

� b

0

: LOCAL(p; t � 1 ;a) = a

0

AND LOCAL(p; t � 1 ; b) = b

0

)

�

OR

Binary operation not a�ecting L

i

:

�

9

1���K

Statement S

�

is of the form \L

c

= L

a

� L

b

", c 6= i :

STATE(p; t) = � AND LOCAL(p; t � 1 ; i) = j

�

OR

PIN, LENGTH or constant assignement:

�

9

1���K

Statement S

�

is of the form \L

i

= PIN" and p = j , \L

i

= LENGTH" and n = j, or \L

i

= j" :

STATE(p; t) = �

�

OR

PIN, LENGTH or constant assignement not a�ecting L

i

:

�

9

1���K

Statement S

�

is of the form \L

a

= PIN", \L

a

= LENGTH" or \L

a

= j" , a 6= i :

STATE(p; t) = � AND LOCAL(p; t � 1 ; i) = j

�

OR

Otherwise:

�

9

1���K

Statement S

�

is not of the form \L

a

= � � �" : STATE(p; t) = � AND LOCAL(p; t � 1 ; i) = j

�

In order to convert this structure into a circuit we will replace the predicats STATE(p,t) = j, GLOBAL(t,i) =

j, and LOCAL(p,t,i) = j by gates labelled h STATE(p,t),j i, h GLOBAL(t,i),j i, and h LOCAL(p,t,i),j i. This is

possible , since we assumed a logarithmic bound on the word length and hence have both an address space and a

data space of polynomial size. Contrast this with the construction of Stockmeyer and Vishkin in [21], where data

and addresses were coded bitwise. Their result implies a kind of normal form, stating that CRCW-PRAMs with

a polynomial number of processors and a polynomial time bound can be transformed into equivalent machines

with a logarithmic bound on the word length. But this construction heavily depends in the use of the concurrent

write feature.

According to the recursion structures of STATE(p,t) = j, GLOBAL(t,i) = j, and LOCAL(p,t,i) = j the cor-

responding circuits will consist of negations, conjunctions of bounded fan-in, and disjunctions some of which are

of unbounded fan-in. In this way it is obvious to translate these recursions into a layered and DSPACE(log n)-

uniform AC

k

-circuit. It is to be observed, that the outermost disjunctions are not only bounded (by K), but are

unambiguous, too, since the statement a processor is executing at a certain time is uniquely determined. Further

on, the unbounded disjunctions used in the formulation of binary operations are unambiguous, since for each

paur (a

0

; b

0

) of possible values of LOCAL(p,t,a) and LOCAL(p,t,b) exactly one is \true", i.e.: there is exactly

one pair (a

0

; b`) ful�lling both LOCAL(p,t,a) = a' and LOCAL(p,t,b) = b'.

Thus, in order to provide an UnambSAC

k

-circuit the only remaining task is to get rid of negations. But this

can be done, since all data and addresses are polynomially bounded; an expression NOT LOCAL(p; t ; i) = j is

simply translated into a disjunction of all values unequal to j:

NOT LOCAL(p; t ; i) = j , 9

0�b<j

LOCAL(p; t ; i) = b OR 9

i<b�q(n)

LOCAL(p; t ; i) = b :

This construction is unambiguous, since the content of any cell of memory is uniquely determined at any time.

2

As a consequence we get:

Corollary 10 DCFL � UnambSAC

1

Extending this construction, we come to the main result of this paper:

Theorem 11 CREW-TIME(log

k

n) � UnambAC

k

for k � 1.

Proof: In order to extend the simulation of Theorem 9 to CREW-PRAMs we have to change the recursion

structure of the equations for GLOBAL(t,i). The processor p writing on a global memory cell no longer can be

computed in advance by the uniformity machine, but now has to be determined by the circuit. This is done by

the following recursion: For t � 1 we have GLOBAL(t,i) = j ,

The content of G

i

has been modi�ed in step t:

�

9

1�p�P (n)

9

1���K

Statement S

�

is of the form \G

L

a

= L

b

":

STATE(p; t) = � AND LOCAL(p; t � 1 ; a) = i AND LOCAL(p; t � 1 ; b) = j

�

OR

The content of G

i

remained unchanged in step t:

�

GLOBAL(t � 1 ; i) = j AND NOT

�

9

1�p�P(n)

9

1���K

Statement S

�

is of the form \G

L

a

= L

b

":

STATE(p; t) = � AND LOCAL(p; t � 1 ; a) = i

�

�

:

Replacing this construction for the corresponding part used in the proof of Theorem 9 we get a layered

DSPACE(log n)-uniform AC

k

-circuit.Since the simulated machine is a CREW-PRAM, we know there are no

two processors p and p

0

, p 6= p

0

, such that at any time t p executes a statement of the form \G

L

a

= L

b

", p

0

executes a statement of the form \G

L

a

0

= L

b

0

", and LOCAL(p,t,a) coincides with LOCAL(p

0

,t,a

0

). But this

implies that the disjunctions over 1 � p � P (n) are unambiguous, too. this proves our theorem.

2

Corollary 12 CREW-TIME(log

k

n) = UnambAC

k

for k � 1.

Remark 5 Although the original method of [8] works on a DAuxPDA and helps us in simulating a CREW-

PRAM by an unambiguous circuit, it does not seem possible to use it directly to show CREW-TIME(log

n) � UnambAuxPDA-TIME(pol), since we use negations (or equivalently, unambiguous 8-gates) to treat

the case, that a global memory cell remains unchanged. Otherwise we would have CREW-TIME(log

k

n) �

SAC

k

!

Rytter was able in [20] to recognize unambiguous context-free languages with CREW-PRAMs in logarithmic

time, which gives us

Corollary 13 UnambCFL � UnambAC

1

5 Discussion

Applying the concept of unambiguity, well-known from Fomal Language Theory, to circuits provided a new

characterization of CREW-PRAMs

9

. More precisely we may say, that the relation of a CREW-PRAM to a

CRCW-PRAM is comparable to that of strong unambiguity to nondeterminism. That is why we introduced

unambiguous circuits in a way corresponding to strong unambiguity. It is also possible to consider weakly

unambiguous circuits, which as (strongly) unambiguous circuits are made of usual \robust" gates of bounded

fan-in and of vulnerable gates of unbounded fan-in. But here we would allow vulnerable gates to be destroyed

as long as this does not a�ect the result of the output. That means, that the unde�ned output of a destroyed

vulnerable gate would on all following pathes �nally be conjoined with the value FALSE or disjoined with

the value TRUE. A corresponding \weak CREW-PRAM" model would allow the simultaneous write access

9

Combining this new concept of an unambiguous circuit with a new type of gate called select gate Niepel and Rossmanith were

able to give in [15] a circuit-based characterization of EREW-PRAMs.

NC

1

DSPACE(log n)

OROW-TIME(log n) StUnambSPACE(log n)

CROW-TIME(log n) = DAPDA-TIME(pol)

UnambSAC

1

= StUnambAPDA-TIME(pol)

NSPACE(log n)

CREW-TIME(log n) = UnambAC

1

SAC

1

= NAPDA-TIME(pol)

CRCW-TIME(log) = AC

1

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� H

H

H

H

H

H

H

H

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�H

H

H

H

H

H

H

H

�

�

�

�

�

�

�

� H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

Figure 1: The NC-Structure between NC

1

and AC

1

to cells of global memory, which would be destroyed and made unreadable by that, but its �nal result must

not be a�ected by this fact or by the content of the cell after its destruction. In [14] the equation SAC

k

=

NAuxPDA-TIME(c

log

k

n

) could be extended to both types of unambiguities by showing both UnambSAC

k

= StUnambAuxPDA-TIME(c

log

k

n

) and Weak UnambSAC

k

= UnambAuxPDA-TIME(c

log

k

n

). In

particular this yields UnambCFL � UnambSAC

1

thereby unifying and strengthening corollaries 10 and 13.

Finally, the relationships between the classes considered so far are depicted in Figure 1.

Acknowledgements

I wish to thank Peter Rossmanith for many stimulating discussions. He and Inga Niepel pointed out the general

form of Theorem 11 for arbitrary powers of the log-function. Finally, I am indebted to the anonymous referees

for their very careful, comprehensive, and helpful reports.

References

[1] J. Balc�acar, J. Di�az, and J. Gab�arro. Structural Complexity Theory I. Springer, 1988.

[2] J. Balc�acar, J. Di�az, and J. Gab�arro. Structural Complexity Theory II. Springer, 1990.

[3] A. Borodin. On relating time and space to size and depth. SIAM Journal on Computing, 6(4):733{744,

1977.

[4] G. Buntrock, B. Jenner, K.-J. Lange, and P. Rossmanith. Unambiguity and fewness for logarithmic space.

In Proc. of the 8th Conference on Fundamentals of Computation Theory, LNCS, 1991. (to appear).

[5] A. Chandra, D. Kozen, and L. Stockmeyer. Alternation. J. Assoc. Comp. Mach., 28:114{133, 1981.

[6] S. Cook. Characterizations of pushdown machines in terms of time-bounded computers. J. Assoc. Comp.

Mach., 18:4{18, 1971.

[7] S. Cook. A taxonomy of problems with fast parallel algorithms. Inform. and Control, 64:2{22, 1985.

[8] P. Dymond and W. Ruzzo. Parallel RAMs with owned global memory and deterministic context-free

language recoginition. In Proc. of 13th ICALP, number 226 in LNCS, pages 95{104. Springer, 1986.

[9] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proc. of the 10th Annual ACM

Symposium on Theory of Computing, pages 114{118, 1978.

[10] L. M. Goldschlager. A uni�ed approach to models of synchronous parallel computation. In Proc. of the 10th

Annual ACM Symposium on Theory of Computing, pages 89{94, 1978.

[11] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Language, and Computation. Addison-Wesley,

Reading Mass., 1979.

[12] O.H. Ibarra, T. Jiang, and B. Ravikumar. Some subclasses of context-free languages in NC

1

. Information

Processing Letters, 29:11{117, 1988.

[13] K.-J. Lange. Unambiguity of circuits. In Proc. of the 5th IEEE Structure in Complexity Conference, pages

130{137, 1990.

[14] K.-J. Lange and P. Rossmanith. Characterizing unambiguous augmented pushdown automata by circuits.

In Proc. of the 15th MFCS, number 452 in LNCS, pages 399{406. Springer, 1990.

[15] I. Niepel and P. Rossmanith. Uniform circuits and exclusive read PRAMs. SFB-Bericht 342/31/90 A, I9055,

Institut f�ur Informatik, Technische Universit�at M�unchen, December 1990.

[16] K.R. Reischuk. Einf�uhrung in die Komplexit�atstheorie. Teubner, Stuttgart, 1990.

[17] P. Rossmanith. The owner concept for PRAMs. In Proc. of the 8th STACS, number 480 in LNCS, pages

172{183. Springer, 1991.

[18] W. Ruzzo. Tree-size bounded alternation. J. Comp. System Sci., 21:218{235, 1980.

[19] W. Ruzzo. On uniform circuit complexity. J. Comp. System Sci., 22:365{338, 1981.

[20] W. Rytter. Parallel time O(log n) recognition of unambiguous context-free languages. Inform. and Control,

73:75{86, 1987.

[21] L. Stockmeyer and C. Vishkin. Simulation of random access machines by circuits. SIAM J. Comp., 13:409{

422, 1984.

[22] I. Sudborough. A note on tape-bounded complexity classes and linear context-free languages. J. Assoc.

Comp. Mach., 22:499{500, 1975.

[23] I. Sudborough. On the tape complexity of deterministic context-free languages. J. Assoc. Comp. Mach.,

25:405{414, 1978.

[24] H. Venkateswaran. Properties that characterize LOGCFL. In Proc. of 19th STOC, pages 141{150, 1987.

[25] K. Wagner and G. Wechsung. Computational complexity. VEB Deutscher Verlag der Wissenschaften, Berlin,

1986.

