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Abstract

For any n > 0 and a suitable m > n we expose a simple three-variable
equality-free combinatorial sentence Fm,n of 1-order logic, which is prov-
able in the corresponding (n+3)-variable equality-free Hilbert-Bernays for-
malism, but not in the corresponding (n+2)-variable equality-free Hilbert-
Bernays formalism. The crucial negative part of the proof is based on
a suitable nested finite-variable variant of the familiar Herbrand Lemma.
The canonical translation of Fm,n into the language of relation algebras
yields the identity-free algebraic equation Tm,n = 1 having the same proof
theoretical feature.

1 Introduction

There are two familiar modus-ponens axiomatizations of 1-order logic without func-
tion symbols, which we refer to as Hilbert-Bernays and Henkin-Tarski formalisms,
respectively (cf. [8, 9, 12, 21] et al). Both formalisms are complete, and hence
proof theoretically equivalent, in full 1-order logic with an infinite supply of in-
dividual variables. However, this is not true of the corresponding finite-variable
domains, which are known to be incomplete (cf. e.g. [21]). To illuminate the for-
mal distinction with respect to finite variable logic, note that Hilbert-Bernays for-
malisms include the law of substitution axiom/schema ∀xF → F [x/y] where [x/y]
denotes a chosen variable-substitution operator, for all F , x and y available, whereas
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Henkin-Tarski formalisms include its identical instance ∀xF → F only. On the other
hand, Henkin-Tarski formalisms include the equality symbol =, which enables to
derive ∀xF → F [x/y] from other axioms, provided that the general Leibniz law ax-
iom/schema x = y → (F → F [x/y]) is also included, for all F , x and y available.
Moreover, in the presence of the general Leibniz law, [x/y] can be simulated by set-
ting F [x/y] := ∀x (x = y → F ). However, the general Leibniz law is on the one hand
proof theoretically stronger than the law of substitution, and on the other hand mean-
ingless in the language without equality, whereas the basic Hilbert-Bernays 1-order
language does not include equality. Moreover, in the language with equality, Hilbert-
Bernays formalisms with the simple Leibniz law (being an instance of the general
Leibniz law for atomic F only) are conservative extensions of the correlated equality-
free formalisms, although the simple Leibniz law is proof theoretically weaker than the
general Leibniz law. Another difference is related to Gentzen-style cutfree proof the-
oretical sequent calculi which explicitly use [x/y] and the corresponding substitution
rule(s) (see e.g. [2, 3, 4, 5, 6, 22]), thus being more suitable to Hilbert-Bernays, rather
than Henkin-Tarski, formalisms. Summing up, it seems that basic Hilbert-Bernays
formalisms provide us with the adequate formal framework for 1-order finite variable
logic without equality. In fact, I conjecture that Henkin and Tarski finite-variable for-
malisms are both conservative extensions of the correlated Hilbert-Bernays formalisms
without equality (see [8, 21] and [4] for precise definitions and loose comparisons), in
that every equality-free sentence provable in either Henkin or Tarski formalism is also
provable in the correlated Hilbert-Bernays equality-free formalism (the other direction
is easy — see e.g. [4]); see also Conjecture 37 below.

It is known that the whole 1-order logic (with or without equality) is embed-
dable (mod polynomial translation) into both Henkin-Tarski and Hilbert-Bernays n-
variable logic for each n > 3 (see [2, 16, 21]). A more careful analysis (see [4]) shows
that every valid m-variable sentence is already provable in the correlated (m+ 2)-
variable Hilbert-Bernays formalism extended by Tarski conjugated quasi-projections,
and hence also in the analogous extensions of Henkin-Tarski formalisms.1 It turns
out that the conjugated quasi-projections are essential for the latter results, and the
sentences Fm,n (see Abstract above and Definition 1 below) provide us with a com-
plete collection of simple three-variable counterexamples for the basic Hilbert-Bernays
formalisms.

Moreover, these sentences can be referred to as simple combinatorial both 1-order
and relation-algebra solutions to the Hilbert-Bernays analogues of [11, Problem 2.12]
(mod canonical back-and-forth interpretations into the language of cylindric alge-
bras).2 The combinatorial contents of Fm,n are relevant to the Greenwood-Gleason
theorem (an instance of the familiar Ramsey theorem) which, in turn, was extensively

1The analogous claim about (m + 1)-variable Tarski formalism posed in [21] is probably wrong
— there is a fatal error in the attached proof of Theorem 4.8 (xvi).

2See also Remark 41 below. In a recent private communication, Hirsch, Hodkinson and Mad-
dux [10] claimed the analogous solutions with regard to Tarski formalisms. Their proof uses entirely
different techniques, and their three-variable sentences are relevant to the ones exposed in [18], where
a weaker proof theoretical result was claimed. Sentences of this kind are more involved than ours.
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used in [17] where a weaker proof theoretical result was claimed with regard to not
explicitly shown three-variable sentences with equality, which arise by translating the
defining equations of certain complicated relation algebras into the 1-order language.
It should be noted that Fm,n include m + n + 2 different predicate symbols, and
hence they cannot a priori serve as Hilbert-Bernays-style solutions to the analogous
problem posed in [21, p. 93] with regard to the underlying one-generated language
of relation algebras. One can overcome this trouble via the relation algebra trans-
lation intended in [17], since the underlying one-generated relation algebras of [17]
are generated by a single relation. Hence by rewriting every predicate occurring in
Fm,n to its intended one-generated expansion one can pass from Fm,n to the required
one-generated solutions of the Hilbert-Bernays analogue of the problem [21, p. 93].
However, the resulting one-predicate sentences will be less transparent than Fm,n and
the corresponding negative proofs will be more involved, accordingly. On the contrary,
in the present paper, we look for transparent three-variable equality-free sentences of
any given finite-variable proof theoretical strength, which have as simple as possible
syntactical structure, so that their provability a/o improvability in Hilbert-Bernays
formalisms with a given number of distinct variables can be analyzed by constructive
proof theoretical means. The sentences Fm,n provide us with handy examples.3

These sentences are obtained by the direct 1-order translation of the appropriate
nontrivial interpretation of the Greenwood-Gleason theorem (see Proposition 8 in the
text). The proofs can be loosely characterized by the appropriate game-theoretical
combinatorial propositions which are also relevant to the theorem of Greenwood and
Gleason (see Propositions 10, 11 below). On the other hand, the formalization of the
crucial negative part of the proof is based on the appropriate finite-variable nested
analogue of the familiar Herbrand lemma, which, in turn, is proved using the appropri-
ate finite-variable Herbrand-style nested cutfree analogue of the underlying Hilbert-
Bernays modus-ponens formalism. The whole approach can be also used for the sake
of finite-variable proof theoretical analysis of other sentences of simple syntactical
shape. The finite-variable nested cutfree proof systems under consideration also pro-
vide us with the hierarchy of 1-order automated nested theorem provers which are
entirely different from the familiar tableaux a/o resolution based theorem provers.
This hierarchy is parametric in the total number of different variables occurring in
proofs, which has special advantages for relation algebras. In particular, the four-
variable nested theorem prover is adequate to the canonical Tarski formalism of the
relation algebras (see [20] for more exhaustive presentations).

In what follows we expose the main results and address the combinatorial back-
ground. In the second section we prove the combinatorial and game-theoretical propo-
sitions used. In the final, third section, we sketch the finite-variable nested cutfree

3Previously publicized claims and proofs related to Problem 2.12 of [11] use methods of the
algebraic logic (see [13, 14, 15, 17, 18, 19]). The attached proofs are extremely specific in the chosen
algebraic formalisms, but too sketchy in the correlated a/o alleged 1-order finite-variable domains.
The proof theoretical approach used in the present paper can help to specify a/o clarify some of the
latter (see also Remark 36 below).
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proof systems, prove the finite-variable nested analogue of the Herbrand lemma and
infer the main theorems from the propositions and the nested Herbrand lemma in
question.

1.1 Basic Definitions and Results

For any m,n > 0, consider the 1-order equality-free language Lm,n with unary
predicate symbols H0, ..., Hm and binary predicate symbols C0, ..., Cn. Let ∗m,n
be the adjacent identity-free language of relation algebras with basic (binary) re-
lations X0, ..., Xm, Y0, ..., Yn, basic operations + (boolean sum), · (boolean product),
− (boolean negation), 1 (boolean unity), 0 (boolean zero), � (relational converse), �
(relational product) and ⊕ (relational sum). Recall that, in ∗m,n, S+T = (S− · T−)−,
0 = 1− and S ⊕ T = (S− � T−)−. Now for any 2 < λ < ∞, let Lλm,n denote the
λ-variable restriction of Lm,n. By HBLλ we’ll denote the canonical Hilbert-Bernays
modus-ponens formalism of Lλm,n; thus all axioms and rules of HBLλ are just λ-
variable restrictions of the Hilbert-Bernays formalism HBL specified to Lm,n. For
the sake of brevity, we expose the axioms of HBL in the basic syntax {¬,→,∀}, as
follows:

1. (A → B) → ((B → G) → (A → G))

2. (¬A → A) → A

3. B → (¬B → A)

4. ∀xA → A[x/y]

5. ∀x(D → A) → (D → ∀xA) [x not free in D]

where A,B,D,G and x, y respectively range over formulas and (individual) variables
such that x does not occur free inD, while A[x/y] denotes the canonical substitution of
all free occurrences of x by y, in A, that simultaneously renames all bound occurrences
of y by x (cf. e.g. [2]). By definition, a formula F is provable in HBL (HBLλ)
(mod canonical abbreviations and/or translations) iff there exists a finite sequence
F0, F1, ..., Fp = F in Lm,n (Lλm,n) such that for each l � p, either Fl is an instance of
one of the above axioms 1-5, or Fl = ∀xFi for some i < l (generalization rule), or else
there are Fi and Fj = Fi → Fl where i, j < l (modus-ponens rule).

By φ we denote Greenwood-Gleason’s function that is defined by the two recursive
equations φ(0) = 2, φ(n+1) = 1+(n+2)·φ(n). The following sentence Fm,n is obtained
by direct three-variable translation of the appropriate interpretation of Greenwood-
Gleason’s combinatorial theorem (cf. [7]); the precise meaning will be explained in
the next subsection (see Remark 7 below).

(1) Definition. Let Fm,n denote the following L3
m,n-sentence
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∨
{∀x¬Hi(x) : i � m} ∨ ∃x∃y

∧
{¬Cj(x, y) : j � n} ∨∨

{∃x∃y∃z [Hp(x) ∧Hq(y) ∧Hr(z) ∧ Cj(x, y) ∧ Cj(x, z) ∧ Cj(y, z)] :

j � n & p < q < r � m}

where
∨
{Fi1,...,ik : ϕ(i1, ..., ik)} and

∧
{Fi1,...,ik : ϕ(i1, ..., ik)} respectively denote the

disjunction and conjunction of all formulas Fi1,...,ik whose indices i1, ..., ik satisfy a
finite-domain condition ϕ.

(2) Theorem. If n > 0 and m � φ(n) then Fm,n is provable in HBLn+3, but not in
HBLn+2.

(3) Definition. Let Tm,n denote the following Λm,n-term

∑
{0⊕X−

i ⊕ 0 : i � m}+ 1�
∏
{Y −

j : j � n} � 1 +∑
{1�

[
(Xp ⊕ 0) · (0⊕X�

q ) · Yj ·
(
Yj �

(
Y �
j · (Xr ⊕ 0)

))]
� 1 :

j � n & p < q < r � m}

where
∑

{Ti1,...,ik : ϕ(i1, ..., ik)} and
∏
{Ti1,...,ik : ϕ(i1, ..., ik)} respectively denote

the boolean sum and product of all terms Ti1,...,ik whose indices i1, ..., ik satisfy a
finite-domain condition ϕ.

(4) Theorem. If n > 1 and m � φ(n) then the canonical 1-order translation of the
algebraic equation Tm,n = 1 is provable in HBLn+3, but not in HBLn+2.

(5) Remark. Tm,n = 1 is the canonical algebraic interpretation of Fm,n that pre-
serves λ-variable Hilbert-Bernays provability for every λ > 3 under the intended
interpretation Hi(x) ⇔ ∃yxXiy, Cj(x, y) ⇔ xYjy. The statement Fm,n and the proof
of Theorem 2 are both closely related to the appropriate combinatorial propositions
and games, which are discussed below.

By the above remark, Theorem 4 is an easy consequence of Theorem 2 (see Sub-
section 2.1 below). The proof of Theorem 2 is exposed in the rest of Section 2. The
underlying proof theoretical techniques differ in every respect from the algebraic ones
used in [10, 17, 18, 21].

1.2 Combinatorial Principles and Games.

In the sequel we always assume that n > 0 and m � φ(n) where φ(0) = 2 and
φ(n+ 1) = 1 + (n+ 2) · φ(n). These assumptions are sufficient for the combinatorial
Greenwood-Gleason’s theorem, being in fact a particular case of the Ramsey theorem.
For some n, the estimate m � φ(n) can be improved, but this is less relevant to
the contents below. The above recursive definition of φ is convenient for our game-
theoretical variant of Greenwood-Gleason’s proof (see below proof of Proposition 10).
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(6) Theorem. (Greenwood-Gleason [7]). Let G be any complete indirected graph
with m+1 distinct vertices, whose edges are colored using at most n+1 distinct colors.
Then G contains at least one monochromatic triangle (:= a 3-vertex subgraph whose
all 3 edges have one and the same color).

(7) Remark. The following proposition provides us with a suitable interpretation
of Greenwood-Gleason’s theorem, whose 3-variable translation results in our sentence
Fm,n, where ‘Hi’ and ‘Cj ’are “holes” and “colors”, except that for the sake of brevity
we deal with oriented colorings of the threads. That is, in the definition of Fm,n,
we assume that colors are assigned to the ordered pairs 〈x, y〉 such that x ∈ Hi and
y ∈ Hj where i < j � m.

(8) Proposition. Suppose given m+1 distinct (golf-)holes, n+1 distinct colors and
an unspecified collection of balls and colored threads (each thread having exactly one
color). Moreover, suppose that every hole contains at least one ball, and suppose that
every two balls are connected by at least one thread. Then there are at least three
different balls sitting in three different holes such that every two of these balls are
connected by threads having one and the same color.
Proof. We choose exactly one ball in each hole and exactly one colored thread
connecting each pair of the chosen balls. This provides us with a complete colored
graph having m + 1 vertices and at most n + 1 colors. By Greenwood-Gleason’s
theorem, this graph has at least one monochromatic triangle.

(9) Remark. From the viewpoint of finite-variable formalization, this proof is bad,
for it requires too many (namely, m+ 1) distinct variables. This is due solely to the
“too liberal” choice in question, since finite-variable logic allows us to use the same
names for separated bound variable-occurrences. In fact, this proof can be formalized
using only n+ 3 distinct variables (see the next section).

(10) Proposition. Consider the following two-player infinite game. Let t � m be
fixed. There are given m+ 1 distinct vertices V0, V1, ..., Vm and n+ 1 distinct colors.
Player I chooses vertices, Player II assigns colors to the adjacent edges. The game
runs as follows.

• 1st move: Player I chooses Vi(0), and Player II responds by coloring all edges
〈Vi(0), Vj〉, j �= i(0).

• 2nd move: Player I chooses another vertex Vi(1), Player II responds by coloring
all edges 〈Vi(1), Vj〉, j �= i(0), i(1).

• 3rdmove, and so on, are analogous, except that the following condition is satis-
fied. If after the initial k+1 moves the number of all actually chosen vertices is
t+ 1, then Player I at his k + 2nd move must withdraw one of those previously
chosen vertices, say Vi(p), p � k, (thus reducing their total number back to t)
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along with all previously colored adjacent vertices 〈Vi(p), Vj〉, j �= i(p), before

he is allowed to pick his k + 2nd vertex Vi(k+1).

Clearly, after every initial k + 1 moves, both players produce a complete colored
graph Gk+1 consisting of all actually chosen vertices and colored edges; note that
|Gk+1| = max(t + 1, k + 1). Player I wins iff some Gk+1 contains a monochromatic
triangle. Otherwise, Player II wins. The proposition’s claim reads: Player I has a
winning strategy for any t > n+1 (and, in fact, he already wins at his n+3rd move),
but Player II has a winning strategy for any t � n+ 1.

Proof. Consider the given vertices V0, V1, ..., Vm and colors C0, C1, ..., Cn.
Case 1. Suppose t > n+ 1. Player I’s winning strategy is as follows.

• 1st move: He picks any vertex Vi(0). She colors the set of at least φ(n) edges
{〈Vi(0), Vj〉 : j �= i(0)} using at most n+ 1 given colors. Since φ(n) = 1 + (n+
1) · φ(n− 1), this coloring contains at least φ(n− 1) + 1 edges having the same
‘dominating’ color, say, Cd(0). Denote by S0 the collection of the adjacent, at
least φ(n− 1) + 1, ‘dominating’ vertices.

• 2nd move: He picks another vertex Vi(1) where i(1) = min{j �= i(0) : Vj ∈
S0}. She responds by coloring the adjacent set of the at least φ(n − 1) edges
{〈Vi(1), Vj〉 : j ∈ S0}. If she colored one of the latter edges by Cd(0) then he
wins. Otherwise, her coloring uses at most n distinct colors, while φ(n − 1) =
1+n ·φ(n− 2), and hence this set of edges contains at least φ(n− 2)+ 1 edges
having the same ‘dominating’ color, say, Cd(1). Denote by S1 the collection of
the adjacent, at least φ(n− 2) + 1, ‘dominating’ vertices.

• 3rd move, and so on, are analogous.

• n+2nd move: After his n+1st move, she had only one remaining color, say, Cr,
for at least φ(0) = 2 edges, say 〈Vi(n), Ve〉 and 〈Vi(n), Vf 〉, where Sn = {Ve, Vf}.
He picks Vi(n+1) = Ve. She has no choice but to assign Cr to 〈Ve, Vf 〉.

• n + 3rd move: After his n + 2nd move, the set of all chosen vertices has the
cardinality n+2 < t+1. He picks his n+3rd vertex Vi(n+2) = Vf and wins the
game, since {Vi(n), Ve, Vf} is the desired monochromatic triangle.

Case 2. Suppose t � n+ 1. Player II’s winning strategy is as follows.

• k + 1st move, where k � t: Regardless of his choice of the vertex Vi(k), she
colors every edge 〈Vi(k), Vj〉 by Ck. So far, her chosen colors C0, ..., Ck were
all pairwise different, and hence the correlated colored graphs did not contain
monochromatic triangles.

• k + 1st move, where k > t: With his chosen vertex Vi(k) she correlates his
previously chosen vertex Vi(p), p < k, that has been removed by the condition
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rule. Then she assigns to every edge 〈Vi(k), Vj〉 her previously chosen color of
the removed edge 〈Vi(p), Vj〉. Since she always uses different colors for the edges
adjacent to his different vertices, the colored graph Gk+1 thus obtained still has
no monochromatic triangle.

(11) Proposition. Consider the following two-player infinite game. There are given
m+1 distinct (golf-)holes H0, H1, ..., Hm and n+1 distinct colors, as well as balls and
threads — as in Proposition 8, except that all balls are labelled by natural numbers
� n + 1, and all threads are initially blank. Moreover, it is assumed that every hole
contains infinitely many distinct (labelled) balls. Player I chooses holes and balls
inside them, Player II assigns colors to the connecting threads. The game runs as
follows.

• 1st move: Player I chooses a ball b0 in a chosen hole Hχ(0), Player II has no
response.

• 2nd move: Player I chooses a ball b1 in a chosen hole Hχ(1), Player II responds
by coloring the thread 〈b0, b1〉, provided that χ(0) �= χ(1) and b0 and b1 have
different labels (otherwise, 〈b0, b1〉 remains blank).

• 3rdmove, and so on, are analogous, where the coloring condition reads as follows.
At her k+1st move, Player II is allowed to color only such threads 〈bi, bk〉, i < k,
that χ(i) �= χ(k) and the label of bi differs from the labels of all bj , i < j � k, for
which 〈bi, bj〉 is not blank (thus, in particular, bi and bk have different labels).

Clearly, after every initial k+1 moves, both players produce a structure Sk+1 con-
sisting of labelled balls connected by threads some of which are colored (the rest being
blank). Player I wins iff some Sk+1 contains a monochromatic triangle. Otherwise,
wins Player II. The proposition’s claim reads: Player II has a winning strategy.

Proof. Consider the given holes H0, H1, ..., Hm and colors C0, C1, ..., Cn. Denote by
$(b) the label of a chosen ball b. Player II’s winning strategy is as follows. At every
k + 1st move, she assigns Cmin(�(bj),�(bk)) to each thread 〈bj , bk〉, j < k, satisfying
the coloring condition. It is readily seen that the coloring restriction guarantees
that the same color can’t be assigned to every thread 〈bi, bj〉, 〈bj , bk〉, 〈bi, bk〉 where
i < j < k (and χ(i) �= χ(j) �= χ(k) �= χ(i), which is irrelevant to the argument).
Indeed, let α = min{$(bi), $(bj)}, β = min{$(bj), $(bk)}, γ = min{$(bi), $(bk)}. We
have $(bi) �= $(bj) �= $(bk) �= $(bi)}. So if α = β then clearly α = β = $(bj), and hence
α = β = γ implies $(bj) = $(bi) or $(bj) = $(bk) — a contradiction.

(12) Remark. Proposition 10 generalizes Greenwood-Gleason’s theorem and gives
hints to the positive part of the proof of Theorem 2. Proposition 11 refers more
directly to the crucial negative part of the proof of Theorem 2.
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2 Proof of Theorems

2.1 On Theorem 4

Proof. We deduce Theorem 4 from Theorem 2. As already mentioned (see Remark
5), the statement of Theorem 4 is the canonical algebraic translation of the statement
of Theorem 2. In order to complete the proof, it will suffice to verify that HBL4

preserves this translation as equivalence — this is quite routine. On the other hand,
one can deduce the same conclusion from the known results, as follows. Recall that the
required passage is known to hold for Tarski’s 3-variable formalism L× (cf. e.g. [21])
extending the familiar algebraic formalism RA. Note that L× has basic symbols
for both the logic equality and algebraic identity and includes as axiom the general
Leibniz law. Now our expressions Fm,n and Tm,n don’t include equality and identity,
respectively. Moreover, the identity-free reduct of RA is axiomatizable by adding
a suitable axiom (see [1]) whose canonical translation is readily provable in HBL4,
while the general 3-variable Leibniz law is also provable in HBL4 (see [4, 5]). Hence
the desired equivalence also holds for HBL4, Q.E.D.

2.2 Positive Part of Theorem 2

(13) Lemma. For any λ > 0, all boolean tautologies and 1-4 below are provable in
HBLλ.

1. ∃xA ∧D ←→ ∃x(A ∧D) [x not free in D]

2. A ←→ A′ [A = A′ mod bound renaming]

3. ∃x(A ∨B) ←→ ∃xA ∨ ∃xB

4. ∃x(A ∧B) → ∃xA

Proof. This is trivial (see e.g. [9] or [4]).

(14) Claim. Fm,n is provable in HBLn+3.
Proof. We fix the language Ln+3

m,n with unary predicate symbols H0, ..., Hm, binary
predicate symbols C0, ..., Cn and individual variables v0, ..., vn+2. Rewrite Fm,n in
positive implicative form (P ∧Q) → R :

(
∧
{∃xHi(x) : i � m} ∧ ∀x∀y

∨
{Cj(x, y) : j � n}) →∨

{∃x∃y∃z [Hp(x) ∧Hq(y) ∧Hr(z) ∧ Cj(x, y) ∧ Cj(x, z) ∧ Cj(y, z)] :

j � n & p < q < r � m}

whose two conjuncts and the conclusion we denote by P,Q and R, respectively. Now,
in Ln+3

m,n , denote by ∆i(0),...,i(k+1);d(0),...,d(k)(v0, ..., vk+1) the conjunction:
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Hi(0)(v0) ∧ ... ∧Hi(k+1)(vk+1)

∧ Cd(0)(v0, v1) ∧ ... ∧ Cd(0)(v0, vk+1)

∧ Cd(1)(v1, v2) ∧ ... ∧ Cd(1)(v1, vk+1)

...

∧ Cd(k)(vk, vk+1),

for any k � n + 1, any i(0) < ... < i(k) � m and any d(0), ..., d(k) � n. By Lemma
13(4), ∃v0...∃vn+2∆i(0),...,i(n+2);d(0),...,d(n+1)(v0, ..., vn+2) → R holds inHBLn+3, since
there are at least two equal indices among d(0), ..., d(n+ 1) � n (Dirichlet principle);
then for any j = d(α) = d(β) � n where α < β � n + 1 we put x := vα, y := vβ ,
z := vβ+1, p := i(α), q := i(β), r := i(β + 1) and observe that 1st , αth and βth

rows of ∃v0...∃vn+2∆i(0),...,i(n+2);d(0),...,d(n+1)(v0, ..., vn+2) provide us with the desired
disjunct of R. In what follows we can safely put i(0) = 0. By the axiom 4 of HBLn+3

and Lemma 13(1,2), we first pass from P ∧Q to:

∃v0{H0(v0) ∧ ∃v1[H1(v1) ∧ (C0(v0, v1) ∨ ... ∨ Cn(v0, v1)]

∧ ∃v1[H2(v1) ∧ (C0(v0, v1) ∨ ... ∨ Cn(v0, v1)]

...

∧ ∃v1[Hm(v1) ∧ (C0(v0, v1) ∨ ... ∨ Cn(v0, v1)]},

from which, by boolean distributive law together with Lemma 16(3), we arrive at the
disjunction of all possible conjunctions of the form:

∃v0{H0(v0) ∧ ∃v1[H1(v1) ∧ Cj(1)(v0, v1)]

∧ ∃v1[H2(v1) ∧ Cj(2)(v0, v1)]

...

∧ ∃v1[Hm(v1) ∧ Cj(m)(v0, v1)]}.

By the basic combinatorial (Greenwood-Gleason’s) argument used in the proof of
Proposition 10, above, every conjunction contains a subconjunction of the form:

∃v0{H0(v0) ∧ ∃v1[Hj(1)(v1) ∧ Cd(0)(v0, v1)]

∧ ∃v1[Hj(2)(v1) ∧ Cd(0)(v0, v1)]

...

∧ ∃v1[Hj(k+1)(v1) ∧ Cd(0)(v0, v1)]},

where k � φ(n − 1) and 0 < j(1) < ... < j(k + 1) � m. We then pass to this
subconjunction, by Lemma 13(4), and then let i(1) = j(1) and rename v1 by v2

everywhere below the second line, by Lemma 13(2). As a result, we obtain, for every
disjunction in question, a proof of:
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∃v0∃v1{∆0,i(1);d(0)(v0, v1) ∧ ∃v2∆0,j(2);d(0)(v0, v2)

∧ ∃v2∆0,j(3);d(0)(v0, v2)

...

∧ ∃v2∆0,j(k+1);d(0)(v0, v2)}.

By the same token, we further apply Q by inserting ∧
∨
{Cj(v1, v2) : j � n} in the

scope of every ∃v2 in the latter sentence, which, by Lemma 13(1,2) and boolean dis-
tributivity, allows us to transform every subconjunction in question into a disjunction
of all possible conjunctions of the form:

∃v0∃v1{∆0,i(1);d(0)(v0, v1) ∧ ∃v2[∆0,j(2);d(0)(v0, v2) ∧ Cd(1)(v1, v2)]

∧ ∃v2[∆0,j(3);d(0)(v0, v2) ∧ Cd(1)(v1, v2)]

...

∧ ∃v2[∆0,j(k+1);d(0)(v0, v2) ∧ Cd(1)(v1, v2)]},

where k � φ(n− 2) and 0 < i(1) < j(2) < j(3) < ... < j(k + 1) � m. Having this, we
argue as above, i.e., by setting i(2) = j(2) and renaming v2 by v3, in order to pass to:

∃v0∃v1∃v2{∆0,i(1),i(2);d(0),d(1)(v0, v1, v2) ∧ ∃v3∆0,i(1)j(3);d(0),d(1)(v0, v1, v3)

∧ ∃v3∆0,i(1),j(4);d(0),d(1)(v0, v1, v3)

...

∧ ∃v3∆0,i(1),j(k+1);d(0),d(1)(v0, v1, v3)}.

We continue this procedure until every disjunction in question contains a conjunct of
the desired form ∃v0...∃vn+2∆i(0),...,i(n+2);d(0),...,d(n+1)(v0, ..., vn+2), which yields the
required conclusion R using the n+ 3 variables v0, ..., vn+2 only.

2.3 Negative Part of Theorem 2: Proof Outline

We reduce the remaining negative part of Theorem 2 to Proposition 11 via a suit-
able nested variant of the familiar Herbrand-style result known as Herbrand lemma.
Recall that the familiar “plain” Herbrand lemma, in the simplest form, states that
a given 1-order formula F in positive normal form without universal quantifiers and
function symbols is valid iff so is its propositional Herbrand expansion F ∗ that is
obtained by successively rewriting, in F , every subformula ∃xA for boolean A to the
disjunction

∨
{A[x/vi] : vi occurs (free or bound) in F}. (Recall that v0, ..., vi, ...

is a fixed enumeration of all 1-order individual variables.) For example, if we take
F = Fm,n and let G be the corresponding ∀-free formula in Lm+1

m,n that arises from
F by rewriting every subformula ∀x¬Hi(x) to ¬Hi(vi), then 1-order validity of F is
equivalent to propositional validity of the corresponding quantifier-free Lm+1

m,n -formula
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G∗. Of course, this estimate is too loose for our considerations, since m is just too big
as compared to n. Furthermore, what actually has to be evaluated is not the 1-order
validity, but provability in HBLn+2 whose set of individual variables is just too small
to eliminate all universal quantifiers. Therefore, we introduce a more sophisticated
nested analogue of the Herbrand lemma (see Lemma 19 below). In the sequel we work
in the positive λ-variable language Lλ with propositional connectives ∨,∧, quantifiers
∃,∀, in which only atoms are in the domain of ¬. Actually, we are only interested
in the particular case Lλ= Lλm,n, but all definitions and results hold true for any Lλ
in question. We call disjunctive equivalence the disjunctive fragment of the ordinary
boolean equality. To put it more precisely, two formulas are disjunctively equivalent
iff they are equivalent modulo associativity, commutativity and contraction of dis-
junctions (but not conjunctions); it can also be viewed as the ordinary (hereditarily
finite) set-theoretical equality on formulas, where disjunctions (possibly iterated) are
regarded as sets of disjuncts. As usual, by L (possibly indexed) we denote arbitrary
literals, i.e. either atomic formulas or their negations.

(15) Definition. Call ‘purely existential’ any 1-order formula (or sentence) F of the
shape ∃x1...∃xk

∧
{Li : i < r} where k, r > 0, x1, ..., xk any individual variables.

Moreover, for any λ > 0 and any purely existential formula F , as above, we call the
(uniquely determined) DNF

∨
{
∧
{Li[x0/vl1 ]...[xk/vlk ] : i < r} : l1, ..., lk < λ} the

‘λ-variable boolean expansion of F ’.

(16) Definition. Let s, λ > 0, and let L(−→�s) be the extension of the underlying
1-order language L without function symbols and equality by adding s distinct 0-ary
special predicate symbols �1, ...,�s not occurring in L. As above, by Lλ and Lλ(−→�s)
we denote the corresponding λ-variable restrictions. Arguing in L(−→�s) (in fact, in
Lλ(−→�s) ) we define up(s, λ) (in words: the class of universal s, λ-polynomials) by
recursion (mod disjunctive equivalence):

1. ∅ (the empty formula) is in up(s, λ),

2. for any 0 < σ � s, �σ is in up(s, λ),

3. for any l < λ and unary literal L(vl) of L, if U is in up(s, λ) then so is ∀vl(L(vl)∨
U).

(17) Definition. For any U,W ∈ up(s, λ), we let U � W (in words: W extends
U) if either U = W or else U can be obtained (mod disjunctive equivalence) from
W by chain of successive rewriting of arbitrary subformulas ∀x(L(x) ∨ V ∨ V ′) to
∀x(L(x) ∨ V ) ∨ V ′, where V, V ′ ∈ up(s, λ) while L(x) ranging over unary literals of
Lλ.

(18) Definition. For any U ∈ up(s, λ) and Lλ-formulas G1, ..., Gs, denote by U [�1

:= G1, ...,�s := Gs] the corresponding Lλ-realization that arises by rewriting in U
every occurrence of �σ to Gσ (0 < σ � s). An Lλ-realization is called ‘purely
existential’ iff so are all Gσ.
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(19) Lemma. For any U ∈ up(s, λ), any purely existential Lλ-sentences S1, ..., Ss
and their λ-variable boolean expansions S0

1 , ..., S
0
s , respectively, the following holds.

U [�1 := S1, ...,�s := Ss] is provable in the correlated λ-variable Hilbert-Bernays
formalism HBLλ iff there exists a W ∈ up(s, λ) such that U � W and W [�1 :=
S0

1 , ...,�s := S0
s ] is 1-order valid.

(20) Example. Let U = ∀xH(x)∨ � and S = ∃x¬H(x) where s = λ = 1, x = v0,
� = �1. Thus U ∈ up(1, 1). Note that U [� := S] is valid. Moreover S0 = ¬H(x).
Now let W = ∀x(H(x)∨ �). Clearly U � W ∈ up(1, 1). Furthermore, W [� :=
S0] = ∀x(H(x) ∨ ¬H(x)) is valid, and hence, by the lemma, U [� := S] is provable
in the correlated 1-variable formalism HBL1. On the other hand, U [� := S0] =
∀xH(x) ∨ ¬H(x) is obviously invalid, which shows that the condition U � W is
essential for the conclusion.

(21) Example. Now let L = Lm,n (see 1.1) and recall that our sentence Fm,n is

∨
{∀x¬Hi(x) : i � m} ∨ ∃x∃y

∧
{¬Cj(x, y) : j � n} ∨∨

{∃x∃y∃z [Hp(x) ∧Hq(y) ∧Hr(z) ∧ Cj(x, y) ∧ Cj(x, z) ∧ Cj(y, z)] :

j � n & p < q < r � m}.

Let S1 := ∃x∃y
∧
{Cj(x, y) : j � n}, and for any j � n, p < q < r � m, let

S〈p,q,r,j〉 := ∃x∃y∃z [Hp(x) ∧Hq(y) ∧Hr(z) ∧ Cj(x, y) ∧ Cj(x, z) ∧ Cj(y, z)].

There are n+1
6 m(m2 − 1) such 〈p, q, r, j〉, so let s = 1+ n+1

6 m(m2 − 1), λ = n+2,
x = v0, y = v1, z = v2, and let κ �→ 〈κ(0), κ(1), κ(2), κ(3)〉, where 1 < κ � s, be a
chosen bijective enumeration of all quadruples 〈p, q, r, j〉 in question.This yields

Fm,n =
∨
{∀vιHi(vι) : i � m & ι < λ} ∨ S1 ∨ ... ∨ Ss, where for any 1 < κ � s,

Sκ = ∃x∃y∃z[¬Hκ(0)(x) ∧ ¬Hκ(1)(y) ∧ ¬Hκ(2)(z) ∧ ¬Cκ(3)(x, y) ∧
¬Cκ(3)(x, z) ∧ ¬Cκ(3)(y, z)].

For every 0 < σ � s, let S0
σ be the λ-variable boolean expansion of Sσ. Let

U =
∨
{∀vιHi(vι) : i � m & ι < λ} ∨ �1 ∨ ... ∨ �s

be the correlated polynomial from up(s, λ) in L(−→�s). Now suppose U [�1 := S1, ...,
�s := Ss] is provable in the corresponding λ-variable Hilbert-Bernays formalism
HBLλ. Then, by the lemma, there exists a W from up(s, λ) such that U � W and
W [�1 := S0

1 , ...,�s := S0
s ] is 1-order valid.
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We postpone the proof of the lemma to the next subsection, since it is based on a
special, ‘nested’ cutfree variant of the finite-variable Hilbert-Bernays formalism. We
complete this subsection by deducing from the last example and Proposition 11 the
desired

(22) Claim. Fm,n is not provable in HBLn+2.
Proof. Let L, s, λ and S1, ..., Ss be as in Example 21, and let U ∈ up(s, λ). For
any U ′ ∈ up(s, λ) define a natural number ∀�(U ′) (in words: the ∀-depth of U ′) by
recursion: ∀�(∅) = ∀� (�σ) = 0, ∀�(F∨G) = max{∀�(F ),∀�(G)}, ∀�(∀vι(H(vι)∨F )) =
1+∀�(F ). Note that U ′ � U ′′ implies ∀�(U ′) � ∀�(U ′′). For any t, let up(U, s, λ, t) be
the finite (mod disjunctive equivalence) class of allW ∈ up(s, λ) such that U � W and
t = ∀�(W ). We observe that every up(U, s, λ, t) contains the (uniquely determined)
‘maximal’ polynomial Ut that is defined recursively as follows.

• U0 = ∅

• Ur+1 =
∨
{∀vl(Hi(vl) ∨ �1 ∨ ... ∨ �s ∨ Ur) : l < λ & i � m}

It is readily seen that if W [�1 := S0
1 , ...,�s := S0

s ] is 1-order valid for some
W ∈ up(U, s, λ, t) then Ut[�1 := S0

1 , ...,�s := S0
s ] is also 1-order valid; in the se-

quel we denote the latter realization by Rt. On the other hand, if Fm,n is provable
in HBLn+2 = HBLλ then so is U [�1 := S1, ...,�s := Ss], since this realization
is an isomorphic syntactical (mod bound renaming) variant of Fm,n that arises by
interchanging every Hi with ¬Hi and every Cj with ¬Cj . Hence, by Example 24,
in order to prove the claim, ad contrario, it will suffice to show that every Rt is in
fact 1-order invalid, where we can safely assume t > 1. To this end, we first observe
that dropping all ∀vl, l � n + 1, will reduce Rt to a propositional formula. Further-
more, Rt is 1-order valid iff dropping all ∀vl while simultaneously renaming vl by
chosen, pairwise distinct variables from the new, infinite variable domain b0, ..., bι, ...
(vl �= bι) will reduce Rt to a propositional tautology — call it Pt. This proposi-
tional formula Pt, can just as well be referred to as the ordinary qf-expansion of Rt

according to a chosen separation of the universal variables occurring in Rt. Now
consider the shape of Pt. Clearly, Pt is a DNF whose disjuncts are either Hi(bι)
or Cε,ζ :=

∧
{Cj(bε, bζ) : j � n}, or else Mκ,ξ,ε,ζ := ¬Hκ(0)(bξ) ∧ ¬Hκ(1)(bε) ∧

¬Hκ(2)(bζ)∧¬Cκ(3)(bξ, bε)∧¬Cκ(3)(bξ, bζ)∧¬Cκ(3)(bε, bζ), for any i � m, 1 < κ � s,
ι � t∗ and some ξ, ε, ζ � t∗, where t∗ < |Ut| is fixed. Note that Cε,ζ and Mκ,ξ,ε,ζ are
the resulting renaming of S0

1 and S0
κ, respectively. Moreover, it is readily seen that Pt

is a tautology iff for every choice-function f : 〈ε, ζ〉 �→ f(ε, ζ) � n, the resulting struc-
ture Sf

t =
〈
{Hi(bι) : i � m & ι � w∗}, {Cf(ε,ζ)(bε, bζ) : ε, ζ � t∗ : Cε,ζ occurs in Pt}

〉
has a monochromatic triangle. Indeed, by the distributive law and basic (resolution
or tableau) characterization of boolean validity, it is necessary and sufficient that, for
every f in question, Pt contains at least one Mκ,ξ,ε,ζ whose all 6 conjuncts’s atoms
occur in Sf

t — which obviously yields the result. Having noticed this, we wish to
refine the necessity condition. To this end, we first refine Ut by dropping �κ for
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all κ > 1; denote the resulting restricted polynomial, its boolean realization and the
correlated propositional formula, as above, by U−

t , R−
t and P−

t , respectively. Now
take P−

t and consider the following ‘choice-generator’. Pick exactly one (quantified)
disjunct Dr

0 of the disjunction R−
t , and fix the adjacent disjunct Dp

0 of P−
t . Note

that Dp
0 is one-one uniquely determined by the atom Hχ(0)(bθ(0)) corresponding to

the chosen prefix ∀vι(Hχ(0)(vι) of R−
t . Next pick exactly one quantified disjunct Dr

1

of the disjunction Dr
0 , and fix the adjacent disjunct Dp

1 of P−
t . Note that Dp

1 is one-
one uniquely determined by the atom Hχ(1)(bθ(1)) corresponding to the chosen prefix
∀vl(Hχ(1)(vl) of Dr

1 . In Dp
1, pick exactly one conjunct Cq(bξ(0), bξ(1)) from every con-

junction Cξ(0),ξ(1) that arises from the corresponding boolean disjunct of Dr
1 , where

by definition 〈ξ(0), ξ(1)〉 := 〈θ(0), θ(1)〉 if χ(0) < χ(1) and 〈ξ(0), ξ(1)〉 := 〈θ(1), θ(0)〉
if χ(1) < χ(0), else undefined. Next pick exactly one quantified disjunct Dr

2 of the
disjunction Dr

1 , and so on, such that the subsequently chosen conjuncts Cq(bθ(i), bθ(k))
provide us with partial choice-functions f which are defined for all Cθ(i),θ(k) for which
Hχ(i)(bθ(i)), Hχ(k)(bθ(k)), where i �= k and bθ(i) �= bθ(k), are the previously chosen
prefix-atoms such that χ(i) < χ(k). Obviously, ∀�(Dr

i ) > ∀�(Dr
i+1) holds for every

admissible i, which yields i < t, and hence this generating procedure actually runs by
induction on t = ∀�(Ut). Moreover, arguing by induction on t, one can easily prove
that if Pt is a tautology then there is at least one such partial choice-functions f for
which the resulting partial structure

S̃f
t =

〈
{Hχ(j)(bθ(j)) : j � t}, {Cf(ξ(i),ξ(k))(bξ(i), bξ(k)) : i �= k � t}

〉

already contains a monochromatic triangle. In order to complete the proof, it will
suffice to interpret the latter conclusion in game-theoretical terms of Proposition 11.
Obviously, without loss of generality we can rename the new variables such that
θ(ι) = ι, in order to rewrite the sequence of chosen prefix-atoms in the form Hχ(0)(b0),
Hχ(1)(b1), ..., Hχ(t)(bt). Furthermore, we observe that separating universal variables
in R−

t provides us with the ‘label-assignment’ $ : bι �→ $(bι) � n + 1, ι � t, where
by definition $(bι) := $(ι) = l iff bι is the renamed universal variable vl from R−

t .
Moreover, we observe that Ci,k occurs in Pt iff the occurrence �1 in Ut corresponding
to the underlying boolean expansion G0

1 occurs in the scope of every ∀v�(j) where
i � j � k or k < j � i. From this we infer that if i < k and both $(i) �= $(j)
and χ(i) �= χ(j) hold for all i < j � k, then the unordered pair 〈bi, bk〉 must be in the
domain of f . But this is exactly the coloring condition of Proposition 11. Summing
up, from boolean validity of Pt we infer that Player I has a winning strategy in the
game of Proposition 11 — a contradiction. Hence P s

t is invalid for all t, and hence so
is Rs

t , Q.E.D.

2.4 Proof of the Nested Herbrand Lemma

In this subsection we prove a suitable generalization of Lemma 19 — Lemma 34 below
— to be referred to as the nested Herbrand lemma. This generalization deals with uni-
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versal multinomials and semiexistential formulas in Lλ(−→�s) and Lλ, respectively. The
crux of the proof is to replace the modus-ponens λ-variable formalism HBLλ by the
appropriate, equivalent Herbrand-style nested cutfree sequent calculus NSCλ (being
in turn a suitable nested generalization of the familiar Gentzen-Schütte-Rasiowa-Tait
cutfree sequent calculus which, in the original “plain” form, is too weak in the finite
variable domain). We adopt basic notations of the previous subsection. Now by def-
inition NSCλ is a formula-rewriting system in the language Lλ (in particular, Lλm,n)
whose rewrite rules are:

1. A ∨B ↪→ B ∨A

2. C ∨ (A ∨B) ↪→ (C ∨A) ∨B

3. C ∨ (A ∧B) ↪→ (C ∨A) ∧ (C ∨B)

4. A ↪→ A ∨A

5. � ∨A ↪→ �

6. � ∧� ↪→ �

7. L ∨ ¬L ↪→ �

8. ∀xD ↪→ D [x not free in D]

9. ∀xA ∨D ↪→ ∀x(A ∨D) [x not free in D]

10. A[x/y] ↪→ ∀xA

11. ∃xA ↪→ A[x/y]

where A,B,C,D | L | x, y | � are arbitrary formulas | literals | variables | the truth
value in Lλ, respectively, such that x is not free in D. By definition, a formula
F is derivable in NSCλ (mod canonical abbreviations and/or translations) iff there
exists a finite sequence F = F0, F1, ..., Fp = � in Lλ such that for each l < p, Fl+1

arises by rewriting, in Fl, a chosen positive (i.e. non-negated) subformula Q to Q′,
which we abbreviate Fl+1 = Fl[Q ↪→ Q′], provided that Q ↪→ Q′ is a rewrite rule
from the above list 1–11. Generally, for any rewrite rule Q ↪→ Q′ of NSCλ, we
call the analogous relation F ′ = F [Q ↪→ Q′] a reduction, in NSCλ, corresponding
to Q ↪→ Q′; this relation we abbreviate by F ❀ F ′. Furthermore, by F ❀∗ F ∗

we denote the corresponding transitive reduction F = F0 ❀ F1 ❀ ... ❀ Fp = F ∗,
which we also call a reduction chain from F to F ∗, in NSCλ. Thus, in particular, F
is derivable in NSCλ iff there exists a reduction chain from F to � in NSCλ. Note
that all reductions are valid inverse implications, i.e. for every reduction F ❀ F ′,
the implication F ′ → F is 1-order valid. In what follows we often drop associative
dis/con/junctive brackets and use without proof the admissibility in NSCλ of the
associative and commutative dis/con/junctive laws and bound renaming (cf. [6]).
The corresponding Nested Hauptsatz reads:
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(23) Theorem. Any Lλ-formula F is provable in HBLλ iff it is derivable in NSCλ.
Proof. See [2, 3] for an outline and correction with regard to a slightly different proof
system, called RPCλ. An exhaustive proof of the theorem as stated above is exposed
in [6].

Working in Lλ(−→�s), let NSCλ(
−→�s), be the analogous proof system that extends

NSCλ by adding, for purely technical reasons, to the basic rules 1–11 the following new
rewrite rules 4+, 9+, while assuming that all special symbols �σ are 0-ary predicate
symbols thus having no free variables.

4+. �σ ↪→ �σ ∨ ... ∨ �σ [of any positive length]

9+. �σ ∨D ↪→ ∀x(�σ ∨ ... ∨ �σ ∨D) [of any positive length;

x not free in D]

Note that 4+ and 9+ are easily derivable by 4 plus trivial repetition A ↪→ A
and 4 plus 10, respectively. Furthermore, in the proofs below, we also introduce
complex special symbols �σ,i,j which are treated as ordinary literals which include
(free) variables; these complex special symbols by definition don’t obey the new rules
4+, 9+.

(24) Definition. Let F = ∃x1...∃xk
∧
{Li : i < r} be any purely existential formula

in Lλ, k, r > 0. We say G is ‘generated’ by F if there exists a reduction chain from
F to G or a disjunct of G, in NSCλ. Moreover, we call such G ‘semiexistential’ if
it is not a disjunction. For any semiexistential G, we denote by G[exp] the corre-
lated ‘semiboolean’ expansion of G that arises by successively replacing, in G, every
subformula ∃xB by

∨
{B[x/vl] : l < λ}. Thus semiboolean formulas don’t contain

existential quantifiers.

(25) Definition. Working in Lλ(−→�s), we define um(s, λ) (in words: the class of
universal s, λ-multinomials; abbr.: U, V,W , possibly indexed) by recursion (mod dis-
junctive equivalence):

1. ∅ (the empty formula) is in um(s, λ),

2. any Lλ-literal is in um(s, λ),

3. any (finite) Lλ(−→�s)-conjunction �σ(1) ∧ ... ∧ �σ(r) is in um(s, λ), r > 0,

4. um(s, λ) is closed under ∨ and ∀vl, l < λ,

5. if U ∨ (V ∧W ) is in um(s, λ) then so is (U ∨ V ) ∧ (U ∨W ).

(26) Definition. For any U ∈ um(s, λ), let
−→
O = O1, ..., Ot = �σ(1), ...,�σ(t) be the

list of all of occurrences in U of the special symbols from
−→�s. Let

−→
F = Fσ(1), ..., Fσ(t)
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and
−→
G = G1, ..., Gt be two adjacent lists of respectively purely existential and semiex-

istential formulas, in Lλ, such that every Gr is generated by Fσ(r) (0 < r � t,
0 < σ(r) � s). We say that

−→
G is correlated with

−→
O,

−→
F if for any 0 < i �= j � t

it holds that σ(i) = σ(j) implies Fσ(i) = Fσ(j). That is to say, with equal special
symbols � we correlate equal purely existential formulas F , although their generated
semiexistential formulas G might be different.

(27) Definition. Let U,
−→
O,

−→
F ,

−→
G be as above, i.e.

−→
G is correlated with

−→
O,

−→
F . De-

note by U [
−→
O :=

−→
G ] the adjacent Lλ-realization that arises by rewriting in U every

occurrence Or to Gr (0 < r � t). In the same context, we denote by U [
−→� :=

−→
F ] the

analogous realization with respect to the “original” purely existential list
−→
F . Now let−→

F [exp] = Fσ(1)[exp], ..., Fσ(t)[exp] and
−→
G [exp] = G1[exp], ..., Gt[exp] be the correlated

lists of boolean and semiboolean expansions, respectively. Then by U [
−→� :=

−→
F [exp]]

and U [
−→
O :=

−→
G [exp]] we denote the corresponding boolean and semiboolean realiza-

tions, respectively. In the sequel we denote arbitrary realizations by X,Y, Z (possibly
indexed). Thus X,Y, Z in fact range over arbitrary Lλ-formulas. By U [Or := V ]
and X[Gr := Y ] we denote the corresponding composite multinomial and realization
which arise by rewriting in U and X = U [

−→
O :=

−→
G ] a chosen Or and Gr to V and Y ,

respectively.

(28) Definition. For any U ∈ um(s, λ), a Lλ-realization X = U [
−→
O :=

−→
G ] is called

‘normal’ if the following two conditions hold. First, every maximal existential sub-
formula of X occurs in the list

−→
G . That is, if ∃yY is an occurrence which is not a

proper subformula of any occurrence ∃zZ, in X, then ∃yY = Gr for some 0 < r � t.
Second, every conjunction occurring in X is multinomial. That is, if Y ∧ Z occurs
in X then U has an occurrence V ∧W whose subrealization induced by X coincides
with Y ∧ Z.

(29) Definition. Let Fσ = ∃x1...∃xk
∧
{Lσ,i : i < r} be a purely existential Lλ-

formula, 0 < σ � s, k, r > 0, letGσ = ∃xB be generated by Fσ, and let Ξ0,Ξ1, ...,Ξϑ−1

be a sequence of substitution-chains [x1/y1]...[xk/yk], for any y1, ..., yk, in Lλ; thus
ϑ � λk. For any i < r, ι < ϑ, let Lσ,i,ι = Lσ,iΞι, and let

−→
L σ,ϑ = Lσ,0,0, ..., Lσ,r−1,ϑ−1

be the canonical enumeration of the set {Lσ,i,ι : i < r & ι < ϑ}. We call ‘σ-canonical’
any multinomial Wσ of either the shape

∨
{
∧
{�σ,i,ι : i < r} : ι < ϑ} for ϑ > 0 or else

�σ ∨
∨
{
∧
{�σ,i,ι : i < r} : ι < ϑ}, in the extended complex domain um(r · ϑ + s, l)

(mod index-renaming). By the same token, we call ‘σ-canonical’ the adjacent real-
ization Zσ that arises from Wσ by rewriting �σ to Gσ and every �σ,i,ι to Lσ,i,ι. In
the sequel we call such Wσ, Zσ a ‘σ-canonical pair’. (Recall that the complex special
symbols �σ,i,ι are treated differently than �σ, in that �σ,i,ι are not supposed to be
sentences anymore.)

(30) Definition. For any U, V ∈ um(s, λ) and normal Lλ-realizations X = U [
−→
O :=
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−→
G ], Y = V [

−→
O′ :=

−→
G′], we let 〈U,X〉 � 〈V, Y 〉 (in words: U,X reduces to V, Y ) if

either 〈U,X〉 = 〈V, Y 〉 or else the following two conditions hold. First, there exists a
reduction chain X = X0 ❀ X1 ❀ ... ❀ Xp = Y from X to Y , in NSCλ. Second, the
adjacent multinomial reduction chain U = U0 ❀ U1 ❀ ... ❀ Up = V from U to V ,

where Xi = Ui[
−→
Oi :=

−→
Gi], is admissible in NSCλ(

−→�s), which is specified as follows.
Arguing by induction on p, we define the latter chain and specify our requirements.
Let Xi ❀ Xi+1 = Xi[Q ↪→ Q′], where Xi = Ui[

−→
Oi :=

−→
Gi] is normal, be any reduction

in the chain in question, Q ↪→ Q′ being the underlying rewrite rule q from the list
NSCλ, 0 < q � 11. Suppose that some Gi

r from
−→
Gi occurs (as subformula) in or

coincides with Q. Then q �= 5, 6, 7 must be the case. Moreover, let Oi
r = �σ be

the correlated occurrence in Ui. It is readily seen that Gi
r determines one or two of

its natural ‘successors’ in Q′ which coincide(s) with Gi
r (mod bound renaming). If

q �= 8, 9 or else Gi
r differs from the ‘main’ subformula ∀xD, resp. ∀xA (as exposed

in the above description of NSCλ), then we correlate �σ with every Gi
r-successor

in question. Otherwise, we note that D, resp. A, is an iterated disjunction (possi-
bly improper) of semiexistential formulas generated by Gi

r and, then, we correlate
�σ with each semiexistential disjunct in question, according to the rule 4+, resp.
9+. By recursion/induction on p, this procedure allows us to construct the desired
multinomial reduction chain from U to V , in NSCλ(

−→�s). Dealing with multinomials
in the extended complex domains um(r · ϑ + s, λ) we specify the above definition of
〈U,X〉 � 〈V, Y 〉, accordingly. That is, the correctness of the adjacent multinomial
reduction chain U ❀∗ V is fully determined by the one of X ❀∗ Y with regard to the
assignments �σ,i,ι := Lσ,i,ι, whose last “substitution index” ι is supposed to change
under the rule 10, accordingly.

(31) Lemma. For any Lλ-formulas (possibly empty) and variables (resp.) X,Y and
x, y, for any purely existential and semiexistential Lλ-formulas (resp.) F and G,B,
and for any U, V,W ∈ um(s, λ) and normal Lλ-realizations X = U [

−→
O :=

−→
G ], Y =

V [
−→
O′ :=

−→
G′], Z = W [

−→
O′′ :=

−→
G′′], the following hold.

1. X ∨ Y is generated by F iff so are both X and Y .

2. If ∃xX is generated by F , then so is X[x/y].

3. If G ❀∗ X ∨B ∨ Y then B[exp] → G[exp] (holds and) is provable HBLλ.

4. The relation � is transitive, i.e. if 〈U,X〉 � 〈V, Y 〉 and 〈V, Y 〉 � 〈W,Z〉 then
〈U,X〉 � 〈W,Z〉. Furthermore, the nested analogue of �-transitivity still holds
with respect to composite multinomials and realizations (see above Definition
27).

Proof. This is readily seen.
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(32) Lemma. Let Fσ be as in Definition 29, and let G be any Lλ-formula generated
by Fσ. Then there exists a σ-canonical pair Wσ, Zσ and a U ∈ um(r·λk+s, λ) together
with a normal Lλ-realization X = U [

−→
O :=

−→
G ] such that G = X and 〈Wσ, Zσ〉 �

〈U,X〉.
Proof. The proof runs by an easy induction on the length of the reduction chain
Fσ ❀∗ G in NSCλ. As long as the reductions preserve at least one existential quantifier
(of Fσ), we let U = �σ. Each time Fσ generates another, i.e. non-existential formula
F ′, we assign �σ to all maximal existential subformulas of F ′, while labelling every
literal Lσ,iΞι occurring beyond any scope of ∃ by the corresponding new symbol �σ,i,ι.
By Lemma 31(1,2) it readily follows that doing so we eventually arrive at the required
normal extension 〈U,G〉 of the resulting σ-canonical pair Wσ, Zσ.

(33) Lemma. Let Wσ, Zσ be a σ-canonical pair, X = U [
−→
O :=

−→
G ] a normal Lλ-

realization,
−→
G being correlated with

−→
O,

−→
F where

−→
O = O1, ..., Ot, and let 0 < r � t

be fixed such that Or = �σ. Let U# = U [Or := Wσ] ∈ um(r · ϑ + s, λ) and X# =
X[Gr := Zσ] be the corresponding composite multinomial and realization, respectively,

and let
−→
G# be the list of semiexistential formulas correlated with the corresponding

composite lists
−→
O#,

−→
F# of �-occurrences and purely existential formulas in U# and

X#, respectively. Suppose there exists a normal Lλ-realization Y = V [
−→
O′ :=

−→
G′]

such that 〈U#, X#〉 � 〈V, Y 〉 and V [
−→
O′ :=

−→
G′[exp]] is 1-order valid. Then there

exists a normal Lλ-realization Z = W [
−→
O′′ :=

−→
G′′] such that 〈U,X〉 � 〈W,Z〉 and

W [
−→
O′′ :=

−→
G′′[exp]] is 1-order valid.

Proof. This proof is more involved. Let 〈U#, X#〉 � 〈V, Y 〉 be as in the lemma.
In order to construct a desired 〈W,Z〉, we wish, loosely speaking, to rewrite every
complex special symbol �σ,i,ι occurring in V “back” to �σ, under the intended re-
alization �σ :=

∧
{Lσ,i,ι : ι < r}. But we also wish to “inherit” 1-order validity of

V [
−→
O′ :=

−→
G′[exp]] to the resulting semiboolean realization W [

−→
O′′ :=

−→
G′′[exp]]. That

is to say, we wish to “postpone” every distributive split of
∧
{�σ,i,ι : ι < r} oc-

curring in the “original” multinomial reduction chain U# ❀∗ V . To this end, we
have to collapse these “original” distributive branches. Moreover, every branch in
the modified reduction chain has to absorb (say, as new disjuncts) information about
“parallel” branches in the “original” reduction chain, for all �σ,i,ι which were sepa-
rated by the corresponding multinomial applications of the rewrite-rule 3. Moreover,
we delete those occurrences �σ,i,ν , ν �= ι, which occur in the new ∀-scopes created
by the “parallel” applications of the rewrite-rule 10, in order to preserve “original”
substitution-chains Ξι. It is readily seen that such deletings don’t destroy the result-
ing validity. For obvious reasons, the algorithm producing such W runs by recursion
on distributive depth in question. The precise description must include the (nested
version of) standard proof theoretical notions of successors and predecessors with
respect to reductions and reduction chains involved (see e.g. [6] for nested specifica-
tions). For the sake of brevity, we only sketch the algorithm, and in fact only one
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crucial case, as follows. Without loss of generality we assume r = 2.
Consider U# = A ∨ B(y) ∨ (�σ,0,ι ∧ �σ,1,ι) and the correlated literals Lσ,0,ι(y)

and Lσ,1,ι(x, y). Consider multinomial reduction chain of the shape:

U# = A ∨B(y) ∨ (�σ,0,ι ∧ �σ,1,ι) ❀

(A ∨B(y) ∨ �σ,0,ι) ∧ (A ∨B(y) ∨ �σ,1,ι) ❀

(A ∨B(y) ∨ �σ,0,ι) ∧ (A′ ∨B(y) ∨ �σ,1,ι) ❀

(A ∨ ∀x(B(x) ∨ �σ,0,ε)) ∧ (A′ ∨B(y) ∨ �σ,1,ι) ❀

(A ∨ ∀x(B(x)′ ∨ �σ,0,ε)) ∧ (A′ ∨B(y) ∨ �σ,1,ι) = V,

where A ❀ A′ and B(x) ❀ B(x)′ and Ξε = [y/x], i.e. Lσ,0,ε = Lσ,0,ι(x). This chain
is collapsed as follows (extensively using the contraction rewrite-rule 4) :

Ũ# = A ∨B(y) ∨ �σ =

A ∨B(y) ∨ �σ ❀

A ∨A ∨B(y) ∨ �σ ❀

A ∨A′ ∨B(y) ∨ �σ ❀

A ∨A′ ∨B(y) ∨B(y) ∨ �σ ❀

A ∨A′ ∨B(y) ∨ ∀xB(x) ∨ �σ ❀

A ∨A′ ∨B(y) ∨ ∀xB(x) ∨ ∀xB(x) ∨ �σ ❀

A ∨A′ ∨B(y) ∨ ∀xB(x) ∨ ∀xB(x)′ ∨ �σ = Ṽ =: W.

The adjacent realization reduction chain that is obtained from the above by rewrit-
ing �σ to Lσ,0,ι(y) ∧ Lσ,1,ι(x, y) remains correct. Moreover, if the correlated semi-
boolean expansion V [

−→
O′ :=

−→
G′[exp]] is 1-order valid, then clearly so is the collapsed

semiboolean expansion W [
−→
O′′ :=

−→
G′′[exp]].

Having defined the whole recursive collapsing procedure it is not hard to estab-
lish the required soundness by induction on the length of given reduction chains
〈U#, X#〉 � 〈V, Y 〉, also using Lemma 31(4) (we refer to [6] for basic nested tech-
niques).

(34) Lemma. For any U ∈ um(s, l) let X = U [
−→
O :=

−→
G ] be a normal Lλ-realization,

where as before
−→
G = G1, ..., Gt is correlated with

−→
O,

−→
F (

−→
F = Fσ(1), ..., Fσ(t),

−→
G =

G1, ..., Gt being any lists of respectively purely existential and semiexistential Lλ-
formulas). Suppose X is provable in HBLλ. Then there exist a normal Lλ-realization
Y = V [

−→
O′ :=

−→
G′] such that 〈U,X〉 � 〈V, Y 〉 and V [

−→
O′ :=

−→
G′[exp]] is 1-order valid.

Proof. By Theorem 23, we can safely replace the assumption ‘X is provable inHBLλ’
by ‘X is derivable in NSCλ’. Now the proof runs, for all dimensions s simultaneously,
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by induction on the length of derivation of X, i.e. reduction chain X ❀∗ �, in
NSCλ. Moreover, for the sake of brevity, we drop the rewrite-rules 1, 2 of NSCλ, while
assuming that all formulas under consideration are equal mod ∨-commutative and
∨-associative laws. The basis of induction is trivial, for � = �[exp] is valid. Let
X ❀ X ′ = X[Q ↪→ Q′] be the first reduction in X ❀∗ �, Q ↪→ Q′ being the rewrite
rule q (3 � q � 11) of NSCλ (abbr.: q : Q ↪→ Q′). First consider

Case 1. Suppose Q is a subformula of some Gr (0 < r � t).
We observe that Gr ❀ G′

r = Gr[Q ↪→ Q′] holds, G′
r still being semiexistential,

and hence X ′ = U [
−→
O :=

−→
G′] is a normal Lλ-realization, where

−→
G′ is obtained from−→

G by rewriting Gr to G′
r. Moreover, 〈U,X〉 � 〈U,X ′〉. By the induction hypothesis

and Lemma 31(4), this yields the result for a proper subformula Q. If Q = Gr

(0 < r � t), we argue analogously, except that in cases q = 8, 11 we note that Q′

can split into disjunctions of several semiexistential formulas. If this takes place, we
apply the adjacent rule 4+ of NSCλ(

−→�s), while associating �σ(r) with every disjunct
in question. To complete the proof, we arrive at

Case 2. Suppose that all Gr (0 < r � t) which have nonempty disjunctive
intersections with Q occur in it as proper subformulas. Generally, we argue as in the
previous case, but there are more exceptions where q : Q ↪→ Q′ changes the shape of
some Gr in question. This can happen when: 1) q = 5, or 2) q = 6, or 3) q = 7, or
4) Gr is the ∀xA of 9, or else 5) Gr is the A ∧B of 3. Consider these exceptions.

1. Subcase 1). We have Q = � ∨ A, Q′ = �. Let UQ be the sub-multinomial
of U whose realization is Q, and let U ′ be a multinomial that arises from U
by rewriting UQ to a chosen “dummy” occurrence �δ. Then clearly X ′ is a
normal realization of U ′. Moreover, by the induction hypothesis, there exists a
normal realization Z = W [

−→
O′′ :=

−→
G′′] such that 〈U ′, X ′〉 � 〈W,Z〉 andW [

−→
O′′ :=−→

G′′[exp]] is 1-order valid. Let
−→∀Q be the universal closure of Q, and let

−→∀ UQ
be the corresponding universal closure of UQ (

−→∀Q and
−→∀ UQ both having the

same prefix
−→∀ ). Now everywhere in the given reduction chains X ′ ❀∗ Z and

U ′ ❀∗ W we rewrite Q′ and �δ, and all its successors, to
−→∀Q and

−→∀ UQ,
respectively. Denote the resulting modification of W,Z by V, Y , and let

−→
O be

the correlated list of all �-occurrences in V . It is readily seen that Y is a normal
realization of V such that 〈U,X〉 � 〈V, Y 〉 and V [

−→
O′ :=

−→
G′[exp]] is 1-order valid,

as required.

2. Subcase 2). By the assumption we have Q = � ∧ �, Q′ = � such that Q =
Gu ∧Gv and Gu = Gv = �. We argue as in previous subcase, except rewriting
Q′ and �δ directly to Q and UQ = �r(u) ∧ �r(v), respectively.

3. Subcase 3). We have Q = L ∨ ¬L, Q′ = �. This subcase is entirely analogous
to Subcase 1).
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4. Subcase 4). We have Q = ∀xA ∨ D, Q′ = ∀x(A ∨ D), x is not free in D.
By the same token, the only question is how to pass from Q to Q′ under the
restrictions on the adjacent multinomial reduction. In the only nontrivial case,
the semiexistential formula ∀xA splits into a (possibly iterated) disjunction A of
semiexistential disjuncts (cf. analogous subcases q = 8, 11 of the previous case).
If this takes place, we associate �σ(r) with every disjunct in question and use
the adjacent rule 9+.

5. Subcase 5). We have Q = C ∨ (A ∧B), Q′ = (C ∨A) ∧ (C ∨B). Denote by UQ
and UC the sub-multinomials of Q whose realizations are Q and C, respectively.
Suppose Gr = A ∧ B is generated by Fσ(r). Hence, by Lemma 35, there exists
a σ(r)-canonical pair Wσ(r), Zσ(r) and a multinomial UA∧B = UA ∧ UB (of di-
mension s′ > s) whose correlated normal realization coincides with A ∧ B and
such that 〈Wσ(r), Zσ(r)〉 � 〈UA∧B , A ∧ B〉. Consider the corresponding com-
posite multinomial U# = U [Or := UA∧B ] whose correlated composite normal
realization coincides with X. Obviously, A and B are the correlated normal
realizations of UA and UB , respectively. Moreover, the adjacent rewrite-rule
UC ∨UA∧B ↪→ (UC ∨UA)∧ (UC ∨UB) is legitimate in the extended formalism of
UA∧B . Furthermore, the correlated normal composite realization of the resulting
reduced composite multinomial U ′ = U#[UC ∨UA∧B ↪→ (UC ∨UA)∧ (UC ∨UB)]
coincides with X ′ (whose derivation is shorter that the one of X). Hence, by
the induction hypothesis with respect to the extended formalism of

−−→�s′ , there
exists a normal realization Z = W [

−→
O′′′ :=

−→
G′′′] such that 〈U ′, X ′〉 � 〈W,Z〉

and W [
−→
O′′′ :=

−→
G′′′[exp]] is 1-order valid. Hence, by definition, we also have

〈U,X〉 � 〈W,Z〉, in the extended formalism in question. By Lemma 33, the
same conclusion holds true in the original formalism of

−→�s, i.e. there exists a
normal realization Y = V [

−→
O′′ :=

−→
G′′] such that 〈U,X〉 � 〈V, Y 〉 and V [

−→
O′′ :=−→

G′′[exp]] is 1-order valid, Q.E.D.

(35) Claim. Lemma 19 holds.
Proof. Note that up(s, λ) ⊂ um(s, λ). Furthermore, any U ∈ up(s, λ) is ∧-free.
Now suppose that X = U [�1 := S1, ...,�s := Ss] is provable in HBLλ, where U ∈
up(s, λ) and purely existential Lλ-sentences S1, ..., Ss are as in Lemma 19. Hence, by
Lemma 37, there exist a V ∈ um(s, λ) and a normal Lλ-realization Y = V [

−→
O′′ :=

−→
G′′]

such that 〈U,X〉 � 〈V, Y 〉 and V [
−→
O′′ :=

−→
G′′[exp]] is 1-order valid. Note that V is

∧-free, since so is U . Consider the adjacent multinomial reduction chain U ❀∗ V

in NSCλ(
−→�s). Observe that the only reason why we can’t infer U � V is due to

possible applications of the formula-rewrite rule 10 which introduce extra occurrences
of ∀. So we drop/reverse all reductions according to such 10. It is readily seen that
the resulting modified reduction chain U ❀∗ V ′ is still correct, in NSCλ(

−→�s). This
is because on the one hand no variable occurs free in the initial realization X, and
on the other hand the �-free part of the initial polynomial U is the disjunction of
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∀vlHi(vl) for all variables vl allowed, hence being closed under bound renaming, in
Lλ. By the same token, since dropping 10 can only improve validity, the adjacent
modified realization V ′[

−→
O′ :=

−→
G′[exp]] is still 1-order valid. But then, by Lemma 31(3),

the corresponding “original” realization V ′[
−→� :=

−→
S [exp]] is 1-order valid, since the

adjacent reductions from X ❀∗ Y in NSCλ are valid as inverse implications. From
this we easily arrive at a required W ∈ up(s, λ) such that U � W and W [�1 :=
S0

1 , ...,�s := S0
s ] is 1-order valid. In fact, such W is isomorphic to V ′ mod disjunctive

equivalence, while by definition Sσ[exp] = S0
σ holds for all 0 < σ � s.

The other direction of Lemma 19 is straightforward, although not trivial. To
begin with, we notice that, in any finite variable domain, every formula Z has
the uniquely determined (mod disjunctive equivalence) ∧∀-normal form Z) (abbr.:
CUNF) to which Z is convertible by successively applying, as long as possible, the
ordinary boolean formula-rewrite distributive rules, i.e. the rule 3 of NSCλ along
with its ∨-commutative variant, plus the new formula-rewrite ∀∧-homomorphic rule
∀x(A ∧ B) ↪→ ∀xA ∧ ∀xB which is readily admissible by the rules 8, 10 of NSCλ.
These conversions are confluent and strategy-invariant, i.e. applicable in any chosen
order (see [6] for an exhaustive exposition). The resulting CUNF Z) has the shape∧
{�k : k < θ} where every �k is entirely ∧-free. Now supposeW ∈ up(s, λ) such that

U � W and Z = W [�1 := S0
1 , ...,�s := S0

s ] is 1-order valid. Let Z
) =

∧
{�k : k < θ}

be the CUNF of Z. Thus for every k < θ, �k is valid. Now �k is built up from
atoms by using only disjunction and universal quantification. From this it readily
follows that �k is valid iff applying one or more rules 9 it contains a subformula
of the shape

∨
{Lj : j < η} such that there are p, q < η with Lp = ¬Lq. Hence

1-order validity of �k implies its derivability in NSCλ via 7, 5, 9 and, if necessary, 8
for A = �. Having this, we easily conclude, by 6, that 1-order validity of Z) im-
plies its derivability in NSCλ. Since CUNF expansions are admissible in NSCλ (see
above), Z is derivable in NSCλ, and hence, by 11, so is the correlated existential
closure Y = W [�1 := S1, ...,�s := Ss]. Hence by Theorem 23, Y is provable in
HBLλ. On the other hand, from U � W , X = U [�1 := S1, ...,�s := Ss] and
Y = W [�1 := S1, ...,�s := Ss] we infer that X reduces to Y by a chain of 9 simulat-
ing the relation � by rewriting every occurrence �σ to Sσ (0 < σ � s); this operation
is legitimate in NSCλ, since no free variable occurs in Sσ. Moreover, we know that �
is provable in HBLλ as inverse implication. Hence X is provable in HBLλ, Q.E.D.

(36) Remark. This claim completes the negative proof of Theorem 2 and thereby
confirms the results exposed in Subsection 1.1. Now consider Tarski λ-variable for-
malism with equality (abbr.: TLλ) underlying [21]. Recall that TLλ is stronger than
HBLλ. Hence by the positive part of Theorem 2 (resp. 4), the sentence Fm,n (resp.
Tm,n = 1, mod canonical 3-variable translation) is surely provable in TLn+3. On the
other hand, we notice that for any λ > 2, the general Leibniz law for λ-variable for-
mulas is admissible in HBLλ+1 and, generally, every λ-variable formula provable in
TLλ is provable in HBLλ+1 (see [4, 5]). Hence from the negative part of Theorem 2
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(resp. 4) we infer that Fm,n (resp. Tm,n = 1, mod canonical 3-variable translation)
is not provable in TLn+1. This yields a combinatorial 1-order “almost”-solution to
the original Problem 2.12 of [11]. Notably, Fm,n was obtained by proof theoretical
analysis of the algebraic arguments used in [17], which thereby essentially improves
indirect loose bounds of provability claimed in [17] with regard to the same alge-
braic construction.4 Furthermore, Fm,n is equality-free, which enables us to remove
“almost” from the above description, provided that the following conjecture holds.

(37) Conjecture. For every λ > 3, every equality-free sentence provable in some of
Henkin-Tarski λ-variable formalisms with equality, as exposed in [8, 12] a/o [21], is
also provable in the corresponding formalism HBLλ. This conjecture is known to hold
for λ = 4. But in the general case, the proof would require deeper proof theoretical
insights into finite-variable logics with the general Leibniz law.
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