
MULTI-VIDEO COMPRESSION IN TEXTURE SPACE

Gernot Ziegler, Hendrik P. A. Lensch, Naveed Ahmed, Marcus Magnor, Hans-Peter Seidel

MPI Informatik, Saarbrücken, Germany

ABSTRACT

We present a model-based approach to encode multiple syn-
chronized video streams depicting a dynamic scene from
different viewpoints. With approximate 3D scene geome-
try available, we compensate for motion as well as dispar-
ity by transforming all video images to object textures prior
to compression. A two-level hierarchical coding strategy
is employed to efficiently exploit inter-texture coherence as
well as to ensure quick random access during decoding. Ex-
perimental validation shows that attainable compression ra-
tios range up to 50:1 without subsampling. The proposed
coding scheme is intended for use in conjunction with Free-
Viewpoint Video and 3D-TV applications.

1. INTRODUCTION

Recent advances in imaging technology have made the
acquisition of multiple synchronized videos of real-world
dynamic scenes economically feasible. This new media
modality is useful, e.g., to re-display the recorded ac-
tion from an arbitrary perspective (3D-TV, Free-Viewpoint
Video) [1, 2]. Although only a sparse set of cameras might
be used, the resulting data amounts are still tremendous.
In uncompressed state, the data expenditure equals to one
video stream per recording camera. Available bandwidth as
well as DVD storage capacity currently make distribution
of such uncompressed media impossible. While standard-
ized video compression techniques could be applied, these
cannot exploit the high degree of redundancy inherent in
multiple video recordings of the same object. Especially,
no inter-stream coherence would be exploited. In addition,
synchronized, random access of video frames is not easily
possible.

Using multiple images as texture is a relatively new re-
search area. The benefits of having multiple images avail-
able to render view-dependent effects have first been shown
by Debevec et al. [3]. Compression of multi-view image
data in the texture domain has been explored by a few re-
searchers. Nishino et al. apply eigenvector decomposition
to a number of textures created from images and a 3D model
of the object [4]. Wood et al. investigate vector quantization
and principal function analysis to compress local reflection
characteristics [5]. Magnor et al. make use of a 4D wavelet

decomposition to exploit textural coherence also between
textures [6]. All previous work was concerned with encod-
ing multiple textures of a static object. This paper, in con-
trast, presents an efficient approach to compress multi-video
image data of a dynamic scene in the texture domain.

Since the differences in the recorded frames are mainly
due to disparity as well as object motion, we separate the
recorded information into the object’s shape and its sur-
face texture. Object movement and disparity are compen-
sated in texture space. Differences between texture maps
are much smaller than between the original images. As a
result much higher compression rates can be achieved. To
efficiently exploit redundancy, we propose a two-level hi-
erarchical coding approach. First, we construct one aver-
age texture map for each time step from all camera images.
All average textures are then averaged again to yield one
base texture. We encode the residual texture differences be-
tween the base texture and each time-step average texture
as well as the difference between average textures and each
corresponding camera view texture using a shape-adaptive
wavelet coder. Our experimental results with 8 synchronous
video streams show that usable compression ratio ranges up
to 50:1 without YUV subsampling, which includes the pos-
sibility to render arbitrary viewpoints.

2. OVERVIEW

Several computing steps are necessary to transform the raw
multi-view camera recordings into a surface mesh with
motion parameters and corresponding texture maps. We
demonstrate the principles on the basis of capturing human
actors.

The motion parameters are obtained by the free-
viewpoint video approach by Caranza et al. [2]. Eight syn-
chronized videostreams of a human actor are captured by
calibrated cameras and seperated into fore- and background
pixels. Motion parameters are estimated for each frame in
each stream by silhouette matching.

Using the camera and motion parameters the input
frames are resampled into a texture atlas, i.e., a different
texture map is created for each time step and camera while
the texture atlas parameterization itself is constant. The re-
sampling is carried out using graphics hardware and is ex-



plained in more detail in Section 3.
The resulting texture maps are then compressed. After

generating a two step average (first over all camera views
in one time step, then over all time steps within the given
time range), differential images are computed with respect
to the average images. Since this is done at both levels, the
redundancy between the multiple views of one timestep is
removed before the temporal coherence is considered.

All resulting images are then compressed using a shape-
adaptive wavelet algorithm which exploits the fact that not
all areas in the texture maps are actually used. The wavelet
encoder utilizes decoding prediction to avoid propagating
errors in the dependent two step pixel decoding.

3. TEXTURE ATLAS

The mapping from the input streams into texture space is
done by defining a texture atlas which maps the surface of
the 3D model into the 2D domain. The problem of creat-
ing a texture atlas is closely related to the problem of sur-
face parameterization. A projection of the mesh into the
2D plane can be performed by minimizing texture stretch
and distortion on the surface, as for example proposed
in [7, 8, 9, 10, 11]. For general meshes it is necessary to in-
troduce cuts on the surface in order to bound the distorsion.
Those cuts may partition the surface into distinct patches.

Our texture atlas is constructed by projecting the trian-
gles of one patch orthogonally onto a plane defined by the
average surface normal. The selection of patches ensures a
minimum sampling density of the surface: Starting with one
arbitrary seed triangle, neighboring triangles are added to
the patch until the triangle normal deviates too much from
the average normal. If one patch cannot grow any further
another seed triangle starts a new patch. A separate texture
atlas is constructed for each body part which are then joined
into a single texture as demonstrated in Figure 1a) and c).

3.1. Hardware-Accelerated Resampling

Given the animation parameters, i.e., the tranformation ma-
trices for each body part, each original vertex is moved to
its transformed 3D position. Exploiting graphics hardware
we can now easily map each frame of the input streams into
the texture domain using a vertex program: the final ver-
tex position is set to the 2D texture atlas coordinates of the
vertex while the transformed 3D vertex position is used to
compute the image position in the current frame which de-
fines how to texture the currently rendered triangle. In order
to compute visibility, we perform a traditional shadow map-
ping approach with the camera position used as the light
source. All non-visible texels will be rendered black as can
be seen in Figure 1d).

(a) (b)

(c) (d)

Fig. 1. Resampling into the texture atlas: (a) Color coded
body parts. (c) Corresponding regions in texture space. (b)
Original frame (320x240). (d) Resampled frame consider-
ing visibility (512x512).

4. SHAPE-ADAPTIVE WAVELET ENCODING

Encoding the video streams now means encoding the result-
ing texture maps of each time step t and camera c. We ex-
perienced a strong coherence of the texture maps of the dif-
ferent camera images of one timestep as well as over time.
The proposed encoding reflects this coherence in a two level
encoding.

The encoding is shape-adaptive, i.e., all black texels
will be encoded by a bit mask, and only the visible texels
p(x, y, t, c) for which vis(x, y, t, c) = 1 need to be consid-
ered for each frame.

At first, the average T ′(x, y, t) of all camera images at
one timestep is computed, and from this the average over all
frames T ′′(x, y) (the parameters x and y are left out in the
remainder of this paper):

T ′(x, y, t) =

∑
c
p(x, y, t, c) · vis(x, y, t, c)∑

c
vis(x, y, t, c)

(1)

vis′(x, y, t) =
∨

c

vis(x, y, t, c) (2)

T ′′(x, y) =

∑
t
T ′(x, y, t) ∗ vis′(x, y, t)∑

t
vis′(x, y, t)

(3)

See Figure 2 for a graphical sketch of the process.
After computing the average images T ′ and T ′′ all im-

ages (also the input textures) are converted from RGB to
YUV color space in which all further processing is per-
formed. Then, only the T ′′ image is encoded using a shape-
adaptive wavelet encoding (BISK) [12].



Fig. 2. The averaging scheme.

Afterwards differential images R(t, c) to the original
texture maps are extracted for each frame and camera.
Weighting the input in Equations 1-3 with the visibility vis

when computing the averages avoids affecting the distance
from the valid pixel values to the computed average by non-
visible pixels. This would otherwise increase the entropy of
the differential images and thus degrade encoding quality.

More specific, we first compute for each timestep the
difference images R′(t) between the overall T ′′ and the
timestep average T ′(t). In order to get back to the original
textures we further compute for each camera and timestep
R(t, c) = p(t, c)−(T ′′+R′(t)). Again all R′(t) and R(t, c)
are encoded using shape-adaptive wavelet encoding.

for all timesteps t:
average all camera images c → T ′(t)

average over all timesteps → T ′′

encode, decode T ′′
→ T̂ ′′

for all timesteps t:
T̂ ′′

− T ′(t) → R′(t)

encode, decode R′(t) → R̂′(t)

reconstruct T̂ ′′ + R̂′(t) → T̂ ′(t)
for all camera views c:

T (t, c) − T̂ ′(t) → R(t, c)
encode R(t, c)

Fig. 3. Encoding.

Since the applied wavelet encoding is lossy the decoded
result would be strongly influenced by the decoding error
in T ′′ and R′(t). We avoid this influence by computing all
differences with respect to the once encoded and decoded
images T̂ ′′ and R̂′(t) respectively. The overall encoding
pipeline is listed in Figure 3. Instead of averaging the en-
tire stream by a single T ′′ one may also define shorter time
spans and compute several T ′′.

As the final result, the encoded data streams contains

BISK-encoded files for the YUV-planes and bitmasks of:

• T̂ ′′: the average of all timestep averages.
• R̂′(t): the difference images to the timestep average.
• R̂(t, c): the difference images of each camera image.

Furthermore, the object shape and the motion parametes are
included. The data stream is currently comprised of invidual
files for each image component. No container format or
supplemental information is currently included.

5. DECODING

Given the aforementioned encoding pipeline, decoding the
streams is straight forward and explained in Figure 4.

decode T̂ ′′()
for all timesteps t:

decode R̂(t)

reconstruct: T̂ ′′() + R̂(t) → T̂ (t)
for all camera views c:

decode R̂(t, c)

reconstruct: T̂ ′(t) + R̂(t, c) → T̂ (t, c)

write/apply T̂ (t, c)

Fig. 4. Decoding.

6. THE SHAPE MASK

As mentioned earlier, visibility information is represented
by a bitmask such that only the visible texels are considered
during encoding and decoding. The shape mask is how-
ever implicitly defined by the object’s mesh and the motion
parameters. Thus, the shape mask does not need to be rep-
resented explicitly and can be omitted during transmission
if the object shape is given.

7. RESULTS

The verification of the encoder results was achieved by com-
paring a 350 frames long rendering of the model animation
(the dancer scene used in [2]) with the original, recorded
camera images. Only the Y-values of the rendering were
considered, but we expect similar results for the U and V
values.

To acquire an indication of the maximum quality achiev-
able with the rendered result, we mapped the texture maps
back to the 3D model without using any compression
pipeline inbetween. This resulted in a maximum limit for
the achievable image quality, called ideal reconstruction.

We encoded then the texture maps at various bitrates,
and mapped the decoded results back to the 3D model to
gain an impression on how much the renderings were af-
fected. The results are shown in in Figure 5.



Ideal 
reconstruction

Codec result

Fig. 5. Decoding results for the dancer scene.

As expected, the quality rating (measured in the PSNR
of the two renderings’ Y-values) improved with increasing
bitrate. It showed for our test case that a bitrate increase
from 1.5 to 2.1 bpp did not provide any substantial gain in
image quality; it levelled out at approximately 1 dB below
the ideal reconstruction quality.

A compression rate of 1 bpp can safely be used without
sacrifices in reproduction quality. The compression ratios
of 50:1 to 8:1 compare well to MPEG standard compres-
sion, with the strong advantage that arbitrary views can be
rendered from the input data. The areas used in the texture
maps and the rendered images compare at a ratio of 3.1:1.

8. CONCLUSIONS

We have presented a coding approach for a new data modal-
ity, synchronous multi-video image data, needed for Free-
Viewpoint Video as well as 3D-TV applications. Our
method relies on having an (approximate) 3D geometry
model of the dynamic scene available that can be used to
map the video images to textures. By working in texture
space, we compensate for disparity between camera views
as well as for object motion over time. By following a two-
level hierarchical coding approach, we enable random ac-
cess to any view by decoding just two texture difference
maps.

Compression ratios up to 250:1 have been verified ex-
perimentally, with the usable range below 50:1, all without
YUV subsampling. This compares well to MPEG standard
compression, with the additional advantage of reproducing
arbitrary viewpoints. The next steps will include accelerat-
ing decoding to allow for real-time rendering of the scene
from the compressed bit stream. To further improve cod-
ing efficiency, we are going to investigate how to retrieve
surface reflectance characteristics in addition to the diffuse
reflection component currently exploited, and find estimates
on the optimal area ratio between texture map and rendered
image.

We will also investigate if U and V values should be
subsampled prior to wavelet encoding, or if a reduced bitrate
suffices.

9. REFERENCES

[1] C. Fehn, P. Kauff, M. Op de Beeck, F. Ernst, W. Ijsselsteijn,
M. Pollefeys, E. Ofek L. Van Gool, and Sexton I., “An evolu-
tionary and optimised approach on 3D-TV,” Proc. Interna-
tional Broadcast Conference (IBC’02), pp. 357–365, Sept.
2002.

[2] J. Carranza, C. Theobalt, M Magnor, and H.-P. Seidel, “Free-
viewpoint video of human actors,” ACM Trans. on Computer
Graphics, vol. 22, no. 3, July 2003.

[3] P. Debevec, C. Taylor, and J. Malik, “Modeling and render-
ing architecture from photographs: A hybrid geometry- and
image-based approach,” Computer Graphics (SIGGRAPH
96 Proceedings), pp. 11–20, Aug. 1996.

[4] K. Nishino, Y. Sato, and K. Ikeuchi, “Eigen-texture method:
appearance compression based on 3d model.,” Proceedings
of IEEE Conf. on Computer Vision and Pattern Recognition,
pp. 618–624, June 1999.

[5] D. Wood, D. Azuma, K. Aldinger, B. Curless, T. Duchamp,
D. Salesin, and W. Stuetzle, “Surface light fields for 3D pho-
tography,” Proc. ACM Conference on Computer Graphics
(SIGGRAPH-2000), New Orleans, USA, pp. 287–296, July
2000.

[6] M. Magnor, P. Ramanathan, and B. Girod, “Multi-view cod-
ing for image-based rendering using 3-D scene geometry,”
IEEE Trans. Circuits and Systems for Video Technology, vol.
13, no. 11, pp. 1092–1106, Nov. 2003.

[7] S. Marschner, Inverse rendering for computer graphics,
Ph.D. thesis, Cornell University, 1998.

[8] D. Piponi and G. D. Borshukov, “Seamless texture mapping
of subdivision surfaces by model pelting and texture blend-
ing,” in Proceedings of ACM SIGGRAPH 2000, July 2000,
Computer Graphics Proceedings, Annual Conference Series,
pp. 471–478.

[9] P. V. Sander, J. Snyder, S. J. Gortler, and H. Hoppe, “Texture
mapping progressive meshes,” in Proceedings of ACM SIG-
GRAPH 2001, Aug. 2001, Computer Graphics Proceedings,
Annual Conference Series, pp. 409–416.

[10] Olga Sorkine, Daniel Cohen-Or, Rony Goldenthal, and Dani
Lischinski, “Bounded-distortion Piecewise Mesh Parameter-
ization,” in IEEE Visualization, 2002.

[11] Xianfeng Gu, Steven J. Gortler, and Hughes Hoppe, “Geom-
etry images,” ACM Transactions on Graphics, vol. 21, no. 3,
pp. 355–361, July 2002.

[12] J. E. Fowler, “Shape-adaptive coding using binary set split-
ting with k-d trees,” in IEEE International Conference on
Image Processing, 2004, submitted.

[13] H. Danyali and A. Mertins, “Fully scalable texture coding
of arbitrarily shaped video objects,” Proc. IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP’03), pp. 393–396, Apr. 2003.


