
1

Multi-Video Compression in Texture Space using 4D SPIHT

Gernot Ziegler, Hendrik P.A. Lensch, Marcus Magnor and Hans-Peter Seidel
MPI Informatik, Saarbrücken, Germany

Abstract— We present a model-based approach to encode
multiple synchronized video streams which show a dynamic scene
from different viewpoints. By utilizing 3D scene geometry, we
compensate for motion and disparity by transforming all video
images to object textures prior to compression.

A 4D SPIHT wavelet compression algorithm exploits inter-
frame coherence in both temporal and spatial domain. Unused
texels increase the compression, and a shape mask can be omitted
at the cost of higher decoder complexity. Experiments with test
data show that attainable compression ratios range up to 50:1
without subsampling. The proposed coding scheme is intended
for use in conjunction with Free-Viewpoint Video and 3D-TV
applications.

I. INTRODUCTION

Recent advances in imaging technology have made the
acquisition of multiple synchronized videos of real-world dy-
namic scenes economically feasible. This new media modality
is useful, e.g., to re-display the recorded action from an
arbitrary perspective (3D-TV, Free-Viewpoint Video) [1], [2].
Although only a sparse set of cameras might be used, the
resulting data amounts are still tremendous. In uncompressed
state, the data expenditure equals to one video stream per
recording camera. Available bandwidth as well as DVD stor-
age capacity currently make distribution of such uncompressed
media impossible. While standardized video compression tech-
niques could be applied, these cannot exploit the high degree
of redundancy inherent in multiple video recordings of the
same object. Especially, no inter-stream coherence would be
exploited. In addition, synchronized, random access of video
frames is not easily possible.

Using multiple images as texture, aka multi-view textures,
is a relatively new research area. The benefits of having
multiple images available to render view-dependent effects
have first been shown by Debevec et al. [3]. Compression
of multi-view image data in the texture domain has been
explored by a few researchers. Nishino et al. apply eigenvector
decomposition to a number of textures created from images
and a 3D model of the object [4]. Magnor et al. make use
of a 4D wavelet decomposition to exploit textural coherence
also between textures [5]. All previous work was concerned
with encoding multiple textures of a static object. This paper,
in contrast, presents an efficient approach to compress multi-
video image data of a dynamic scene in the texture domain.

Since the differences in the recorded frames are mainly due
to disparity as well as object motion, we separate the recorded
information into the object’s dynamic shape and its surface
texture. Object movement and disparity are compensated in

(a) (b)

(c) (d)
Fig. 1. Resampling into the texture atlas: (a) Color coded body parts. (c)
Corresponding regions in texture space. (b) Original frame (320x240). (d)
Resampled frame considering visibility (512x512).

texture space. Differences between texture maps are much
smaller than between the original images. A similar approach
has been used in [6], applying average textures and shape-
adaptive 2D wavelet compression.

In this paper a complete 4D SPIHT wavelet encoder for
multiple viewpoint video is presented. The 4D SPIHT has
been adapted to work with sparsely filled textures and achieves
therefore significantly higher compression rates than [6].

II. OVERVIEW

Several computing steps are necessary to transform the raw
multi-view camera recordings into a surface mesh with motion
parameters and corresponding texture maps. We demonstrate
the principles on the basis of capturing human actors. The mo-
tion parameters are obtained by the free-viewpoint video ap-
proach by Caranza et al. [2]. Eight synchronized videostreams
of a human actor are captured by calibrated cameras and
seperated into fore- and background pixels. Motion parameters
are estimated for each frame in each stream by silhouette
matching. Using the camera and motion parameters the input
frames are resampled into a texture atlas, i.e., a different
texture map is created for each time step and camera while the
texture atlas parameterization itself is constant. The resampling



is carried out using graphics hardware and is explained in more
detail in Section III. To efficiently exploit temporal and spatial
redundancy, we propose applying a 4D SPIHT wavelet com-
pression on the reconstructed texture maps. First, we group the
texture maps into blocks of spatial and temporal coherency,
yielding fourdimensional data blocks of YUV samples. U
and V values can optionally be subsampled. Unused texels
(currently: black pixels) in these 4D blocks are now filled
with averages of the surrounding valid texels. This ensures
best possible data compression under the subsequently applied
algorithm. The resulting 4D texel data is now compressed with
a 4D SPIHT encoder, based on work done in [5]. The encoder
is currently able to handle a 4D data block with pairs of equal
dimensions (e.g. 8 timesteps of 8 camera view textures at 512
x 512 resolution). Our experimental results with 8 synchronous
video streams show that the usable compression ratio ranges
up to 50:1 without YUV subsampling, which includes the
possibility to render arbitrary viewpoints, in contrast to MPEG
simulcast transmission.

III. TEXTURE ATLAS

Using the camera and motion parameters the input frames
are resampled into a texture atlas, i.e., a different texture map
is created for each time step and camera while the texture atlas
parameterization itself is constant. The resampling is carried
out using graphics hardware.

Our texture atlas maps the surface of the 3D model into
the 2D domain. It is constructed by projecting the triangles of
one patch orthogonally onto a plane defined by the average
surface normal.

The selection of patches ensures a minimum sampling
density of the surface: Starting with one arbitrary seed triangle,
neighboring triangles are added to the patch until the triangle
normal deviates too much from the average normal. If one
patch cannot grow any further another seed triangle starts a
new patch. The body parts’ textures are then joined into a
single texture as demonstrated in Figure 1a) and c). In order to
compute visibility, we perform a traditional shadow mapping
approach with the camera position used as the light source.
All non-visible texels will be rendered black as can be seen
in Figure 1d).

IV. DATA GROUPING AND FILLING

Compression of a data block commences when all necessary
camera images are available as textures.

After resampling, we group the texture maps into blocks
of spatial and temporal coherency, yielding four-dimensional
data blocks of YUV samples. The block division corresponds
to the GOP (group of picture) block structure commonly used
in MPEG video formats, and allows for limited random access
as long as the whole 4D block containing a certain texture
is decoded, see Figure 2. U and V values can optionally be
subsampled, but we currently work with reduced bitrates for
these color components, see the SPIHT encoder below.

Fig. 2. Group of Pictures arranged from multi-view texture maps.

Unused texels (currently: black pixels) in these 4D blocks
are now filled with averages of the surrounding valid texels,
see Figure 3 for an example. This ensures best possible data
compression under the subsequently applied algorithm, as
described in [5].

To serve this purpose, the whole 4D data block is first
downsampled in a Laplacian 4D pyramid, all the way to
the lowest resolution of 1x1, taking the different dimension
extents into consideration (a division by two remains one
if the result would be smaller than one). Afterwards, the
pyramid is traversed backwards from the lowest to the highest
resolution, and each unused (black) texel receives the color of
its associated, average parent in the previous level. This way,
it is ensured that all unused texels are filled with a color value
that corresponds to the average of all valid texels in its support
region.

V. WAVELET ENCODING

The following 4D wavelet transformation uses Haar
wavelets. We take the 4D data block that was filled in the pre-
vious step, and sequentially apply a 1D Haar wavelet tranform
in all four dimensions until even the image dimension sizes
have been reduced to 2. Finally, compression commences. The
compression algorithm is based on the widely-used SPIHT
algorithm, although in a new adaptation, making it suitable
for 4D data. It is based on work done in [5]. The encoder
is currently able to handle a 4D data block with pairs of
equal dimensions (e.g. max(s,t,u,v) = {8,8,512,512}., that is,
8 timesteps of 8 camera view textures at 512 x 512 reso-
lution). The SPIHT encoder very much resembles its classic
2D counterpart (see [7]), with one exception: Since the 4D
dimensions are of different size, the codec has to be able to



Fig. 3. Top left: input texture map. Top right: Same map after filling
operation. Bottom: fill, downsampling from L0 to L2, upsampling L2 to L0.
Hatched boxes mark unused texels that were filled during upsampling.

for all timesteps of camera images T (t, c):
for each color component Y, U and V:
group s cameras with t timesteps into 4D array

(images with u x v resolution)
downsample 4D array log(max(s,t,u,v)) times.
upsample selectively, filling unused texels
apply 1D Haar wavelet transformation

repeatedly on (cam, time) dimensions s, t
apply 1D Haar wavelet transformation

repeatedly on (image) dimensions u, v
apply 4D SPIHT onto 4D array

result: 4ST code stream

Fig. 4. Encoding (pseudo-code).

detect boundary conditions that generate a different number of
descendants in the wavelet data traversal.

Pseudocode for the overall encoding pipeline is listed in
Figure 4.

VI. THE SHAPE MASK

As mentioned earlier, unused texels are filled with auxiliary
data that improves compression. The information about which
texels are unused gets thus lost in the encoding process. A
classical approach to solve this problem is to provide the
decoder with a bitmask that masks out originally unused
texels after the SPIHT decoding process and the wavelet
reconstruction. This bitmask is not needed if the original 3D
model is available: If only the original camera views are
reconstructed, then only valid and used texels will be accessed
in the rendering phase, since only those were exposed to the
camera in the given view. Therefore it suffices to provide the
renderer with the unmasked texture maps.

If, on the other side, intermediate views shall be rendered
using multi-view interpolation techniques, the unused texels
must be known. This is necessary as each image pixel is
composed of texture lookups from the nearest camera views,
under the precondition that the texel is valid in the respective
camera texture map. If the whole texture map is still filled
with auxiliary data, it would affect the multi-view interpolation
algorithm with unwanted texels.

Therefore this bitmask, also called the texel usage mask,
needs to applied to the texture maps before rendering.

This can be down in two ways: One way is to store it in
the bitstream, which requires some extra storage space. The
other approach is to reconstruct the relevant bitmasks from the
3D model in the decoder, using a shadow casting algorithm.
This improves compression, but requires a minimum of two
extra rendering passes for each time step to reconstruct the
adjacent texture maps’ bit masks, and thus impacts negatively
on rendering performance.

VII. DECODING

Given the aforementioned encoding pipeline, decoding the
streams is straight forward and explained in Figure 5.

for all required camera images and timesteps:
for each color component Y, U and V:

choose 4ST code stream containing T (t, c)
restore 4D array with 4D SPIHT
apply 1D Haar wavelet transformation

repeatedly on (image) dimensions u, v
apply 1D Haar wavelet transformation

repeatedly on (cam, time) dimensions s, t
extract T (t, c) from 4D array

(apply bitmask to T (t, c) )

Fig. 5. Decoding (pseudo-code).

Since time steps are usually read sequentially, several time
steps can be extracted at once from the 4D code stream. The
bit mask can only be applied if it has been transmitted to the
decoder. If this is not the case, shadow casting must be applied
for masking, if multi-view interpolation is intended (as noted
in the previous section).

Figure 6 shows example output from the reference decoder.
Notice the typical wash-out effect of wavelet compression. The
outer contours were transmitted in an additional shape-mask.

VIII. CONCLUSIONS

For testing the codec, we encoded and decoded the texture
maps found in [8]. This footage was created during experi-
ments done by Theobalt et al, which used free viewpoint-video
recording and supplied an animated 3D model of a human
actor and according camera views.

Our experimental results with 8 synchronous texture streams
of 40 frames each show that the compression ratio ranges up to
288:1, if a texel data rate of 0.05 bpp, the fill feature and UV



Fig. 6. Two texture map details. Decoding was performed with equal Y,
U, V datarate, and using the fill feature. Top: 0.05 bpp; Middle: 0.25 bpp;
Bottom: Encoder input.

fill, bpp(U,V) 
= bpp(Y)/3.0
nofill, w/o 
UV−
subsampling
nofill, 
bpp(U,V) = 
bpp(Y)/3.0
fill, w/o UV−
subsampling

Texel data rate (bpp, counting all pixels)

S
ig

na
l/N

oi
se

 −
 P

S
N

R
 (d

B
)

Fig. 7. Codec results for dancer scene’s textures.

subsampling are used. In this compression mode, the PSNR
reached 23.5 dB. A PSNR of 30 dB is reached at a texel data
rate of 0.30 bpp.

Without YUV subsampling and without using the sparse
fill feature, the usable compression ratio ranges up to 50:1.
This mode can be used if no bitmask shall be transmitted and
authentic color resolution is of high importance. An overall
compression rate of 20:1 (Y: 0.75 bpp, U & V: 0.25 bpp) in
this mode can safely be used without sacrifices in reproduction
quality (PSNR: 30 dB).

The compression ratios of up to 288:1 compete easily with
MPEG standard compression of the texture maps as video
streams. Our codec’s advantage is synchronous access to the
texture maps, which is hard to achieve with parallel MPEG2
decoders. But it is important to keep in mind that either
bit masks or an animated, textured 3D model and camera
parameters must be transmitted to reverse the sparse filling.

We have presented a coder/decoder for a recently introduced
data type, synchronous multi-video image data, needed for
Free-Viewpoint Video as well as 3D-TV applications. Our
method relies on having an (approximate) 3D geometry model
of the dynamic scene available that can be used to map the

video images to textures. By working in texture space, we
compensate for disparity between camera views as well as for
object motion over time. The codec competes well with MPEG
standard compression of the video streams (simulcast), with
the additional advantage of reproducing arbitrary viewpoints.

To further improve coding efficiency, we are going to
investigate how to retrieve surface reflectance characteristics
in addition to the diffuse reflection component that is currently
exploited, and find estimates on the optimal area ratio between
texture map and rendered image.

Other texture parameterization methods could create con-
tinous texture atlases over large areas of the mesh surface
(e.g. whole torso, arms, legs, head laid out in only one texture
each, altogether 6 continous body textures). Such larger atlases
provide better efficiency, since less discontinuities (and thus
less high-frequency components) have to be encoded in the
SPIHT compression.

It would also worth investigation whether graphics hardware
(GPUs) could aid in wavelet transformation and possibly even
the SPIHT coefficient separation. If this approach is going
to be pursued, replacing the four sequential 1D Haar wavelet
transforms with two 2D Haar transforms should be considered.
This way, the graphics hardware’s texture scaling capabilities
would be used more efficiently.

REFERENCES

[1] C. Fehn, P. Kauff, M. O. de Beeck, F. Ernst, W. Ijsselsteijn, M. Pollefeys,
E. O. L. Van Gool, and S. I., “An evolutionary and optimised approach
on 3D-TV,” Proc. Int. Broadc. Conf. (IBC’02), pp. 357–365, Sept. 2002.

[2] J. Carranza, C. Theobalt, M. Magnor, and H.-P. Seidel, “Free-viewpoint
video of human actors,” ACM Trans. on Graphics, vol. 22, no. 3, July
2003.

[3] P. Debevec, C. Taylor, and J. Malik, “Modeling and rendering architec-
ture from photographs: A hybrid geometry- and image-based approach,”
SIGGRAPH 96, pp. 11–20, Aug. 1996.

[4] K. Nishino, Y. Sato, and K. Ikeuchi, “Eigen-texture method: appearance
compression based on 3d model.” Proceedings of IEEE Conf. on
Computer Vision and Pattern Recognition, pp. 618–624, June 1999.

[5] M. Magnor, P. Ramanathan, and B. Girod, “Multi-view coding for
image-based rendering using 3-D scene geometry,” IEEE Trans. Circuits
and Systems for Video Technology, vol. 13, no. 11, pp. 1092–1106, Nov.
2003.

[6] G. Ziegler, H. Lensch, A. Naveed, M. Magnor, and H. P. Seidel, “Multi-
video compression in texture space,” in IEEE ICIP, 2004, submitted.

[7] A. Said and W. A. Pearlman, “A new fast and efficient image codec
based on set partitioning in hierarchical trees,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 6, pp. 243–250, 1996.
[Online]. Available: citeseer.ist.psu.edu/said96new.html

[8] Z. e. a. Theobalt, Ahmed, “”mpi dancer” - a test sequence for multi-
view reconstruction and codec research,” 2004. [Online]. Available:
www.mpi-sb.mpg.de/ gziegler/mpidancer/

[9] X. Gu, S. J. Gortler, and H. Hoppe, “Geometry images,” ACM Trans-
actions on Graphics, vol. 21, no. 3, pp. 355–361, July 2002.

[10] H. Danyali and A. Mertins, “Fully scalable texture coding of arbitrarily
shaped video objects,” Proc. IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP’03), pp. 393–396, Apr.
2003.

[11] P. V. Sander, J. Snyder, S. J. Gortler, and H. Hoppe, “Texture mapping
progressive meshes,” in SIGGRAPH 2001, Aug. 2001, pp. 409–416.

[12] B. Kim, Z. Xiong, and W. Pearlman, “Very low bit-rate embedded
video coding with 3d set partitioning in hierarchical trees,” 1997.
[Online]. Available: citeseer.ist.psu.edu/kim97very.html


