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Abstract We describe texture generation methods for
complex objects. Recent 3D scanning devices and high-
resolution cameras can capture complex geometry of
an object and provide high-resolution images. However,
generating a textured model from this input data is still
a difficult problem.

This task is divided into three sub-problems: parame-
terization, texture combination, and texture restoration.
A low distortion parameterization method is presented,
which minimizes geometry stretch energy. Photographs
of the object taken from multiple viewpoints under mod-
estly uncontrolled illumination conditions are merged
into a seamless texture by our new texture combination
method.

We also demonstrate a texture restoration method
which can fill in missing pixel information when the in-
put photographs do not provide sufficient information to
cover the entire surface due to self-occlusion or registra-
tion errors.

Our methods are fully automatic except the registra-
tion between a 3D model with input photographs. We
demonstrate the application of our method to human
face models for evaluation. The techniques presented in
this paper make a consistent and complete pipeline to
generate a texture of a complex object.

Key words multiresolution texture synthesis, mesh
parameterization, image inpainting, image restoration,
facial modeling, frequency decomposition

1 Introduction

Texture mapping is one of the oldest techniques in com-
puter graphics [9] — yet it is one of the most powerful
techniques today. In its original form, texture mapping
is used to convey realism of objects, which are modeled
in a comparatively less complex and hence less realistic

way. Extensive research has led to many improvements
and related techniques such as, for instance, bump map-
ping [8] or environment mapping [29], which are com-
monly used to enhance the visual quality of rendering
in many real-time applications. One of the main reasons
for the success of texture mapping and related techniques
is probably due to the hardware support of these tech-
niques on high-end graphics machines in the early years
and on low-cost commodity graphics boards today.

One easy way to generate realistic objects is scanning
real objects. For example, we can capture the 3D geom-
etry of an object using a 3D range scanner. In order to
obtain textures we can also take photographs with a dig-
ital camera. 3D geometry together with a high-quality
texture may, for example, be used to represent real ob-
jects in the context of virtual museums. Even in object
design where no real counterpart of the object exists,
one may start with an acquired object as a template.

Several problems have to be solved to apply this ap-
proach successfully. For example, we need robust tech-
niques for efficient 3D object acquisition, mesh de-
noising, and registration between 3D geometry and 2D
photographs. Furthermore, in this paper, we will focus
on texture generation. This problem is subdivided three
sub-problems.

1. Parameterization: For efficient storing and pro-
cessing of the texture we need to compute a 2D pa-
rameterization of a 3D mesh.

2. Texture combination from photographs: The
layout of the 2D parameterization needs to be opti-
mized to reduce occupied texture memory. The in-
formation of several input views has to be merged.

3. Texture restoration: The derived texture often
does not cover the entire surface. We need some inter-
polation or fill-in techniques for synthesizing a tex-
ture.

The example application of this paper is to generate a
textured human face from a 3D scanned head model and
several photographs. Because we are very well trained
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to recognize real human faces, it is very challenging to
produce a head model in sufficient quality.

The main contributions presented in this paper are:

– For parameterization, we present
1. an alleviation method for the discontinuity effect

in geometric stretch parameterization, and
2. a view dependent parameterization method for

effective use of texture memory.
– In texture combination from several photographs,

we present a visibility-aware multi-resolution spline
technique to remove boundary effects due to uncon-
trolled illumination.

– For texture restoration, we propose a technique that
combines image inpainting and texture synthesis
with non-parametric sampling methods through fre-
quency analysis of input images.

– If a 3D model and its corresponding 2D photographs
are registered, all of the techniques proposed in this
paper are fully automatic.

This paper is organized as follows. First, we sur-
vey related work in Section 2. Then, we will detail each
subproblem: parameterization (Section 3), texture com-
bination from several photographs (Section 4), texture
restoration (Section 5). We show some results in Sec-
tion 6. Section 7 concludes the discussion.

2 Related Work

A common approach to display a texture mapped model
with current graphics hardware needs a polygonal mesh,
its parameterization, and a texture image. When only a
polygonal mesh and several photographs are given, we
are facing two problems: parameterization and texture
image generation. The texture image generation problem
is also subdivided into two sub-problems. One is texture
combination. Texture combination is to make a single
texture from several input photographs. The other one
is texture restoration which is needed when the input
photographs do not provide enough information for cov-
ering the entire surface of the input model.

First we will overview related parameterization
methods. Then, we will review texture combination and
texture restoration methods.

2.1 Parameterization

Parameterization is often represented as the mapping
from 3D vertex coordinates on a mesh to 2D uv texture
coordinates in a texture image. In this paper, we focus
on parameterization of triangle meshes in 3D space.

In the good and old days, due to hardware limita-
tions, texture mapping was applied to relatively simple
polygonal meshes only. In this case, manually creating a
parameterization was acceptable.

However, recent graphics hardware can display larger
and more complex polygonal meshes with higher resolu-
tion texture images than before. It has become an essen-
tial problem to generate a high quality parameterization
automatically.

There are several aspects of parameterization.

– Texture Atlas: To avoid high distortion, some pa-
rameterization methods cut the input mesh into
charts and parameterize each chart individually. A
texture atlas combines all these charts.

– Energy Function: The basic idea to solve the pa-
rameterization problem is to minimize energy func-
tion based on some distortion metric between 3D
space and 2D space. This means the energy func-
tion should have large energy when the mapping in-
troduces high distortion. According to the applied
energy function, methods are classified as linear or
non-linear.

– Boundaries: For effective use of hardware resources,
a texture should fit to texture memory and should
have square shape. On the other hand, this restric-
tion may be too strong for low-distortion parameter-
ization. Boundary conditions on the texture image
model the importance of each restriction.

2.1.1 Texture Atlas The traditional approaches of pa-
rameterization are to cut a mesh into charts, and pack
them to a texture atlas [6, 12, 38, 42, 45, 47, 60, 62, 70, 71].
Once a mesh is cut into charts, we can parameterize each
chart by our favorite parameterization method.

Introducing a texture atlas, it becomes relatively easy
to keep low distortion inside of the charts. There are
however three main drawbacks of the texture atlas ap-
proach: (1) it introduces discontinuities between charts.
(2) it introduces a mesh cutting problem when creating
the chars, (3) it introduces artifacts while MIP-mapping.

Quite some effort has been taken to solve these prob-
lems, for example, the discontinuity problem [30, 41, 42,
44], or the mesh cutting problem [42, 45, 66]. However, it
seems we still do not have a comprehensive method and
some of these problems remain open. The third prob-
lem is substantially hard to solve because MIP-mapping
usually assumes continuity in the uv domain.

Let us first focus on objects which are topologically
equivalent to a disc. Those objects can be parameterized
by a single chart avoiding the disadvantages of a texture
atlas.

2.1.2 Energy Function Bennis et al. pioneered the use
of energy functions in parameterization. They propose a
technique to map an isoparametric curve of a 3D surface
onto curves of a plane considering two distortion met-
rics [6]. Their energy function is based on the geodesic
curvature preservation and arc length preservation. Dur-
ing the calculation, the mesh will be cut if the intermedi-
ate distortion energy is larger than a certain threshold.



Textures Revisited (REVISED paper number 357) 3

The method unfortunately requires C2 continuity of the
surface because of the geodesic curvature preservation.

Maillot et al. define distance energy and surface en-
ergy for the parameterization [47]. The distance energy
tries to minimize distortion while on the other hand it
may introduce triangle flipping. To avoid this, the non-
linear surface energy term is introduced. This surface
energy term tries to avoid triangle flipping, but cannot
guarantee that no triangles are flipped. The total en-
ergy is a weighted combination of both energies. Remain-
ing triangle flipping can be removed using an interactive
tool. Compared to the previous method, C2 continuity
is no longer required.

Quadratic Energy/Solving Linear Systems: Eck et al.
propose the discretized harmonic map energy [20]. The
harmonic map assigns non-uniform spring constants to
the mesh edges which resemble a kind of Dirichlet en-
ergy. Since this energy is quadratic the minimum energy
is found at the zero crossing of the derivative. Thus we
can use any linear system solver to compute a param-
eterization of the input mesh. Solving linear systems is
usually fast and more stable compared to solving non-
linear systems. However, triangle flipping might occur
for this method as well.

Floater proposes a similar method [24]. The advan-
tage of this method is it can guarantee that no trian-
gle is flipped when the parameterized mesh has a con-
vex boundary. The energy function tries to keep trian-
gle shape with approximating geodesic polar angle at
each one-ring neighbor. This method is linear and sta-
ble. Later, Floater improves smoothness of the function
based on mean value theorem for harmonic function [25].

The conformal surface parameterization has been in-
troduced by Haker et al. [31]. We can find interesting
similarity with in remeshing context by Duchamp et al.
[19], and in fairing context by Desbrun et al. [17]. Confor-
mal mapping finds the parameterization as the solution
of a second order partial differential equation (PDE) de-
fined on the input mesh, which keeps the conformality
of the one-ring around each vertex.

Desbrun et al. presented the method of intrinsic
parameterization [16] where the energy U is a linear
combination of the conformal energy Uconformal and
the authalic (area preservation) energy Uauthalic: U =
λUconformal + (1 − λ)Uauthalic. This paper also shows
some criteria on how to calculate the optimal λ and how
to obtain the natural boundary. Almost the same time,
Lev́y et al. [45] presented least squares conformal maps.
The parameterization is the same as the discrete natu-
ral conformal parameterization in [16]1. This paper also
deals with automatic texture atlas generation.

The basic structure of the above methods [16, 20, 24,
25, 31, 45] are the same and main differences are the def-
inition of the distortion energy. One considers confor-

1 http://www-grail.usc.edu/pubs/CD02.pdf

mality, the other considers shape preservation, and so
on. These methods solve a sparse linear system with dif-
ferent coefficients of the mesh connectivity matrix. One
common feature of these methods is fast computation.
However, we experienced lower quality of these linear
methods compared to the non-linear methods, which we
will address next. In cases where the geometry of the
surface is more or less similar to the parameter domain,
the results of linear and non-linear methods are similar.

Non-linear Energy: Hormann and Greiner propose the
MIPS parameterization [37]. They attempt to preserve
the isometry of triangles over the parameterization by
fixing the condition number of the transformation ma-
trix.

Instead of using the condition number of the trans-
formation matrix, Sander et al. introduce the root-
mean-square of the singular values of the matrix called
geometric-stretch metric for parameterization [62]. Intu-
itively, this measures how a unit circle on the domain is
stretched when it is mapped onto the surface. Later they
introduce signal-stretch energy to improve the quality of
the parameterization with respect to given texture [63],
color or normals.

Balmelli et al. propose space-optimized texture
maps [4]. They use the frequency information of the in-
put image as a signal. The difference to the previous
approach [63] is that they apply a warping function on
the texture image instead of using distortion energy on
the mesh. To make efficient use of texture memory, the
high frequency areas of the image are stretched, whereas
low frequency regions are shrunk.

All these methods [4, 37, 62, 63] generate high-quality
parameterizations for texture maps, however, they are
based on time consuming non-linear optimization.

In order to speed up the calculation, [63] uses a multi-
resolution approach. First, they calculate the energy on
a coarse mesh. Then, they sequentially add vertices simi-
lar to progressive meshes [36] and again minimize the en-
ergy. This process is repeated until all vertices are added.
While the computation time is drastically improved it
still takes around ten times more time than the linear
optimization methods.

There are also parameterization methods based on
the idea flattening . Sheffer and de Sturler [65] propose
a parameterization method that minimizes an angle dis-
tribution error around each vertex. The error criterion is
linear, but they introduce several non-linear constraints
to avoiding unwanted situations, e.g., boundary inter-
sections. Later, Zayer et al. [81] improved the compu-
tational cost and introduced boundary shape control-
ling factor. Sorkine et al. [70] propose another flattening
method based on a modified geometric-stretch energy.
Their method can guarantee the maximum error, be-
cause when the error is too large, the mesh is cut to
achieve low distortion. One advantage of those flattening
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methods is there is no limitation of predefined boundary
condition, e.g., fixed boundary, convex boundary.

Other Interesting Methods: Igarashi proposes an inter-
active user guided parameterization method [38]. The
user selects a painting area and a view direction and
the local parameterization is found by projecting the se-
lected area into the view plane. In Sander’s paper [63],
this method is mentioned as a signal based method,
which signal or importance are defined by the user.
When the amount of painted area is relatively small,
this method works well since only the user specified im-
portant parts are parameterized by the projection.

Piponi and Borshukov propose a cutting and blend-
ing technique for textures on subdivision surface called
pelting [57]. Since the cutting is guided by the user it
is relatively easy to generate intuitively parameterized
meshes for painting. The energy function is basically the
same as in [47]. In order to reduce the artifacts across the
cuts, texture seams are blended using a linear function.

2.1.3 Classification We can classify the different pa-
rameterization techniques according to their definition
of the energy function. For example, the system is linear
or not, whether the energy is globally defined. Further
aspects are the topological limitation which the method
imposes, if the parameter domain consists of a single
chart only, or if multiple charts are grouped into a tex-
ture atlas, and so on.

Table 1 shows one example of such kind of classi-
fication. In this table, the column Atlas is Y(es) means
that this method needs to cut the input mesh during the
parameterization process. Therefore when this is N(o),
input mesh and output mesh always have the same topol-
ogy. This difference is slightly ambiguous, because some
methods make an atlas in the preprocessing stage. For
example, the methods [45, 62] first decompose the input
mesh to submeshes, then each submesh is parameterized.
However, the topology of each submesh does not change.
Although these methods generate an atlas, it is not nec-
essary to classify them as atlas generating method since
the atlas generation is at the preprocessing stage.

Most of the methods need a boundary condition, e.g.,
fixed boundary of the input mesh. For example, some
approaches treat the parameterization problem as the
Dirichlet problem. Fixing the mesh boundary may intro-
duce high distortion area around the mesh boundary. To
break this limitation, some methods alleviate this condi-
tion. Such methods are marked as NB (Natural Bound-
ary) is Y in the table.

Surface parameterization is a fundamentally prob-
lem, and attracts a lot of research interests. If the reader
is interested in more theoretical details in this area, we
refer to the recent survey by Floater and Hormann [26].

Table 1 Classification of parameterizations. Column “At-
las” shows generating an atlas is necessary or not. “NB”
stands for Natural Boundary. If this is Y(es), it is possible to
minimize energy with optimizing the boundary shape.

Linear System

Energy Function Atlas NB

harmonic map [20] N N
shape preserving [24] N N
chord length [57] N N
conformal [31] N N?
feature match, gradient constraint, regular-
ization [44]

N2 Y

conformal + area [16] N Y
improved shape preserving [25] N N

Non Linear System

Energy Function Atlas NB

geodesic curvature, arc length [6] Y N
distance, surface(flipping) [47] Y N
isometry (MIPS) [37] N Y
geometric stretch [62] N2 N
geometric stretch, signal stretch [63] N Y
flattening, angle distortion [65, 81] N Y
flattening, geometric stretch3[70] N Y

Others

Energy Function Atlas NB

boundary smoothness 4 [42] Y –
simple projection [38] Y –

2.2 Texture Generation

Once a 2D parameterization is constructed, we have to
create the corresponding texture image.

Soucy et al. propose a texture generation method
for a complex triangle mesh of arbitrary topology [71].
First, 3D triangles of the mesh are sorted according to a
certain criterion like area, largest edge length, and so on.
Each triangle is independently inserted onto the texture
map. They are packed as half-square triangle into the
2D texture. The texture atlas generated by this method
contains one separate chart for each triangle.

Rocchini et al. propose an approach for mapping and
blending the texture on the 3D geometry [60]. For a 3D
scanned object, they start with a set of uncalibrated pho-
tographs that are registered interactively and stitched
onto the 3D mesh. The relevant image regions are inte-
grated into a single texture atlas map. The assignment
of regions from the input images to the corresponding
parts of the texture depends on the visibility according
to the registration. Slight mis-registration is accounted
for by automatic local feature alignment.

2 These papers generate an atlas in preprocessing stage.
3 The geometric-stretch energy [62] is defined as root-

mean-square of the singular values of mapping matrix. How-
ever, this method [70] uses the max function of them.

4 This method is for making an atlas, it does not care the
parameterization method for parameterizing each charts.
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Later, they propose preserving attributes detail on a
simplified meshes [12] where the attributes range from
color textures, to bump, displacement, or shape maps.
The heuristic texture atlas packing method called irreg-
ular triangle packing is more sophisticated than former
methods [60, 71].

During the combination of several images, visual arti-
facts may occur at the boundaries between original im-
age regions. These artifacts are due to several reasons
including difference in lighting condition, view depen-
dent shading, or registration errors. To delete such un-
intended artifacts, the images are blended or blurred,
e.g., by applying a Gaussian filter or continuous blend-
ing functions [57]. Pighin et al. propose a more sophis-
ticated blending weight function, which considers self-
occlusion, smoothness, positional certainty, and view
similarity [56]. This method changes the blending weight
according to the view direction. While the artifacts can
be eliminated by these methods they also destroy image
detail in the boundary area. In order to keep more de-
tails Burt and Adelson [11] propose a multi-resolution
spline technique. Multi-resolution analysis decomposes
the images into high and low-frequencies and images are
blended at each level separately. This effectively elimi-
nates the artifacts and still keeps high-frequency details
of the images.

2.3 Image Restoration

In this paper, the term “image restoration” means filling
in damaged or missing pixels. Image restoration plays an
important role for texture generation. Typically some
surface regions exist for which no information can be
gathered from the input images due to occlusion, regis-
tration errors, or other reasons.

There are two main image restoration methods:

1. diffusion based image restoration,
2. texture synthesis based image restoration.

2.3.1 Diffusion-based Image Restoration In the image
processing area, diffusion processes are useful for a
large range of applications. Perona and Malik [55] intro-
duce the anisotropic diffusion. Diffusion is formulated as
∂ut = div(G(u)∇u), where G(u) = g(|∇u|2). The func-
tion g represents an arbitrary edge detection operator.
Because an edge region usually has a high gradient, the
diffusion process will change its magnitude according to
the absolute value of its gradient. Later, Saint-Marc et
al. present adaptive smoothing [61]. This method adap-
tively changes the term G(u) of the anisotropic diffusion.
The term G(u) does not only rely on the signal itself, but
also the first derivative. Anisotropic diffusion has suc-
cessfully been applied to problems such as de-noising,
image segmentation, image enhancement, and so forth.

Bertalmio et al. introduce anisotropic diffusion as
an automatic digital inpainting method [7]. Their

anisotropic diffusion process fills the interior of user-
defined image regions keeping isophoto lines.

Oliveira et al. propose a simpler and faster inpainting
method [53]. They assume that the usual defect of an
image is rather small and anisotropic diffusion needs to
be applied only in exceptional cases. The user manually
indicates such exceptional cases, and the defect part is
repaired by isotropic diffusion otherwise.

Ballester et al. represent image interpolation scheme
by solving the variational problem [3]. The diffusion pro-
cess is represented by second order partial differential
equations. It consists of a gray-level intensity diffusion
term and a keeping gradient orientation term.

Pérez et al. propose a Poisson image editing
method [54]. Using this method, images are edited
by solving Poisson equations with respect to a user-
prescribed guidance vector field under given boundary
conditions. This is a versatile editing method. Some of
the applications of this method, in particular seamless
image insertion and feature exchange, are useful for im-
age restoration.

2.3.2 Texture Synthesis-Based Image Restoration Re-
cently, texture synthesis has drawn a lot of research in-
terest. Based on a given sample, a large, new texture
with a similar (but not identical) pattern is created au-
tomatically. Textures synthesis can also be used to fill
in holes in image restoration. In this context, the word
“texture” is defined as an image which has some spatial
coherence.

Procedure-based texture synthesis: Texture synthesis
has started with procedural texture generation, like a
checker board. Basic procedure-based texture synthesis
method describe the texture by a mathematical func-
tion. The major advantage of this method is that it is
resolution independent. The texture can be generated at
any resolution. However, you need to design a function
and parameters for each texture. Other procedural-based
texture synthesis methods use, for example, fractals [27],
reaction-diffusion [75], and cellular particles [23]. There
are also some explicit methods for certain textures, e.g.,
[49].

Statistical texture analysis and synthesis: Gaber pro-
poses many basic methods for texture synthesis meth-
ods [28]. His paper includes several models: the N-
gram model, autoregressive model, autoregressive linear
model, algebraic reconstruction model, field definition
model (segment a source image and transfer texture in-
formation with its mask), and best-fit model. Nowadays,
his best-fit model is rediscovered and is called texture
synthesis method [22].

Popat et al. present a cluster-based probabilis-
tic modeling technique for high-dimensional vector
sources [58]. A vector is constructed by concatenating
a pixel and its neighborhood pixels of the input texture.
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These vectors are analyzed to estimate the probability
density function (PDF) of the pixel occurrence in the
texture. The estimated PDF is used for synthesizing a
texture. They also propose hierarchical texture synthesis
method using multi-resolution analysis.

Heeger and Bergen propose a pyramid-based texture
analysis/synthesis method [33]. The input texture is an-
alyzed using a multi-resolution method, and a steerable
pyramid is created. The output texture is initialized
with random noise, then the histogram distribution is
matched to the input texture at each pyramid level. By
construction, the output image has the similar histogram
distribution through all the levels of the pyramid. Since
this method only considers the histogram distribution of
the input and the output, the input image should be a
homogeneous texture. It cannot handle periodic or non-
homogeneous patterns. Later, Bonet introduced joint oc-
currence of pixels across multiple resolutions to Heeger’s
method [14]. Because this method considers the hierar-
chical structure between pyramid levels, it can recon-
struct larger structures than Heeger’s method.

Simoncelli and Portilla present a texture synthesis
method based on statistical measurements of the seed
image and its wavelet decomposition [67]. The authors
apply higher order statistics while the previous meth-
ods [14, 33] consider only first order statistics, i.e., his-
tograms.

An approach based on statistical learning to repro-
duce the appearance of an input texture has been pro-
posed by Bar-Joseph et al. [5]. Their method treats the
input as a signal which accords a hierarchical statistic
model. Using wavelets, they construct a tree representing
a hierarchical multi-scale transform of the input signal.
A new texture is synthesized by tracing this tree accord-
ing to a similarity path. The approach allows for mix-
ing different input textures by mixing their correspond-
ing trees. Even to one-dimensional signals like sound se-
quences the methods have been applied successfully and
video sequences are intended. The presented results are
quite impressive compared to other statistical method.

Some statistical texture synthesis models also expand
to the temporal domain, namely synthesizing video se-
quences. Szummer and Picard propose such a model [72].
They assume temporal texture can be modeled by Gaus-
sian noise with an autoregressive signal, leading to
a spatio-temporal autoregressive model (STAR). They
demonstrated their method on wavy water, rising steam,
and fire. They consider the consistency between frames
in their model.

Texture synthesis: In 1948 Claude Shannon mentioned
a method for producing English-sounding text based on
N-grams [64]. The new text is synthesized by search-
ing for similar text sequences in the seed text. Popat
and Picard’s approach [58] is a kind of extension of this
idea to two dimensions. While Popat and Picard used
a parametric sampling, Efros and Leung propose a non-

parametric sampling method which creates a look up
directory from the input source prior to texture synthe-
sis [21]. The same idea is found in Garber’s forgotten
work [28]. It is based on Markov random fields which
depend on the generated pixels and the input seed tex-
ture. Compared to other statistics-based texture synthe-
sis models, this approach has no problems in reproducing
the spatial structure of the input texture.

Wei and Levoy present an acceleration method of the
non-parametric texture synthesis using tree-structured
vector quantization [77]. They apply the causal ker-
nel [58] (it is called “best-fit model kernel” in [28]) to
scanline order. The output image boundaries are han-
dled toroidally to obtain a tileable texture. In order to
capture a large structure in the input texture, multi-
resolution texture synthesis is considered. They also pro-
pose an extension to three dimensional textures, e.g., to
the temporal domain.

A coherent match method for the similarity lookup
in source texture has been presented by Ashikhmin [2].
The coherent match selects a similar subimage accord-
ing to the history of the synthesis process. Once a simi-
lar subimage is found, the next similar subimage is very
likely to be located adjacent to the last selected one, be-
cause texture has some local coherence. In addition, a
user can guide the process to obtain a specific output
texture. The user inputs rough structures of the output
texture which are then together with the already syn-
thesized pixels considered during the search for the sim-
ilar subimage in the seed texture. The coherent match
method is rather efficient.

Zelinka et al. propose a realtime texture synthesis
version of the coherent map [82]. They first analyze the
input image to make a similar subimage link map from
each pixel, called Jump Map. Synthesis is performed by
either copying the next pixel or jumping to a similar
place according to a random number and then copying
the pixel. To speed up the computation times, no simi-
larity comparison is done during synthesis.

Hertzmann et al. present an image processing frame-
work by example, called “Image Analogies” [34]. This
filter makes a mapping from source image A to desti-
nation image A’, and apply that map to source image
B to output the destination image B’. That is why it
is called Image Analogies. This filter synthesizes an im-
age using both of the above mentioned non-parametric
sampling texture synthesis functions, i.e. a best approx-
imate match [21, 28, 77] and a best coherence match [2].
The distances resulting from these two matching func-
tions are weighted by a user-specified parameter to de-
termine which of the two matches is selected. The au-
thors demonstrate many applications of the image analo-
gies filter, e.g., traditional image filter, texture synthesis,
super-resolution, texture transfer, artistic filter, texture
by numbers, and so forth.

Most of these methods search for similar vectors in
the spatial domain. Soler et al. propose to search in
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the frequency domain [69]. They reinterpret similarity
search as correlation, and the correlation of two func-
tions can be computed in O(N log N) in Fourier space
through the FFT algorithm instead of O(N 2). When the
input is static, a kD-tree makes the calculation complex-
ity O(N log N) for the search. However, the tree must
store all vector elements. This consumes a large amount
of memory since each pixel typically has an associated
subimage vector which size is 10 to 100 pixel. Instead of
this, Soler’s method only requires the size of input image
(DCT) or the doubled size (FFT).

To exploit more coherence in the source texture,
patch-based approaches have been proposed instead of
per-pixel-based approaches.

Efros and Freeman propose a patch-based texture
synthesis method called image quilting [22]. First, a
seed texture is subdivided into smaller blocks. Second,
these blocks are randomly replaced such that neighbor-
ing blocks overlap. Finally, the overlapping regions are
blended with minimal error bounding cut.

Liang et al. present a patch-based sampling tex-
ture synthesis method [46]. To exploit the coherence in
the texture image, they transfer the complete subim-
age instead of a single pixel at each search. They intro-
duce a new tree structure to solve ambiguities by multi-
resolution analysis.

A patch-based technique for image and texture syn-
thesis has been proposed by Cohen et al. using Wang
tiles [13]. Wang tiles are squares in which each edge
is assigned a color. A valid tiling requires all shared
edges between tiles to have matching colors. They pro-
pose a stochastic tiling method which can generate non-
periodic pattern and a seamless Wang tile seed gener-
ation method applying the image quilting [22]. Since
only a color match test is required for construction, this
method is much faster than other methods that need an
expensive similarity search for generating a non-periodic
texture.

Patch-based texture synthesis methods are usually
very fast because they generate several pixel set at once.
The drawback of these methods is when the input has
large structures like complex depth or low frequency
shading effects, artifacts become visible in the synthe-
sized images.

Nealen et al. propose a hybrid method combining
patch-based methods with pixel-based methods [50]. The
patch similarity is calculated as described in [69], then
they calculate the error of the surrounding patch bound-
ary. Each pixel with too large error is optimized using
pixel-based texture synthesis. This method can handle
large structures as well as patch-based methods but can
produce better boundaries. This advantage comes along
with a loss of speed compared to the patch-based meth-
ods.

Usual synthesis method use L2 norm as similarity
measure. Harrison uses an entropy measure with Man-
hattan distance (L1) to calculate the similarity mea-

sure [32]. He states that the L2 norm emphasizes outliers.
In addition, he introduces a constraint map to handle
non-homogeneous textures. The user marks an impor-
tance map containing weights for each source pixel. He
demonstrates that some of the non-homogeneity in the
texture can be handled with this importance map.

Another subimage similarity metric is proposed by
Brooks and Dodgson [10] for editing a texture image.
Similarity is used to replicate editing operations to all
similar pixels in the texture. For the similarity metric
all pixels in the input image are encoded by a single
value computed as the sum of squared differences be-
tween each corresponding neighborhood pixel. Instead
of comparing subimages the similarity is defined as the
L2 norm between the encoded values.

These texture synthesis methods assume the homo-
geneity in the source texture, they use similarity search
with relatively small kernels. Therefore, it is hard to cap-
ture large structures which are introduced by the depth
of the scene or by shading effects. Multi-resolution anal-
ysis to some extend alleviates these effects [34, 77].

To break the limitation caused by large structures
in the image, Oh et al. separate the image to segments
manually according to the depth [52]. The texture syn-
thesis method can use this depth information. However,
the segmentation needs severe manual preprocessing. It
is mentioned in the paper that processing one exam-
ple takes around ten hours by hand. The structure of
the illumination is extracted by applying the (bilateral)
SUSAN filter [68, 74]. This filter can smooth out small
details while it keeps sharp edges. Therefore, this filter
suits texture editing with relighting.

Frequency domain transfer: Hirani and Totsuka pro-
pose an image restoration algorithm which can handle
both texture and intensity variation [35]. Their algo-
rithm is based on projections onto convex sets and em-
ploys a Fourier transform together with a clipping proce-
dure. Projection and Fourier transformation are carried
out alternating for a user-defined number of iterations.
In addition, the user must interactively select a sample
region, which will be used to repair the damaged area.
The sample region is restricted to be a translated version
of the defective region w.r.t. its texture. Care is taken
to automatically adapt intensity variation between the
sample and the defected regions.

Texture synthesis on surface: Traditionally texture
synthesis has been carried out on two dimensional im-
ages, however recently there are several texture synthe-
sis methods that work directly on surfaces of 3D ob-
jects [76, 78, 80, 83]. The main difficulty is to define an
appropriate regular neighborhood on arbitrary surfaces.
Wei and Levoy generate this regular pattern by local
parameterization of the mesh [78]. Turk’s method uses a
direct vector field generation technique on surfaces [76].
Zhang et al. also employ a user-guided vector field on
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the surface. In addition, they use a texon mask to keep
features of the seed texture and resample pixels for ob-
taining rotation and scale effects [83]. This approach
requires the user to input the initial course direction of
the vector field. According to the vector field a regular
sampling can be achieved. Lexing et al. solved the prob-
lem by introducing a texture atlas containing a sufficient
number of charts for a smooth parameterization [80].
There are several methods to make such charts, for in-
stance [42].

Restoration method based on texture synthesis: Igehy
and Pereira introduce an image replacement method [39]
based on the histogram distribution texture synthesis
method introduced by Heeger [33].

Drori et al. propose an iterative approximation
restoration method [18]. The problem of restoration
methods based on texture synthesis is that the result
is very sensitive to each pixel selection. This means that
once a wrong pixel is selected, it becomes a fatal vi-
sual effect in the restoration. To avoid this binary de-
cision effect, Drori introduce a confidence map. During
the restoration process, a missing part is selected with
its surrounding subimage, and the subimage is assigned
a certain confidence value. If most of the subimage be-
longs to the non-missing part, the confidence value is
high. If, however, a subimage is only reconstructed, its
confidence value is low. This method iteratively updates
the missing part and the confidence map to avoid wrong
selection.

3 Parameterization

Let us first consider the case of parameterization of a 3D
input mesh over the 2D domain [0, 1]2. In order to avoid
artifacts when texturing the 3D object we will first con-
centrate on parameterization of the entire mesh at once,
i.e., without introducing cuts on the surface resulting in
a texture atlas containing a single patch. The result in-
troduces no problems when MIP-mapping is applied, but
it is clear that this goal cannot be achieved for arbitrary
meshes.

The focus application of this paper is on representing
human faces. Fortunately, human faces are topologically
equivalent to a disk, since one can introduce a boundary
around the neck and faces typically do not contain any
handles. Some other example meshes in this paper also
have disk topology.

In this section, we will compare the output of var-
ious parameterization algorithms and introduce a new
method which adds two new terms to the L2 geometric
stretch energy in order to obtain a less distorted and
controllable parameterization.

3.1 Parameterization Techniques

Figure 1 shows comparisons of several parameterization
methods of the Stanford bunny model. For texture map-
ping, the L2 geometric stretch method [62] usually pro-
duces the best results because it can keep both confor-
mality and low area distortion. However, this method
needs an initial valid parameterization, and it is usually
time consuming since it minimizes a non-linear energy
function. In our case, an initial valid parameterization is
generated using Floater’s [24] method.

Other examples produced by L2 geometric stretch
parameterization are given in Figure 2. In fact, since
these models are more or less geometrically similar to a
disk, even some of the linear energy minimization meth-
ods (e.g., [16, 24, 25, 31]) can produce good parameteri-
zation results for these models.

Figure 3 shows the results of geometrically rather
complex models. For most parts of the models, good con-
formality and low area distortion are achieved. However,
the L2 geometric stretch parameterization sometimes
produces severe cracks on the textured model as shown
in Figure 3. For example, both the Stanford bunny model
and the mannequin head model have several cracks on
the backside of their neck. These cracks are referred to
as “parameter cracks”.

Praun and Hoppe introduce Lp regularization term
to L2 geometric stretch energy to alleviate this prob-
lem [59].

Lp = ε

(
A′(Ti)

4π

)p/2+1

(Γ (Ti))
p (1)

where p and ε are user defined parameters, A′(T1) is the
area of the ith triangle Ti in the 3D mesh, and Γ (Ti) is
the largest singular value of the transformation matrix
from 3D domain to 2D domain. This regularization term
tries to punish triangles which have large singular val-
ues more badly than only using L2 geometric stretch en-
ergy. Instead of applying this Lp term to inverse stretch
calculation as in [59], we applied this term to planar
domain in the same way. However, the results in Fig-
ure 4 show that even this term alleviates the effect of
parameter cracks a little, it also introduces other un-
wanted distortions. Moreover, the Lp term requires two
non-intuitive parameters, ε and p. The effect of these pa-
rameters are hardly predictable and in our experiments
the optimization gets stuck more easily in local minima
compared to the pure L2 geometric stretch energy case.
In Figure 4 we test several parameters starting with the
recommended values in [59] (ε = 0.001, p = 6). In this
experiment, the area normalization coefficient 4π of Lp

term in Equation (1) is 1.0 since our parameter domain
is a unit square instead of a unit sphere.

As several applications require preserving the mesh
structure [40], we only apply this regularization term
to parameterization unlike [59] which uses remeshing. It
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3.8

0.2

Fig. 3 The left two images show examples of parameter cracks on 3D textured model. Notice that there is a large distortion
around the neck part. The right two images show the distribution of distortion for the mannequin model both on the 3D model
and on its 2D parameterization. The distortion ranges from 0.2 (blue) to 3.8 (white) in terms of L2(T ) of [62]. For the bunny
model, the total distortion L2(bunny) = 2.17 × 104, and for the mannequin model L2(mannequin) = 7.11 × 103.

3.8

0.2

Fig. 4 Results of a L2 + L6 parameterization. For the bunny model, a choice of ε = 0.01, p = 6 results in L2(bunny) =
3.01 × 104, and for the mannequin model, ε = 0.001, p = 6 gives a total distortion of L2(mannequin) = 1.07 × 104.

3.8

0.2

Fig. 5 Influence of the triangle shape term s(Ti) on the distortion. Compared to Figures 3 and 4, parameter cracks are
alleviated. Here, L2(bunny) = 4.40 × 104, and L2(mannequin) = 7.58 × 103.

might be more effective to achieve low distortion by com-
bining a parameterization with regularization term and
remeshing. The paper [59] shows a good result of this
combination if a remeshing is possible. In the next sec-
tion, we will also discuss avoiding the parameter cracks
effect without changing input mesh structure.

3.2 Extensions to the L2 Geometric Stretch Energy

We introduce two new terms to the L2 geometric stretch
energy as shown in Equation (2). One is for increasing

the effective use of texture area and the other is for avoid-
ing the parameter cracks effect.

L2(M) :=

√√√√√√

∑
Ti∈M

{
(L2(Ti))

2
ω(Ti)A′(Ti) + s(Ti)

}

∑
Ti∈M

ω(Ti)A′(Ti)

(2)
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Fig. 1 Comparison of parameterization methods. From top
to bottom, 1. Floater [24], 2. Intrinsic [16] (λ = 0.5), 3.
MIPS [37], 4. L∞ geometric stretch [62], 5. L2 geometric
stretch [62].

with

ω(Ti) =
1

〈N(Ti), V 〉 + k

s(Ti) =

{
0 min h

b >= α
infinite energy min h

b < α

Fig. 2 Well parameterized cat head and forehead obtained
by L2 geometric stretch parameterization.

Fig. 6 The effect of the visual importance function ω(Ti).
From top to bottom, the view direction V is changing from
the left side of the face to the right side. Each row left to right:
left side, front, and right side of the mannequin head model,
and the parameterization result. For all images, k = 1.2 has
been chosen.

where M = {Ti} denotes the triangle mesh, A′(Ti) is the
surface area of triangle Ti in the 3D mesh, N(Ti) is the
triangle’s normal, V is a direction vector, and k(> 1)
and α are user prescribed parameters (see below).

The first term ω(Ti) models “visual importance.” Tri-
angle geometric stretch energy is minimized over the
whole mesh equally. However, we would like to use as
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much texture space as possible for the “important” re-
gions of a model while minimizing the texture space allo-
cated to “unimportant” regions since the size of textures
that can be handled by graphics hardware is typically
limited. For instance, the front face is more important
for the viewer than the ears or even the back of the head
in human head model. Once an important view is defined
by a user through the direction vector V , the visual im-
portance function ω thus favors the triangles on the face
by diminishing their error while penalizing the triangles
on the back of the head by amplifying their error. As a
consequence, triangles on the face become larger in the
texture mesh while backfacing triangles become smaller.
This we call a view-dependent parameterization since
parameterization is depend on the important view. The
user can control the degree of ω’s influence to the param-
eterization result through the parameter k. To enlarge
the influence of visual importance, k should be close to
1.0. From our experience, useful values for k are within
[1.01, 2], which results in ω(Ti) ∈ [1/3, 100]. The role of
this ω is considered as another signal of [63].

Figure 6 shows view-dependent parameterization re-
sults for various view directions V . In this figure, we use
the energy function of Equation (3) without the s(Ti)
term for clarifying the effect of visual importance func-
tion only. The user-defined parameter k is set to k = 1.2.

The second term s(Ti) controls each triangle’s shape.
The regularity of a triangle is represented by the ratio
h/b of the height h and the baseline length b. There
are three ratios in a triangle, and we define h/b to be
the smallest ratio of the triangle. When this ratio is too
small, the energy becomes infinite, which punishes this
triangle. The triangle shape threshold α is given by the
user. α depends on the input mesh, the resolution of
input texture image, and an additional criterion. One
plausible criterion for texture mapping is, e.g., that all
triangles should cover at least one complete pixel. From
our experiences, we recommend α ∈ [0.05 . . . 0.15] for
[512×512 . . . 4096×4096] texture images with up to 104

triangles. We also assume the input mesh triangle more
or less satisfies this h/b ratio.

Figure 5 shows the effect of this triangle shape term
on reducing cracks. The term introduces less distortion
than in L2 + Lp geometric stretch energy results, and
it still keeps conformality and low area distortion. We
also assume the h/b ratio parameter to be more intuitive
than the Lp energy in Equation (1), since the h/b ratio
is more directly coupled to the triangle shape. One large
difference to [73] is that our method can control this pa-
rameter cracks effect. Introducing the s(Ti) term makes
the total distortion energy higher than the original L2

energy (see Figures 3 and 5), however, this term equal-
izes the distortion distribution and achieves the lowest
visual artifacts.

4 Texture combination

After having created the 2D parameterized mesh from
the 3D input mesh, we resample the texture mesh from
the input photographs that have been registered with
the mesh. We will show how to combine a single texture
from several input photographs using a face model and
photographs as an example.

4.1 Resampling input images

First, we perform a vertex-to-image binding for all ver-
tices of the 3D face mesh. This step is carried out as
suggested in [60]: Each mesh vertex v is assigned a set
of valid photographs, which is defined as the subset of
the input photographs such that v is visible in each pho-
tograph and v is a non-silhouette vertex. A vertex v is
visible in a photograph, if the projection of v on the im-
age plane is contained in the photograph and the normal
vector of v is directed towards the viewpoint and there
are no other intersections of the face mesh with the line
that connects v and the viewpoint. A vertex v is called
a silhouette vertex, if at least one of the triangles in
the triangle fan around v are oriented opposite to the
viewpoint. For further details see [60]. In contrast to the
approach in [60], we do not require that all vertices of
the face mesh are actually bound to at least one photo-
graph, i.e. the set of valid photographs for a vertex may
be empty.

Theoretically, this is enough for classifying vertices.
However, there might be some error because of registra-
tion or numerical errors especially in the neighborhood
of silhouettes. Some of the vertices can be bound to back-
ground pixels of the input photographs. Such a vertex
should be classified as an unbound vertex. We detect this
registration error by comparing the color value with the
background color of input image. First we calculate pro-
jection coordinate of a vertex to its bound photograph.
Then, we sample the pixel value and calculate the dis-
tance between this pixel value and the background color.
To avoid misdetection, we reduce the noise in the input
photographs by applying a usual median filter and not
just compare with a single sample pixel but perform the
Gaussian convolution to with a 3x3 subimage mask. If
the distance is larger than a given threshold value, then
the vertex is re-classified as an unbound vertex.

Let 4 = {v1, v2, v3} denote a triangle of the face

mesh and 4̃ = {ṽ1, ṽ2, ṽ3} be the corresponding triangle
in the texture mesh. For each triangle 4, exactly one of
the following situations might occur (see also Figure 7):

1. There exists at least one common photograph in
the sets of valid photographs of the three vertices
v1, v2, v3 of 4 (green triangles).

2. All of the vertices of 4 are bound to at least one pho-
tograph, but no common photograph can be found
for all three vertices (blue triangles).
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Fig. 7 Color-coded triangles of the textured mesh: each
green triangle has at least one common photograph to which
all of its vertices are bound; the vertices of blue triangles
don’t have a common photograph, but they are all bound;
red triangles have at least one unbound vertex.

3. At least one vertex of 4 is not bound to any photo-
graph (red triangles).

In the first case, we rasterize 4̃ in texture space. For
each texel T , we determine its barycentric coordinates
ρ, σ, τ w.r.t. 4̃ and compute the corresponding normal N
by interpolating the vertex normals of 4: N = ρN(v1)+
σN(v2)+τN(v3). For each common photograph i in the
sets of valid photographs of all vertices of 4, we compute
the dot product between N and the viewing direction Vi

for the pixel Pi that corresponds to T . Finally, we color
T with the color obtained by the weighted sum of pixel
colors

∑
i 〈N,Vi〉 · Color(Pi) /

∑
i 〈N,Vi〉.

In the second case, we color each vertex ṽj of 4̃ indi-
vidually by summing up the weighted pixel colors of the
corresponding pixels in all valid photographs i of ṽj sim-
ilarly as in the first case: Color(ṽj) :=

∑
i 〈N(vj), Vi〉 ·

Color(Pi) /
∑

i 〈N(vj), Vi〉. The texels of the rasteriza-

tion of 4̃ are then colored by barycentric interpolation of
the colors of the vertices ṽ1, ṽ2, ṽ3. Alternatively, we tried
to use as much information as possible from the input
photographs if, for instance, the vertices v1, v2 of 4 share
a photograph and the vertices v2, v3 share another pho-
tograph. However, this situation always happens near
the silhouette of object and the extrapolation of a miss-
ing vertex on the photograph will be unstable. [51] men-
tions about similar situation. They recommend to use
this kind of uv coordinate extrapolation since at least
the boundary has plausible color and this is better than
just a hole. We try this extrapolation and then perform
our registration error detection scheme, we found that it
fails in most of the case. Therefore, the plain color in-

Fig. 8 Boundaries in the skin texture (left) are removed
using multi-resolution spline techniques (right).

terpolation from reliable vertices usually produces much
better results in our case.

Since we do not require that each vertex of the face
mesh is bound to at least one photograph, there might
exist some vertices that cannot be colored by any of the
previously described schemes. We address this problem
in a two-stage process: First, we iteratively assign an in-
terpolated color to each unbound vertex. Next, we per-
form the color interpolation scheme from the second case
for the remaining triangles of 4̃ that have not yet been
colored. The first step iteratively loops over all unbound
and uncolored vertices of the face mesh. For each un-
bound vertex v, we check if at least p = 80 % of the ver-
tices in the one-ring around v are colored (either by be-
ing bound to a photograph or by having an interpolated
color). If this is true, we assign to v the average color of
all the colored vertices around v, otherwise we continue
with the next unbound vertex. We repeat this procedure
until there are no further vertex updates. Next, we start
the same procedure again, but this time we only require
p = 60 % of the vertices in the one-ring around v to be
colored. As soon as there are no more updates, we repeat
this step twice again with p = 40 % and p = 20 %. Fi-
nally, we update each unbound vertex that has at least
one colored neighbor. Upon termination of this last step,
all vertices of the face mesh are either bound or colored
and the remaining triangles of 4̃ can be colored.

This color interpolation method is fast and easy to
implement, and it can fill all missing pixels. However,
texture detail can not be reconstructed by this scheme.
More sophisticated pixel filling methods, for example,
texture reconstruction, will be discussed in Section 5.

4.2 Combining images with resampling

If the input photographs have been taken under uncon-
trolled illumination, the color might differ noticeably be-
tween the images. In this case, boundaries might ap-
pear in the resampled texture. We then apply a multi-



Textures Revisited (REVISED paper number 357) 13

resolution spline technique as proposed in [11, 43] to re-
move visual boundaries. Figure 8 shows a comparison
between a textured head model with and without the
multi-resolution spline technique applied. The multi-
resolution spline technique needs a mask to determine
the overlapping region where is resampled from differ-
ent input photographs. We propose an automatic com-
putation method of this mask for each region. Because
we have the 3D model and its registration information,
we can test the visibility of each triangle on the input
photographs to make a mask for combination. Then we
remove the outmost ring of triangles around the region,
see Figure 9. Such a shrinking is necessary to ensure
that there is still some valid color information on the
outside of the mask boundary, because these adjacent
pixels might contribute to the color of the boundary pix-
els during the construction of Gaussian and Laplacian
pyramids.

We choose polygon resolution rather than pixel res-
olution for this shrinking because of its simplicity and
robustness against noise in the input photograph and
inaccuracies during projection along the silhouette.

We generate a texture triangle by triangle. Since tex-
ture coordinates are assigned to each vertex through
OpenGL functions, triangle-based resampling is more
simple and straight forward than pixel-based resampling.

For our validity test, we need to separate background
and foreground of the input photographs. We apply a
median filter and Gaussian denoise filter for the separa-
tion. However, from our experience pixel-based validity
tests are rather unreliable. Moreover, the calculation of
3D to 2D back projection near the object silhouette be-
comes inaccurate since the dot product of the normal of
near-silhouette triangles and the view direction is close
to zero.

Therefore, we use a conservative method. If all three
backprojected vertices of a visible triangle in 2D are
valid, we set all pixels inside the triangle to be valid.
Some of the adjacent pixels of such a triangle might also
be valid, but since this is difficult to determine due to
input noise and backprojection inaccuracy, we simply
discard them.

Here we assume that each backprojected triangle in
2D covers several pixels. However, when the triangle
mesh is very dense and the resolution of the input im-
age is low, it might happen that a backprojected triangle
covers less than one pixel, in which case this method is
problematic. However, this situation is unusual for tex-
ture mapping. In the opposite extreme case, the mesh
resolution is too low and each triangle occupies a large
area in the 2D image. In this case, our method may dis-
card many potentially valid pixels. However, this means
that the model to be textured is geometrically rather
simple and the problem is trivial.

In addition to the masks for each input photograph,
we create one more mask that is defined as the com-

Fig. 9 Multi-resolution spline masks: input photographs
from three different view points (top), texture meshes re-
sampled from their corresponding photographs (middle), and
their automatically generated masks shown in red (bottom).

plement of the sum of all the other masks. This mask
is used together with the resampled texture to provide
some color information in those regions that are not cov-
ered by any input photograph (e.g. the inner part of
the lips). As described above, these regions have been
filled by color interpolation in the resampled texture.
By blending all of the masked input photographs and
the masked resampled texture with the multi-resolution
spline technique, we obtain a final texture with no visual
boundaries and with crisp detail. We use this additional
mask for texture restoration to distinguish missing re-
gions in Section 5 since this mask indicates if each pixel
is resampled or not.

5 Texture restoration

In Section 4, we introduce the color interpolation method
to fill in the missing area. The method can produce
smooth color interpolation, but it is hard to reconstruct
details like texture.

If we can assume that our reconstructing object is
easy to access and it is static, we can take other pho-
tographs and register them until all pixel information
is given by photographs. However, some objects like a
human face are not static, and it is difficult to take
photographs under the same condition, e.g., the same
lighting condition. Moreover, some objects are difficult
to access, for instance, historically valuable objects or
already lost objects, but several photographs remain. In



14 Hitoshi Yamauchi† et al.

these cases, if the total number of missing pixels is rel-
atively small, we should consider about reconstructing
these missing pixels from given incomplete information.

So far, there exist two different main approaches to
fill in missing pixels: image inpainting and texture syn-
thesis. After giving an overview of these methods we also
propose a new approach which exploits the advantages
of both existing methods.

Image inpainting: Image inpainting methods [7, 53] are
based on a diffusion process to fill missing regions. Each
pixel value in the missing region is calculated from sur-
rounding pixels according to a partial differential equa-
tion. In one of the simplest case, this partial differential
equation takes a Laplacian operator to “diffuse” sur-
rounding pixels to the missing pixels.

An anisotropic diffusion method is proposed [7] by
Bertalmio et al. to deal with isophotolines. This method
can keep some kind of edges in the input image. On the
other hand, Oliveira et al. [53] state that there is no need
to keep isophotolines in almost any case, however, when
they should be kept, their method adds the diffusion
barrier manually.

Both methods work well in missing areas which are
relatively small or thin, like scratches, blotches, and
texts. However, the problem arise when the missing area
will be large. Because these methods fill missing area
with a continuous function by solving partial differential
equation, the reconstructed area will become smooth.
Therefore, if the considered image contains small details,
these details will not be reconstructed by the diffusion
process. Figure 15 includes a result of this method and
shows that the inpainting method deals well with text
and scratches, but fails at the large area.

Texture synthesis: Three main techniques are proposed
to synthesize texture:

1. procedural methods (e.g. fractal images),
2. stochastic methods (e.g. histogram equation, N-gram

equalization),
3. non-parametric sampling methods.

If an image generation function is available or can
be assembled, procedural methods typically are the best
choice, since they usually results in resolution free im-
ages. But it is usually difficult to find such a function.

Dealing with arbitrary input at first, stochastic tex-
ture synthesis methods are proposed for synthesizing
a texture. Later, these methods are applied to image
restoration or image replacement [39]. These methods
capture the features of a texture through some certain
stochastic measurement (e.g., mean intensity value, or
the histogram distribution of image). Then all we need
is to just an example texture, not an image generation
function. Even these methods can transfer some stochas-
tic parameter from source image to target image, the

input image output image

p

Nsrc Ndest

Fig. 10 Non-parametric sampling texture synthesis. The
black pixel ‘p’ is the reference pixel of kernel N. The gray
region of the output image is completed region.

image usually needs some homogeneous structure which
can be handled by this stochastic parameters [14, 33].

A non-parametric sampling texture synthesis method
is demonstrated in Figure 10. This method get an input
source image and generate a similar-looking destination
image as an output. In the texture synthesis process,
a subimage Ndest called “neighborhood kernel” is ex-
tracted from the destination image, and a similar kernel
Nsrc is looked up in the source image which then deter-
mines the destination pixel color. The kernel shape in
Figure 10 is called best-fit [28] or causal [76] kernel and
is frequently used for texture synthesis. The kernel has
a reference point which is marked as “p” in Figure 10.
Several criterions have been proposed for measuring sim-
ilarity in order to find the matching source kernel, for
instance, Euclidean distance (L2 norm), Manhattan dis-
tance (L1 norm), entropy, and so forth. These distances
are also dependent on the applied color space model.
When a kernel with the smallest distance has been de-
tected, the pixel value of reference point is transfered
from the source image to the destination image. This is
repeated until all destination pixels are copied.

This non-parametric sampling method also needs
some homogeneity in the source image. This method can
capture the local detail information of image by using the
kernel. The problem arise when the algorithms tries to
capture global structures of the source image like a large
shadow region because the algorithm uses a kernel of cer-
tain size to capture the features of image. When a large
size kernel is used to capture global features, the search
space becomes too small and loses the freedom to cap-
ture the feature since the source image size is fixed. This
is a typical “curse of dimensionality” problem. Namely,
we can not extract enough sampling information in the
fixed size data source, when the dimension of the sam-
pling kernel becomes larger. To break this limitation,
multi-resolution search [77], coherent match [2], or com-
binations of both [34] have been proposed. Figure 15
includes a result of this method and shows that the tex-
ture synthesis method can reconstruct texture but fails
to capture global structures.
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Image restoration: Image inpainting and texture syn-
thesis methods assume an image as a height field and try
to fill the missing part of the field. We can summarize
the both methods in this point of view:

– Image inpainting method: The height field is re-
constructed by a certain continuous function. Global
structures are captured, but local detail information
is usually lost.

– Texture synthesis method: Similar height field
patterns are looked up using a small kernel and trans-
ferred during reconstruction. Some local details like a
texel are captured, but global structures can usually
not be reproduced.

Image inpainting methods are good at reconstruct-
ing global structure in an image and texture synthesis
methods are good at reconstructing local details of an
image. These methods looks complementary, however,
these methods are not based on the same mathematical
theory: one is based on partial differential equation and
the other is based on non-parametric search. In order to
combine them we need further study.

Let us consider these properties from the signal pro-
cessing manner:

– Image inpainting method: The lower frequency
part of an image is reconstructed.

– Texture synthesis method: The higher frequency
part of an image is reconstructed.

Since the lower frequency part of an image repre-
sents the global structure of the image and the higher
frequency part represents the local structure of it, we
propose a method that combines the advantages of both
image inpainting and texture synthesis without inher-
iting their disadvantages. The main idea is that an in-
put image is first decomposed into a lower frequency
part and a higher frequency part by a frequency de-
composition technique, e.g., Fourier transform. Then,
the lower frequency part is reconstructed by image in-
painting method, and the higher frequency part is re-
constructed by non-parametric sampling texture synthe-
sis method. Finally, both reconstructed images are com-
bined to obtain the overall result. Here we will explain an
enhanced method of [79], newly included a rotation in-
variant search method and a shrink order reconstruction
method. In [52], the authors use a bilateral filter to ex-
tract the illumination structure. The filter smoothes out
small details while it keeps sharp shadow edges. This
method works well for image editing, for instance re-
lighting images. However, for our purpose, keeping sharp
shadow edges is not preferable since sharp edges include
a high-frequency component. Because the texture syn-
thesis method has a much higher potential to reconstruct
the high-frequency component than a diffusion based
process, we apply a frequency decomposition method
and combine the two techniques described above.

H 0

H*
0 L *

I *

H*
1

H 1

H*
2

H 2

=I H L+

Fig. 11 Overview of our method. top to bottom: the input
image I is decomposed into a high-frequency image H and
a low-frequency image L using a DCT. Image inpainting is
applied to the low-frequency part L to obtain the inpainted
image L∗. The high-frequency part H is decomposed into
a Gaussian pyramid (shown up to level 2 in this example).
Starting from the highest level (H2), multi-resolution tex-
ture synthesis is applied to the masked areas of the levels
Hi. For each level, the neighborhood vector for the texture
synthesis (cf. [77]) is composed of the kernels of that level
and of all higher levels. In this way, coherency is maintained
throughout all texture synthesis levels. Finally, the resulting
high-frequency image H∗

0 and the low-frequency image L∗

are summed up to yield the restored image I∗.

5.1 Image restoration algorithm overview

First we need to determine the missing region in a tex-
ture image. In the usual case, classification of a missing
or defect region of an input image is subjective. There-
fore, this information should be given by a user. On the
other hand, in our face model example, the missing parts
are previously known as we described in the end of Sec-
tion 4. However, the proposed image restoration algo-
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I L∗ H0, H1 H∗
0 , H∗

1

Fig. 12 Multi-resolution texture synthesis. Left to right: input image I; Inpainted low-frequency image L∗; Two levels (H0, H1)
of the Gaussian decomposition of the high-frequency image H; The same two levels after texture synthesis (H∗

0 , H∗
1 ). The detail

images Hi and H∗
i (i = 0, 1) are shown with gamma correction to emphasize the high-frequency detail. The restored image I∗

is shown in Figure 15 bottom right. (The original texture was obtained from the VisTex web Page, Copyright c©1995 MIT.)

rithm is independent of how the image is created and
regions to be filled in are detected.

We need two inputs for this algorithm. One is the
input image I and the other is a binary mask M which
stores the identifying information of the region to be
reconstructed, i.e. for each pixel in I we have a corre-
sponding binary value in M .

Our algorithm proceeds as follows (cf. also Figure 11):

1. The input image I is decomposed into a high-
frequency part H and a low-frequency part L us-
ing a discrete cosine transformation (DCT) (cf. Sec-
tion 5.2).

2. The fast image inpainting algorithm proposed in [53]
is applied to the interior of the masked areas of the
low-frequency image L to obtain the inpainted im-
age L∗. During this step, information from the entire
input image may be used by the image inpainting
algorithm. Here, only the pixels inside the masked
areas will be modified.

3. The high-frequency image H is decomposed into a
Gaussian pyramid with n+1 levels Hi (i = 0, . . . , n).
Section 5.3 provides some more details about this
step.

4. Starting from the highest level Hn, we apply multi-
resolution texture synthesis [77] inside the masked
areas in Hi (i = n, . . . , 0):

4.1. First, a kD-tree for fast nearest neighbor look-up
is built [1]. However, the search space for tex-
ture synthesis in level Hi does not only contain
the non-masked areas of Hi, but additionally in-
cludes the corresponding areas of the already syn-
thesized higher levels H∗

k (k = i+1, . . . , n). To
obtain the source image for the highest level Hn,
we simply apply the complementary mask Mn to
Hn.

4.2. Texture synthesis is applied inside the masked
area of Hi. The neighborhood vector (cf. [77]),
which is used to perform a look-up in the kD-
tree, is composed of the pixel information from
the texture synthesis kernel in level Hi and of
all corresponding kernels from the higher levels

H∗
k (k = i+1, . . . , n). This ensures high coherency

among all texture synthesis levels.
More details about this texture synthesis step are
given in Section 5.4.

5. The synthesized high-frequency image H∗
0 and the

inpainted low-frequency image L∗ are summed up to
yield I∗, which represents the restored version of the
input image I.

Details of our implementation are given in the follow-
ing sections. Figure 12 shows some of the intermediate
levels of our algorithm for a sample input image.

5.2 Frequency decomposition

In the first step of our algorithm, the input image I
is decomposed into a set of spectral sub-bands using a
discrete cosine transform (DCT).

We select the first κ sub-bands and compute the in-
verse DCT of this subset. The resulting image is used
as the low-frequency image Lκ. The corresponding high-
frequency image Hκ is obtained by subtraction: Hκ :=
I −Lκ. Obviously, the parameter κ determines an upper
bound for the (low) frequencies that are contained in Lκ.
Our goal is, to have as much detail (= high frequencies)
as possible in Hκ, while making sure that low-frequency
gradients are completely contained in Lκ.

We assume two hypotheses to find a suitable fre-
quency parameter κ. These hypotheses are:

1. If the lower frequency part of an image is adequately
eliminated, the rest part of the image will be more
homogeneous,

2. Homogeneity of an image can be measured by calcu-
lating the autocorrelation matrix of an image.

To this end, we compute the autocorrelation matrix5 Aκ

of Hκ: Aκ := DCT−1(DCT(Hκ) · DCT(Hκ)).

5 The autocorrelation matrix A of a matrix H is defined
as A := DCT−1(DCT(H) · DCT(H)), where H denotes the
conjugate of H. In our case, the matrices Hκ (and thus also
DCT(Hκ)) contain real numbers only because we use DCT
to decompose input image.
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Fig. 13 Standard deviations of the autocorrelation matrices
Aκ of the input images shown in Figure 17 plotted over the
range of κ = 1, . . . , 16.

For a non-square input image I, we pad Hκ with ze-
ros to obtain a square matrix H ′

κ and clip the zeroed
border of the resulting A′

κ := H ′
κ · H ′

κ. Next, we com-
pute the standard deviation of the elements of the au-
tocorrelation matrix Aκ. Figure 13 shows the standard
deviations of the elements of autocorrelation matrices of
the input images shown in Figure 17. They are plotted
over the range of κ = 1, . . . , 16. We found that choosing
the lowest κ value that yields a standard deviation of
less than 0.001 gives good results in general.

The effect of κ is shown in Figure 16. When the κ
goes to zero, our method is identical to the texture syn-
thesis method which is shown in Figure 15. When the
κ becomes larger, our method becomes to the image in-
painting method, since extracted higher frequency part
is fewer. Therefore, there might be an optimal κ value
which can extract enough large structure as a low fre-
quency part, but still keep the small details.

We use the Y channel of XYZ CIE color model for
this analysis. Since the large structures of an image such
as shadows usually are most prominent in the Y chan-
nel [27].

5.3 Gaussian decomposition

The decomposition of the high-frequency image H into
a Gaussian pyramid is based on the approach proposed
by Burt and Adelson [11]. In particular, we employ the
5x5 Gaussian kernel ω proposed in [11] with the recom-
mended parameter value a = 0.4:

ω(u, v) = ω̂(u) ω̂(v)

ω̂(0) = 0.4, ω̂(±1) = 0.25, ω̂(±2) = 0.05

The pyramid decomposition proposed in [11] requires
that the input image has a resolution of (p 2N + 1) ×
(q 2N +1) pixels (p, q,N ∈ N) to ensure that a Gaussian
pyramid of N+1 levels may be constructed. In our case,
we may safely terminate the pyramid decomposition at a

level n � N+1. This can be explained as follows: during
the texture synthesis in level i, we include the pixel infor-
mation from the kernels of all higher levels i+1, . . . , n into
the nearest neighbor search. To be successful, however,
the search needs to have enough candidates (contiguous
groups of pixels). Thus, the size of the smallest Hn must
not be too small. In practice, we obtained good results
for pyramid decompositions up to level three. As a conse-
quence, the resolution of the input image I is practically
unrestricted for our method.

5.4 Texture synthesis

For the texture synthesis (step 4 in Section 5.1), we im-
plement and test the approaches presented in [21], [77],
and [2]. We finally implement the approach proposed
in [34], which basically switches between the texture syn-
thesis algorithms from [77] and [2] from level to level,
depending on a local distance criterion. during the tex-
ture synthesis in level Hi, we typically use the 5x5 best-
fit/causal kernel from [28, 77] within Hi, a standard 3x3
kernel for level Hi+1, and a 1x1 kernel for the higher
levels Hk (k = i+2, . . . , n).

Multi-resolution texture synthesis is applied inside
the masked areas of each level Hi (i = n, . . . , 0). The
complementary part of Hi (i.e. the part of Hi which is
outside the masked areas) is used as the source image.
Since the Hi differs in size from level to level, the mask
has to be adapted. Let M0 := M denote the user-defined
binary mask in the size of the input image. We decom-
pose this mask into a Gaussian pyramid up to level n
using the same approach and kernel as for the image
data (see Section 5.3). This operation is carried out in
floating point arithmetic with 1.0 and 0.0 representing
true and false for the initial level M0, respectively. Thus,
the higher levels Mi (i = 1, . . . , n) contain blurry images
of the initial mask M . Next, we quantize every Mi back
into a binary mask such that 0.0 maps to false and any
other value in ]0, 1] is mapped to true. Given that the
number of levels of the pyramid is typically three or four
in our application, the clear distinction between 0.0 and
any value larger than zero is not an issue in single pre-
cision floating point.

Image reconstruction order: The reconstruction pixel
order usually has an influence to the result [18, 32], ex-
cept for highly homogeneous texture [78]. Also, when the
kernel shape is not symmetric (ex. bestfit/causal kernel),
direction of kernel may change the result.

This is why we implemented multiple reconstruction
orders: scanline order type 1 (one way, +x direction),
scanline order type 2 (alternative way, +x and −x di-
rection), and shrinking order. The “shrinking” order fills
a hole in a manner that the hole is shrinking. First, we
calculate a distance map inside of the hole. Each pixel of
this map has a Manhattan distance to the boundary of
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the hole. Then the reconstruction order follows the dis-
tance. In our experience, we found the shrinking order
usually produces the best results.

There is one issue in this hole filling process. If the
missing hole has a concave shape and the kernel shape
does not fit the boundary, we cannot not extract the
neighborhood kernel. In this case, this missing pixel will
remain and its distance will be increased by one, to be
filled in the next iteration.

However, when the bestfit/causal kernel is used to
find the similar kernel, this kernel sometimes does not
fit the hole boundary since it is designed for the scanline
order reconstruction. Therefore, we use eight different di-
rections of bestfit/causal kernel (cf. Figure 14). During
the image analysis phase (cf. Section 5.1, algorithm 4.1),
all these eight kernels are used to analyze the source im-
age and eight kD-trees are generated. In reconstruction
phase (cf. Section 5.1, algorithm 4.2), a possible kernel
which is fit to the hole boundary is extracted from the
destination image. Then, we look up the corresponding
kD-tree of the extracted kernel, and find the closest ker-
nel.

This algorithm can shrink any holes, even if the
boundary is concave. Consider the texture is synthesized
in a scanline order fashion, then all possible holes would
be filled if the first left top most pixel can be filled. The
scanline order is a special case of shrinking order. There-
fore, this hole filling is always possible. Here, we assume
that it is possible to fill the first missing pixel. This
means at least we have a non-missing subimage which
fits the neighborhood kernel. We think this assumption
is reasonable, since the neighborhood kernel is usually
5x5 or similar size. However, we usually need more non-
missing pixels to get a better result in practice.

Another advantage of shrinking order to fill holes is
that we can use fixed-shape-fixed-size kernels for any ar-
bitrary boundary shapes. This means we can still use kD-
trees for searching. An arbitrary shaped kernel is more
powerful, and can exploit the all non-missing pixel in-
formation. However, this can not fit the kD-tree search
algorithm since you can not query a vector with chang-
ing its size and structure. Furthermore, it is not practical
to generate all kD-trees corresponding all patterns and
to store them to the memory, because the total number
of arbitrary shaped kernel is the sum of binomial func-
tion. Some methods [18, 50] use arbitrary shaped kernel
for their search which yields a linear search with com-
putational complexity of O(n2) which is larger than the
O(n log n) complexity of the kD-tree search. Although
the fixed shape kernel approach might miss some infor-
mation during the search, we think this is a good com-
promising point considering the rotation invariant search
and the computation speed.

Figure 15 shows a comparison of texture synthe-
sis [77], image inpainting [53], and our approach. The
reconstruction order in texture synthesis is scanline or-
der as proposed in [77]. Both texture synthesis and im-

Fig. 14 Eight different orientations of 5x5 bestfit/causal
kernel. The reference point is filled with black.

age inpainting treat small scratches and thin area well,
i.e., the text. Limitations of texture synthesis and image
inpainting arise when large areas are missing. This point
is also stressed in [18] where the texture reconstruction
from real objects is investigated. In this problem, usually
some continuous missing area rather than small scratch
or blotches occur. Because of this, we need a method to
reconstruct large structures and small details.

Our algorithm is controlled by two different parame-
ters: the number of DCT sub-bands (κ), from which the
low-frequency image Lκ is computed (cf. Section 5.2),
and the number of levels (n+1) in the Gaussian decom-
position of the high-frequency image (cf. Section 5.1). In
practice, we obtained very good results when choosing
the lowest κ value that yields a standard deviation of less
than 0.001 as described in Section 5.2. Thus, the choice
of κ is fully automated in our approach. The optimal
number of levels in the Gaussian decomposition is some-
what hard to predict, though. In general, we obtained
good results when using three or four levels, i.e. setting
n = 2 or n = 3.

Figure 17 shows some results obtained with our
method. Each input image is shown with its mask ap-
plied. For the purpose of illustration, the color of each
mask has been chosen to differ significantly from the con-
tent of the input image. We found that the restored im-
ages look plausible in general. In some cases we obtained
results that looked surprisingly good. One example is the
table image (Figure 17, right column), where the flare of
the highlight that is reflected from the marble floor is
restored very well after the masked tables have been re-
moved. We have not performed numerical comparisons
of the results of different image restoration techniques,
though. We believe that a simple RMS comparison is
useless in the context of image restoration, since it does
not take into account relevant perception issues.

In our approach, we applied image inpainting to han-
dle intensity gradients in the input images. During our
simulations, we found that multi-resolution texture syn-
thesis alone can solve the intensity variation problem to
a certain extent. However, the cases of the missing areas
are relatively larger and more irregularly shape, using
image inpainting in additional to multi-resolution tex-
ture synthesis is more favorably.



Textures Revisited (REVISED paper number 357) 19

input image texture synthesis [77] image inpainting [53] our method

Fig. 15 Comparison between texture synthesis, image inpainting, and our method for input images with texture (top row)
and with texture and additional intensity gradient (bottom row). Each row left to right: input image (damaged areas are
masked out); Resulting images from texture synthesis [77], from image inpainting [53], and from our new method.

κ = 2 κ = 4 κ = 8 κ = 16

Fig. 16 Effect of κ value. When κ is equal to zero, this method is identical to the texture synthesis method since no low
frequency part is extracted. When κ is maximum, this method is identical to the image inpainting method, since in this
case all frequency components are treated as low frequency part. An optimal κ is in between them. We use the coherence
parameter [34] = 10.

Currently, our implementation is rather experimen-
tal: no optimizations have been performed, and the tim-
ings include gathering of quite a lot of statistical data.
All timings were collected on a 1.7 GHz Pentium4 PC
and are given for an input image size of 600×450 pix-
els. The time to restore an image depends heavily on
the percentage of the masked pixels. In our simulations,
we typically used masks that covered 4–6 % of the input
image. For these masks, our algorithm took about 5–
10 minutes to complete (including I/O). The initial fast
image inpainting took 4–20 seconds, depending on the
convergence of the (iterative) inpainting algorithm.

6 Results

Figure 18 shows the results of our face reconstruction ap-
plied to two face models. The presented method is fully

automatic except for registering a 3D scanned model
with photographs. In this example, we process 3D range
scan data according to [40] in order to obtain the in-
put mesh, and register photographs to the mesh by
hand. Figures 18 (a.2) and (b.2) are the parameteriza-
tion results using geometric stretch energy with triangle
shape (height-baseline) ratio α = 0.05 and visual im-
portance factor k = 1.5 in Equation (2) where the view
vector is directed to see the front face. Resampling re-
sults are found in the same Figure (a.3) and (b.3). Blue
pixels indicate that the input photographs do not pro-
vide any information for this surface region, i.e., there
is no photograph where the surface points are visible.
Figures 18 (a.4) and (b.4) show the color interpolation
results after filling in the hole as described in Section 4,
while in Figure (a.5) and (b.5) the missing part are re-
constructed using the proposed image restoration tech-
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painting (n=1, κ=4) posters (n=1, κ=6) wall (n=1, κ=5) tables (n=2, κ=5)

Fig. 17 Top row: input images with masked areas. Bottom row: restored images (see also Section 6). The parameter κ (=
number of DCT sub-bands used to compute the low-frequency image Lκ) has been chosen automatically according to our
autocorrelation metric (cf. Section 5.2). n is the highest multi-resolution level. The level is starting from 0.

niques as described in Section 5. The frequency decom-
position parameters are κ = 4 in (a.5) and κ = 5 in (b.5).
These κs are calculated with the criterion as described
in Section 5.2. In Figures 18 (a.6) and (b.6) the texture
mapped 3D model is presented. We use five photographs
as the input, namely front, left, right, back, and the up-
per front view. An example of front, left, and right inputs
is given in Figure 9. If we render the reconstructed model
from a view which is found in the input photographs, it is
clear that this is a simple problem as all information can
be found in one of the input photographs. The problem
becomes more interesting when we render novel views
such as Figures (a.6.1), (a.6.3), (b.6.1), and (b.6.3). On
these pictures, we can see the combined images from
several (three or four) different input photographs. The
images demonstrate that the reconstruction quality com-
pares very well to the input images.

Figure 19 shows the comparison of the color interpo-
lation method and the image restoration method. You
can find the areas enclosed by blue lines on Figures 18
(a.3),(b.3). Although these regions have no input infor-
mation, both methods can reproduce colors. Besides the
image restoration method reconstructs some texture.

7 Conclusions and Future Work

We have proposed a method to generate textures from
3D geometry models and individual, uncalibrated pho-
tographs. Our method requires no user interaction for
most processing steps. Only the feature registration step
requires interactive specification of a few feature points.

Our approach consists of three sub-tasks: parameter-
ization, texture combining, texture restoration.

For the parameterization, we introduced two signal
terms for the geometry stretch energy method: the visual

color interpolation image restoration

Fig. 19 Comparison of color interpolation method and im-
age restoration method. Inside area of the blue lines has no
texture information. The bottom row is zoom in of the upper
part of ear at middle row. (cf. (a.3) and (b.3) in Figure 18)
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(a.1) input model (a.2) parameterization (a.3) resampling (a.4) color interpolation (a.5) image restoration

(a.6.1) left front view (a.6.2) front view (a.6.3) right front view (a.6.4) back view
(a.6) model + texture mapping result (the texture image is (a.5))

(b.1) input model (b.2) parameterization (b.3) resampling (b.4) color interpolation (b.5) image restoration

(b.6.1) left front view (b.6.2) front view (b.6.3) right front view (b.6.4) back view
(b.6) model + texture mapping result (the texture image is (b.5))

Fig. 18 Face reconstruction results. In parameterization ((a.2), (b.2)), visual importance parameter k = 1.5, triangle shape
ratio α = 0.05, In image restoration, frequency parameter κ = 4 (a.5) and κ = 5 (b.5). These κs are automatically calculated
by the criterion of Section 5.
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importance term and the triangle shape term. The visual
importance term defines the importance on the texture
for efficient use of texture area. The triangle stretch term
is for alleviating the parameter cracks problem of L2

geometric stretch parameterization.
For the texture resampling problem, we apply the

multi-resolution spline technique to delete the boundary
artifacts which come from different illumination condi-
tions of input photographs. We need masks for applying
the multi-resolution spline technique. In our case, these
masks have complex shape. We propose the automatic
mask generation method using registered 3D model in-
formation.

Texture restoration is needed because sometimes we
can not find pixel information on input photographs
by registration error or occlusion. In our case, taking
some more pictures to fill such missing pixel informa-
tion might not be a good solution. The human face is a
dynamic object and it is hard to reproduce exactly the
same face. Therefore, introducing more pictures may add
up to the error. Moreover, a face has view dependent re-
flection component (e.g., specular reflection component),
this makes difficult to control the illumination condition.

To solve this problem, we introduced color interpo-
lation method which exploit the 3D mesh topology to
fill in the missing pixels, and image restoration method
which combines image inpainting method with texture
synthesis method by using the frequency analysis. We
also demonstrated that this image resolution method is
useful for a variety of defective images.

A remaining problem is the automatic generation of
a robust registration method of a 3D model with corre-
sponding input photographs.

Other future work for each subproblem is as follows:

– In parameterization, we gave two kinds of signals.
Each signal parameter is decided experimentally. A
promising research direction would be to find optimal
parameter values for fine tuning the signals.

– In texture resampling, we solved the boundary prob-
lem by the multi-resolution spline technique. This
method connects discontinuity regions with cer-
tain continuous function. However, the discontinuity
comes from the difference in illumination conditions.
Some techniques have been proposed to eliminate the
view dependent element of illumination [15, 48]. We
believe that these methods could improve our results
further.
We used a triangle-based mask shrinking method,
which is simple to implement and robust to noise.
However, image resolution and projected triangle
area might not match. We are currently investigating
shrinking methods taking into account image resolu-
tion.

– In image restoration, we reconstructed the missing
parts of the input image using its boundary informa-
tion. Therefore, the reconstruction may not be sta-
ble for certain complex boundary conditions. We are

planning to investigate a robust method which can
exploit the global structure in order to reliably re-
construct images.
In this paper, we focused on a fully automatic
method. However, if we can utilize some user guided
information for reconstruction, a higher quality may
be obtained. For example, in [83], a user can prescribe
feature information (texton mask), rotation vector,
and transition function. Such user-defined guidance
may improve the reconstruction quality and also give
some freedom to the user to control the results.
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