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Abstract
We present a massively parallel object recognition system based on a cortex-like structure. Due to its nature, this
general, biologically motivated system can be parallelized efficiently on recent many-core graphics processing
units (GPU). By implementing the entire pipeline on the GPU, by rigorously optimizing memory bandwidth and
by minimizing branch divergence, we achieve significant speedup compared to both recent CPU as well as GPU
implementations for reasonably sized feature dictionaries. We demonstrate an interactive application even on a
less powerful laptop which is able to classify webcam images and to learn novel categories in real time.

Categories and Subject Descriptors (according to ACM CCS): I.4.8 [Image Processing and Computer Vision]: Scene
Analysis, Subject: Object recognition

1. Introduction

Biologically motivated object recognition approaches ad-
vanced fast in the recent years. Motivated by the speed
and accuracy of the primate brain [TFM96], object recogni-
tion based on quantitative analysis of visual cortex [RP99]
was extended to real world image recognition [SWP05,
ML06, SWB∗07, ML08]. In contrast to classical computer
vision algorithms, these models operate on unknown im-
age classes without requiring parameter changes. Com-
mon to all of them is the feed forward processing pipeline
which is composed of simple but compute intensive lay-
ers [SKC∗05,SOP07]. After a couple of transformations the
response to a visual feature dictionary is used to classify im-
ages. While being relatively simple, these models achieve
high recognition rates on real world recognition tasks which
are highly complex [PCD08].

The cortex-like structure of biologically motivated ob-
ject recognition systems is inherently parallel and therefore
can be mapped reasonably well onto current graphical pro-
cessing units (GPUs). The many-core architecture of GPUs
and their flexible programming model [OJL∗07, OHL∗08,
NBGS08] allows us to carry out the simple processing tasks
of each model layer at a massively parallel scale with mul-
tiple thousands of threads in flight. In particular, we ad-
dress the biologically motivated object recognition system
by Mutch&Lowe [ML06]. This shift- and scale invariant ob-
ject recognition model achieves good accuracies on small
dictionaries while not being overly complicated.

Our parallel CUDA implementation follows a couple of
general design principles such as implementing the entire
pipeline on the GPU, rigorously optimizing the layout of
data structures and reusing data between threads to reduce
memory bandwidth, and, finally, minimizing branch diver-
gence. It shows that our implementation is vastly faster
than a reference CPU implementation, and still significantly
faster than a current GPU implementation of the same model
inside the Matlab framework by Mutch et al. [MKP10] for
reasonable dictionary sizes.

The required time per image is indeed so low that real
time applications now are possible. For a reduced feature set
which is still sufficient to classify webcam images robustly,
we demonstrate an interactive application even on the low-
end GPU of a standard mobile computer. The system is able
to learn new categories and to classify images on the fly.

1.1. Related Work

The study of the visual cortex in primate brains allowed for
a quantitative object recognition model [RP99] which has a
strict feed forward structure [SKC∗05]. The model was first
applied to the recognition of real world images by Serre et
al. [SWP05]. They achieved good performance even with a
small training set.

Mutch&Lowe extended the model of Serre et al. to hierar-
chical processing [ML06]. Instead of applying scaled filters,
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they create an image pyramid of several scales. Further im-
provements are achieved by sparsification and localization
of features.

Several parallel GPU implementations for various cortex-
like recognition systems exist today. In contrast to classi-
cal computer vision algorithms which are specialized to spe-
cific object types, these models allow for very general object
recognition tasks. Woodbeck et al. [WRC08] utilize earlier
pixel shaders [SAS07] to implement a different biologically
inspired model consisting of seven layers.

Chikkerur developed a parallelization for the original
model of Serre et al. on CUDA [Chi08]. He reports
some speedup, but parallelized only parts of the processing
pipeline and kept others on the CPU. They thus give away
performance and cannot reach real time performance.

Recently, Mutch et al. developed a more general frame-
work to easily cover various cortical models [MKP10]. They
interfaced CUDA from within Matlab to speed up time con-
suming calculations while keeping an easy to use interface.
In the result section we will refer to this work in detail. In
contrast, we developed a self-contained application which
allows for fast real time processing of images, even on small
mobile devices.

2. Feature Extraction Inspired by Visual Cortex

Object recognition is generally divided into two parts,
feature extraction with weighting and object classifi-
cation [SWP05, LBM08]. We built our system closely
along the approved base object recognition model of
Mutch&Lowe [ML06] which we will describe in the follow-
ing. In our work we concentrate on the parallelization of the
feature extraction and weighting pipeline and use an exist-
ing support vector machine implementation for the classifi-
cation [CL01].

The learning step consists of two phases. The feature ex-
traction phase builds a feature dictionary out of a training
image set. The feature weighting phase then measures the
similarities of all features to all training images. Both phases
use the same processing steps.

The processing pipeline, following the base model of
Mutch&Lowe [ML06], is outlined in figure 1. A scale and
shift invariant feature vector is computed for input images
by two subsequent steps, measuring the response to Gabor
filters, and to a set of feature patches, respectively.

These two steps are similar in structure and consist of a
simple layer (S) and a complex layer (C) each:

• S-layers compute convolutions with templates or patches.
The selectivity for a specific feature is increased by ap-
plying a bell-shaped weighting curve to the resulting re-
sponse.

• C-layers performs non-linear reduction, namely maxi-
mum extraction over an area or an entire pyramid fol-
lowed by sub-sampling. They reduce the amount of in-
formation and establish scale and shift invariance.

In the following, we describe the basic principles of each
layer.

2.0.1. Image Layer

Images are converted to grayscale. A pyramid is created by
down sampling using bicubic interpolation with scale factor
r = 2−1/4 ≈ 84%.

2.0.2. Gabor Filter Layer (S1)

The first layer (S1) measures the response to directional fea-
tures using Gabor filters. They implement edge detection
along a fixed number of orientations. The Gabor filter func-
tion Gθ(x,y) with orientation θ ∈ [0,π] at a discrete position
(x,y) is defined as:

Gθ(x,y) = exp

(
− (x2

0 + γ
2y2

0)
2σ2

)
cos
(

2π

λ
x0

)
(1)

with x0 = x cosθ+y sinθ and y0 =−x sinθ+y cosθ (Mutch
recommends γ = 0.3, σ = 4.9 and λ = 5.6).

The Gabor filter is also frequency selective. However, fre-
quency invariance is achieved by convolving each scale of
the image pyramid with a fixed-size kernel. The filter com-
ponents are normalized by setting the sum of all values to 0
and the sum of squares to 1. By convolving with g orienta-
tions, the S1 layer creates g pyramids (g = 4 in our case).

2.0.3. Local Invariance Layer (C1)

The C1 layer increases shift and scale invariance over local
areas in all S1 pyramids. This is achieved by determining the
maximum in 10× 10 regions at each scale. As information
is lost by this dilation it is sufficient to shift the mask by 5
pixels in each direction which effectively reduces the size of
the resulting C1 pyramids by 1

5 ×
1
5 for each orientation.

2.0.4. Patch Extraction

During the training phase a set of tiles is extracted from these
C1 pyramids as a vocabulary of visual features. Serre pro-
posed a universal feature dictionary [SWB∗07] which could
be reused for all types of real world imagery, but there ex-
ists none yet. Instead, we try to determine a representative
set of patches out of the training images by randomly choos-
ing positions and scales inside their C1 pyramids. A patch
comprises all orientations though. It is square and varies in
size. The idea is that small patches encode shape and larger
patches encode texture [ML06]. After extracting the fixed
number of patches from all training images, the dictionary
remains constant.
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Figure 1: Hierarchical feature extraction and weighting pipeline.

2.0.5. Intermediate Feature Layer (S2)

The S2 layer measures the local response of the C1 pyramid
of a given image to every patch in the dictionary. A convo-
lution compares the patch to local spatial neighborhoods at
all positions and scales, operating on all orientations at once.
The response is an euclidean distance value which is tuned
with a gaussian radial basis function to increase the relative
response for closely matching patches:

R(X ,P) = exp

(
−‖X−P‖2

2σ2α

)
(2)

Here, X is a region of the C1-pyramid and P the patch. Both
have the same size n×n×g, where n is the patch edge length
and g is the number of Gabor orientations. The standard de-
viation σ is set to 1. The distance is normalized on patch size
with α = (n/4)2. As R(X ,P) operates on all orientations at
once, orientation information is removed in the result.

2.0.6. Global Invariance Layer (C2)

Finally, the C2 layer removes all position and scale infor-
mation. Every similarity pyramid is reduced to one single
maximum value. The final result is a weighted C2 feature
vector containing the maximum responses for all patches.

2.0.7. Classifier

The multiclass classifier is the last step in the object recog-
nition model. For every category, a set of training images is
used. The classifier learns using the C2 vectors of the train-
ing images. It is advantageous to transform the C2 vectors
beforehand [ML06] by adding a bias to set the mean for ev-
ery patch similarity response to 0 and scaling the standard
deviation to 1. A simple linear classifier then determines the
best matching category using the C2 vector of the input im-
age. Most commonly used is an all-pairs linear support vec-
tor machine (SVM) [CL01], which we also used.

3. Implementation

In this section we describe in detail our design decisions for a
high performance implementation of the object recognition
pipeline described in the previous section. The first princi-
ple in programming for massively parallel architectures is to
use many threads that do the same operations, i.e., execute
the same kernel on different data. Diverging threads result
in a severe performance drop. The second principle is that
main memory access is expensive and data that is processed
by individual threads needs to be laid out with care for fast
throughput. To gain maximum performance, frequently ac-
cessed data needs to be copied into fast shared memory that
is a scarce resource and accessible only for a smaller set of
threads, called a block. Finally, read only access to parts of
the main memory can be accelerated using a hardware cache.

The structure of the overall parallelization approach influ-
ences also the number of individual kernels and kernel calls
that are needed for the final result.

Our framework is implemented in CUDA [NVI09] but the
described principles can directly be transferred to other mas-
sively parallel programming languages like OpenCL or Mi-
crosoft DirectCompute. The code is open source and can be
found at http://github.com/cumorc/cumorc.

3.1. Memory Structure

Important design decisions have to be made for the data
structures and the organization of the data flow to reduce
bandwidth utilization between CPU and GPU memory, as
well as on the GPU itself.

3.1.1. Main Memory to GPU Transfer

A significant factor is how much data is transferred between
the main memory of the CPU and the GPU. We reduce the
amount to a minimum by implementing the entire pipeline
outlined in figure 1 on the GPU. One needs to upload the
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Figure 2: Data layout for dense storage of one C1 pyramid
for four Gabor orientations at three scales.

input image and the patch dictionary and finally retrieve the
compressed C2 vector. Beyond that, no intermediate results
will be transferred.

3.1.2. Texture Cached Read-Only Access

The texturing unit of graphics processors provides a cached
data access on arrays and allows for automatic boundary
handling. This access is read-only but textures can be bound
at runtime to GPU arrays written by previous kernels. Tex-
ture caches are optimized for 2D data which has to influence
the data layout.

3.1.3. Shared Memory

Every GPU processor provides a very fast, but small shared
memory. It is specifically suited for data which is accessed
multiple times by several threads within a block. Both the
S1 and the S2 layer convolve small patches with the image
pyramid, we assign one patch to each block and load the
patch to shared memory beforehand.

3.1.4. Image Pyramid Data Structure

One of our primary design goals was to allow for flexible
image sizes and for arbitrary scaling factors between pyra-
mid levels. We apply texture caching to accelerate access to
the image pyramids, our most important data structure. Since
there is no standard way of storing image pyramids we evalu-
ated different approaches. Using 1D textures is very flexible
and yields basic caching. This already improves the perfor-
mance by 10% over simple global memory storage.

Memory efficient storage of pyramids using 2D textures
requires to create an extra texture for each pyramid scale.
Managing several texture references is currently tedious and
inflexible in CUDA. This problem can be alleviated by us-
ing only a single texture reference and using multiple kernel
calls that each process a single scale. Even though calling a
kernel imposes some overhead this is about 50% faster than
multiple textures in one kernel.

Filtering with g Gabor orientations in layer S1 generates

multiple image pyramids of the same size. Since a single tex-
ture reference per kernel is fastest we group each scale of the
different pyramids into a single texture. This is illustrated in
figure 2 for 4 C1 pyramids with 3 scales. Grouping multiple
images in a single texture enables us to process a single layer
of multiple image pyramids within a single kernel call but an
additional boundary treatment is needed.

We also use this data structure for storing all patches as it
scales very well and allows for varying numbers of elements
per scale.

3.2. Layer Parallelization

We paid special attention to the parallelization of each layer,
and focus in this section on the main principles when imple-
menting a cortex-like model. For GPUs, concurrent compu-
tation (lockstep) only happens if the threads within a block
share the same codepaths. For high performance it is manda-
tory to select a data parallel algorithm [HS86] where the data
might be different but where each thread executes the same
operations including branching decisions. A second issue is
minimizing bandwidth.

3.2.1. Single Thread per Output (Image Layer, S1, C1)

The first layer (Image Layer) uses the source image to create
an image pyramid. We create one thread for every output
pixel and each thread then reads a small area to interpolate
over, effectively exploiting the caching hardware.

Creating one thread per output pixel is a principle which
is directly reused in the S1 and C1 layers. It actually corre-
sponds to a neuron which computes its output by weighting
inputs at several dendrites.

3.2.2. Merging Layers S2 and C2

The most time critical layer is S2. A convolution computes
the similarity between the p patches and the C1 pyramid of
the image and produces p similarity maps. The C2 layer then
extracts the maximum of each similarity map.

We partition the problem such that each block of threads
operates on a single patch and performs the convolution with
one scale of the pyramid at all orientations. Each thread
again is responsible for one output pixel. As we fix the num-
ber of threads nt in the block, it might be necessary to iterate
multiple times within the kernel to compute all output pixels.
We need p blocks, and the algorithm scales with the number
of processing units.

This partitioning carries a number of benefits. Blocks can
run concurrently even if they do not execute the same code-
path. Therefore, each block can easily handle a different
patch size. As every thread in the block needs access to the
same patch, we need to load the patch data into fast shared
memory only once. 2D texture caching is used to access the
C1 pyramid.
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An additional, significant benefit is achieved by integrat-
ing the S2 and C2 layer into the same kernel. S2 creates p
similarity pyramids, while the C2 layer reduces every pyra-
mid to one maximum value. Each block thus needs to re-
turn a single value. We completely avoid waisting any mem-
ory or bandwidth for the similarity pyramid by extracting
the maxima already when convolving with the patch. When
scanning over the image, each of the nt threads only keeps
track of one maximum value. A parallel reduction algorithm
then computes the maximum of the nt values within a block
in lognt steps [HS86, HSO07]. The reduction can operate
very fast because the threads of one block can still access
shared memory. Our implementation guarantees a close to
minimum bandwidth requirement to global memory.

4. Results

4.1. Experiments with Caltech 101 database

For evaluation, we use the entire Caltech 101 image
database [FFFP04] which provides a set of real world pho-
tographs. It consists of 9144 pictures in 101 object categories
and one background category. 15 training images are ran-
domly selected out of each category which is sufficient for
the applied classification framework. For all benchmarks, we
measure the random patch extraction, the C2 vector calcula-
tion by a new set of training pictures and independently the
evaluation of the accuracy with at most 100 different images.
We exclude the time of the SVM but apply the same SVM
for all tests. We took care that all tests used the same random
numbers and thus the same set of images.

We compare our system with both the CPU refer-
ence implementation (FHLib) of Mutch&Lowe [ML06]
and their recently published GPU cortex simulator frame-
work (CNS) [MKP10] which runs in Matlab. Both are pub-
licly available. We use the same set of parameters as docu-
mented for FHLib and applied them also to the CNS frame-
work. A direct comparison is difficult though as the FHLib
allows the shorter edge length to be 140 pixel at maximum
while CNS limits the longer one. As our implementation al-
lows for arbitrary images sizes we compare to both imple-
mentations separately.

Table 1 analyzes the classification performance. For the
base setup with 4075 patches and shorter edge lengths of
140, we acheive a classification rate of 37%, averaging over
8 runs. This is a bit better than Lowe’s&Mutch’s 33% (base
model).

To demonstrate that the classification rate behaves simi-
larly, we show the performance at different patch numbers
in Figure 3. The accuracy grows logarithmically and flattens
out at more than 1500 patches. Both implementations show
the same behavior here, indicating that a certain dictionary
size is sufficient to robustly differentiate image classes. We
also compare the classification rate at different source image
sizes in the bottom row of Figure 3.

Table 1: Classification rates on the Caltech 101
dataset with varying number of training images per cate-
gory (i./cat.). The results are averaged over 8 independent
runs. The performance of CNS is not directly comparable as
it omits the data transformation before calling the SVM.

Model Impl. 15 i./cat. 30 i./cat.

Serre et al. [SWP05] CPU 35% 42%

Mutch&Lowe Base Model
(FHLib) [ML06] CPU 33% 41%

Mutch et al. Base Model
(CNS-FHLib) [MKP10] GPU 29% 37%

Our implementation GPU 37% 46%
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Figure 4: Our systems competes well against the recent
GPU implementation of the CNS-FHLib (CNS-GPU) on the
Caltech 101 database. Both, in the number of patches, as
well as the different sizes, our system is faster. The big initial
gap might be explained by some overhead, that comes along
with the Matlab Framework CNS-GPU uses.

Figure 4 shows the performance benchmark against the
recently published GPU CNS-FHLIB [MKP10]. In the test-
range from 120 to 15360 patches and longest edge length
from 210 to 420 we consistently outperform this implemen-
tation. For 4075 patches, processing for one image takes
86.4 ms on a NVIDIA GeForce285GTX, and only 8.9 ms
for 240 patches.

4.2. Mobile Real Time Application

The significant speedup, especially for moderate numbers
of patches, allows us to address real-time object recogni-
tion even on small mobile GPUs such as a low end NVIDIA
Geforce 9400M in an Apple Macbook Pro.
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Figure 3: The plots in the top row show a comparison of the accuracy and performance for a varying number of patches
for FHLib and our GPU-based implementation on 9144 images. The pictures are resized to 140 px (shorter edge length). We
achieve the same accuracy as the reference at a more than 10 fold speedup.
The bottom row show the performance and accuracy test between our system and the FHLib for different image sizes. For
this experiment the Caltech Library is interpolated bicubicly and resized. Due to the quadratic growth of the workload both
implementations show the same increase in their runtime performance. The accuracy plot shows that both implementations stay
in approximately the same range.

As one test setting we used the COIL-100 [NNM96] data
set as it contains representative images for a webcam appli-
cation with subtracted background [Pic04]. We obtain good
classification performance even for small dictionaries (82%
with 30 patches, 93% with 120 patches measured on the
COIL-100 data set - see Figure 5). We implemented a live
test setting using the built-in webcam. The application learns
and queries pictures within a tenth of a second. At web-
cam resolution (640× 480 scaled to 186× 140) and using
480 patches the feature extraction of an image is performed
within 452 ms, with 120 patches even in under 100 ms. As
we cannot generate a feature dictionary from the live data
stream we use a static feature dictionary as proposed by
Serre et al. [SWB∗07]. To test the suitability of our cur-
rent dictionaries, we classified he COIL-100 data set with
Caltech 101 patches. We thereby achieved almost the same
classification rate as by extracting the patches from the same
dataset, as Figure 5 proves. For our real-time application we
capture several images and calculate the SVM model in un-
der a second. This is then used to classify images in real-
time. You can see our application in Figure 5 and in the sup-
plemental material.

5. Conclusion

Biologically motivated image recognition models lend them-
selves to be implemented on massively parallel platforms
such as current many-core GPUs. By considering a set of
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Figure 5: The plot shows COIL-100 classification rates with
a feature dictionary generated out of test images (COIL-
DICT) and with a dictionary generated from the Caltech 101
dataset (CALTECH-DICT).

parallel programming principles we were able to achieve a
significant speedup, even compared to recent GPU imple-
mentations. We demonstrate real time image classification
on a low end GPU. Availability of low power many-core pro-
cessors such as NVIDIA Tegra could bring real time object
recognition even to handheld devices.

A number of improvements could be added to the current
framework, e.g., [ML06], to further improve classification
rates. With a small but universal feature dictionary we could
provide online learning capabilities. In addition, we plan to
apply the proposed design decisions to other biologically in-
spired algorithms.
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