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a b s t r a c t

Despite that fact that landmarks play a prominent role in human navigation, experimental
evidence on how landmarks are selected and defined by human navigators remains elusive.
Indeed, the concept of a ‘landmark’ is itself not entirely clear. In everyday language, the
term landmark refers to salient, distinguishable, and usually nameable objects, rendering
the problem of landmark recognition a special case of the general object recognition prob-
lem. In contrast, in the insect and robot literature, this notion of landmarks is often
replaced by the ‘‘local position information” [e.g., Trullier, O., Wiener, S., Berthoz, A., &
Meyer, J.-A. (1997). Biologically based artificial navigation systems: Review and prospects.
Progress in Neurobiology, 51, 483–544], referring to the entire set of sensor readings
obtained at one location. This set may then serve as a characteristic of the particular
location. Honey bees have been shown to base place recognition and homing on a snap-
shot-like memory of the place’s visual environment, not on the distances to recognized
objects [Cartwright, B., & Collett, T. (1983). Landmark learning in bees. Experiments and
models. Journal of Comparative PhysiologyA, 151, 521–543]. A number of theoretical models
of snapshot-based homing [e.g., Franz, M., Schölkopf, B., Mallot, H. A., Bülthoff, H. H. (1998).
Where did I take that snapshot? Scene-based homing by image matching. Biological Cyber-
netics, 79, 191–202; Vardy, A., & Möller, R. (2005). Biologically plausible visual homing
methods based on optical flow techniques. Connection Science, 17, 47–89] predict that
the accuracy of snapshot-based homing should depend on image contrast. For rodent hip-
pocampal place fields, models have been developed using additional image information
such as three-dimensional depth and allocentric orientations (e.g., room axes) and are thus
less sensitive to image contrast and noise [e.g. Barry, C., Lever, C., Hayman, R., Hartley, T.,
Burton, S., O’Keefe, J., et al. (2006). The boundary vector cell model of place cell firing
and spatial memory. Reviews in theNeurosciences, 17, 71–79]. Here, we study human visual
homing in a virtual environment void of objects and readily detected image features. The
environment was a circular room with a homogenous colour gradient covering the wall
and uniform floor and ceiling. Subjects were able to approach remembered places. Accu-
racy decreased with colour gradient modulation and room size, in qualitative agreement
with the snapshot model but not with other models of place recognition. We conclude that
human memory for places can make use of a snapshot algorithm.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

The recognition of places requires a memory of percep-
tions, visual or other, which characterize a particular loca-

tion. Such memorized features of the environment are
generally called cues or landmarks, even though the con-
cept of a landmark remains vague and is used with differ-
ent meanings within the interdisciplinary field of spatial
cognition. Lynch (1960), a geographer, described land-
marks as punctuate reference points which are usually
physical objects and contrasted them to other geographical
concepts such as nodes, edges, paths and districts. The
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psychologists Siegel and White (1975) defined landmarks
as unique configurations of perceptual events thus empha-
sizing the point that not only single objects but also config-
uration of objects could serve as a landmark. Clearly,
objects or percepts do not become landmarks by them-
selves but by being remembered and recognized by a nav-
igating agent. Siegel and White (1975) also suggested that
landmark knowledge should be conscious. This idea is ta-
ken up in naming experiments where verbal recall is used
to identify landmarks out of ‘‘non-landmark” objects. (e.g.
Allen, Kirasic, Siegel, & Herman, 1979; Appleyard, 1969;
Daniel, Tom, Manghi, & Denis, 2003). However, it is not
clear whether those objects which are readily named are
the same which are used as landmarks in a navigation task.
Quite to the contrary, geometry cues of rooms or intersec-
tions, which generally are not reported verbally, have been
shown to support localisation (Hermer & Spelke, 1994;
Janzen, Hermann, Katz, & Schweizer, 2000; Stankiewicz &
Kalia, 2007).

A general discussion of landmarks can be organized
along three dimensions, i.e., (i) depth of landmark process-
ing, (ii) landmark selection and (iii) navigational landmark
usage. In this paper, experiments will be presented
addressing the most basic level of landmark processing,
i.e., visual snapshots lacking identifiable image features.

1.1. Landmarks

1.1.1. Depth of landmark processing
One dimension along which landmarks may be distin-

guished is the amount of sensory processing involved,
ranging from raw sensor readings with no or minimal pro-
cessing, to feature maps, recognized objects, or symbolic
landmark names. All conceivable position cues characteriz-
ing a given place are contained in the complete set of sen-
sory data available at that place, i.e., in the local position
information (Trullier, Wiener, Berthoz, & Meyer, 1997).
For the visual modality, local position information is com-
posed of the raw array of colour and intensity values in the
retinal images obtainable from a given view point
(Gibson’s ‘‘ambient visual array”, Gibson, 1979). Individual
retinal images correspond to a view point plus a viewing
direction which is known as the ‘‘pose vector” in the robot-
ics literature (see, for example, Hübner & Mallot, 2007). By
means of image processing routines, more elaborated
information can be extracted from the images, including
depth maps, or visually recognized objects, in closer corre-
spondence to the common sense usage of the term
‘‘landmark”.

1.1.1.1. Snapshots. The use of barely processed image
information for guidance has been demonstrated in a
number of insect species, most notably digger wasps
(Tinbergen & Kruyt, 1938), honey bees (Cartwright & Coll-
ett, 1983) and wood ants (Durier, Graham, & Collett, 2003).
In one experiment, honey bees are trained to visit a feeder
in the vicinity of three landmark objects. After training, the
landmarks are moved such that two candidate search loca-
tions can be predicted, one where the snapshots (relative
bearings of landmarks) match the training arrangement
and one where the distances to the landmarks match. Bees

were found to preferably search at the location where the
snapshots match. Snapshot-based place recognition may
also explain spatial learning of rodents in the Morris water
maze as well as similar performances by humans in virtual
reality mazes (e.g., Jacobs, Thomas, Laurance, & Nadel,
1998; Kallai et al., 2007). Further evidence for the view-
based usage of landmarks in human subjects has been pre-
sented by Mallot and Gillner (2000).

Snapshots are associated to the location at which they
are taken, not to the location of objects they may happen
to depict. They thus conform to Siegel and White’s (1975)
view of landmarks as being memories of perceptions
rather than memories of actual real world objects. Con-
sider as an example the location called ‘‘Four Lakes View”
(in German: Vier-Seen-Blick) in the valley of the river
Rhein in Germany (Fig. 1). Looking from this place, the
view of the river is interrupted by several small mountain
ridges and therefore appears as four separate ‘‘lakes”.
Clearly, the landmark memory in this case refers to a view
attached to a named place, not an object in the environ-
ment. Similar cases may be found for view axes or the vi-
sual alignment of multiple objects.

1.1.1.2. Depth signature. Places may also be characterized
by an array of distance estimates taken from the current
position to the surrounding obstacles or walls. Here, the
application of an early vision operations, i.e., depth percep-
tion, results in slightly more abstract place descriptors that
still lack identifiable landmark objects but exhibit an in-
creased invariance e.g. to changes in illumination of the
scene (Stürzl & Mallot, 2002). Egocentric depth signatures
are the main cue in experiments on the so-called geometric
module, where rats have been shown to use information
on the rectangular layout of an experimental box for find-
ing a hidden food pellet (Cheng, 1986). In doing this, the
rats ignored odours as well as strong visual features such
as coloured box walls or identifiable visual landmarks,
and confused diagonally opposed corners (‘‘rotation
error”). Still, place finding was based on visual cues, i.e.,
the distances to the surrounding walls, presumably per-
ceived by the elevation in the visual field of the edge be-
tween wall and floor as seen from the rat’s point of view.
Cheng (1986) suggested that depth (or ‘geometry’) is pro-
cessed in a module separate from other visual information.
Recently, this modularity assumption was challenged by
Graham, Good, McGregor, and Pearce (2006) who showed
that both depth and colour information is jointly used in
rat navigation. In humans, initial claims that young chil-
dren rely exclusively on the geometric module (Hermer &
Spelke, 1994) have not been confirmed in experiments
using different absolute room sizes (Learmonth & Nadel,
2002). However, adults engaging in a secondary, cogni-
tively demanding task (Hermer-Vasquez & Spelke, 1999)
also confuse diagonally opposing corners in a rectangular
room, indicating their preference for geometric layout over
visual surface markings as information source. Irrespective
of the problem of modularity, the results suggest that
depth estimates obtained from an array of egocentric
directions can be used as landmark information.

Firing characteristics of neurons in the rodent hippo-
campal place cell system are also partially based on
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landmark information (for review, see McNaughton,
Battaglia, Jensen, Moser, & Moser, 2006). Barry et al.
(2006) and Barry and Burgess (2007) presented a model
for the combination of landmark and egomotion informa-
tion in place cell firing, based on an allocentric depth signa-
ture. Relative to an allocentric reference direction defined
for the current environment, distances to the surrounding
boundaries (e.g., walls of a room) are probed at a number
of directions. The distance of the wall in a given allocentric
direction is called a ‘‘boundary vector”. As the rat turns, the
probing directions are fixed with respect to the allocentric
reference direction, i.e., the surrounding environment. As
in the ‘‘geometric module”, distances may be sensed by
the retinal elevation of the image of the wall’s lower edge.
The model was shown to predict place cell firing fields
across changes of the environment. In terms of visual pro-
cessing, it requires local depth estimates plus recognition
of an allocentric axis.

Depth signatures make most sense in indoor environ-
ments. Janzen et al. (2000) showed that the angle at which
two hallways meet is included in the subjects’ representa-
tion of space. Stankiewicz and Kalia (2007) distinguished
structural landmarks such as hallway junctions from ob-
ject landmarks and showed that both types of landmarks
are used in navigational tasks. Interestingly, structural
landmarks are more readily encoded that object land-
marks. In the depth signature representation, hallway
crossings show up as local figure of plus shapes whereas
flat images on the walls will not be encoded. Depth signa-
tures also relate to the notion of view-sheds or isovists,
used in architecture to characterize indoor environments
(Wiener et al., 2007).

1.1.1.3. Object landmarks. In everyday language, the term
landmark refers to nameable, identified objects such as fa-
mous, conspicuous buildings, etc. One advantage of object
recognition in navigation might lay in the fact that it can
make use of small but characteristic regions of images such
as distant objects that would not substantially influence
snapshot matching (Stürzl & Zeil, 2007; Zeil, Hofmann, &
Chahl, 2003). There are, however, a number of important
differences between object recognition in general and

landmark recognition in particular. First, object recognition
should be view-invariant whereas landmarks are better
defined in a view-dependent way, including information
on the approach direction during landmark encoding. In
other cases view invariance might be helpful to guide a
navigation process. For example, it may be advantageous
to understand that a house currently approached from
the South, say, is the same house encountered previously
from the North. Still, North and South views must be dis-
tinguished and perceiving them will generally lead to dif-
ferent navigational decisions. The situation is thus
different from standard object recognition where recogni-
tion invariant of viewing direction is sought. Second, land-
mark recognition (as well as face recognition) is always an
individual level recognition. Recognizing a landmark as ‘‘a
tower” or ‘‘an arch”, rather than as ‘‘the Eiffel Tower” or
‘‘the Brandenburg Gate”, would be of little help in naviga-
tion although these superordinate level recognitions would
be very important in object recognition. Finally, landmarks
need not correspond to nameable objects at all. Rather,
cues like the curvature of a street (Heft, 1979), geographi-
cal slant (Restat, Steck, Mochnatzki, & Mallot, 2004) or the
angle at which two streets meet (Janzen et al., 2000; Stan-
kiewicz & Kalia, 2007) make perfect landmarks but will
hardly be reported verbally.

1.1.2. Landmark selection: Salience, reliability, and relevance
The success of landmark-based navigation depends crit-

ically on the sensible selection of landmarks from the envi-
ronment. In a study with 6–12-year-old children, Cornell,
Heth, and Broda (1989) showed that the criteria for land-
mark selection must be learned: Children have the ten-
dency to remember interesting objects irrespective of
their usefulness for navigation, including objects which
are far away or too small. If the attention of the children
was directed to objects which have also been chosen by
adults, the children’s navigation performance improved.

Three criteria can be identified for the selection of land-
marks: (i)salience, (ii) reliability or permanence, and (iii) rel-
evance. First, landmarks should be salient, i.e., they should
be clearly distinguishable from their surroundings. This
point was already stressed by Appleyard (1969), who

Fig. 1. The ‘‘Four Lakes View” close to the town of Boppard, Germany. When looking from this place, four separate sections of the Rhein river are seen,
limited by occluding mountain ranges. The named landmarks, i.e., the four lakes, describe the view visible from this place, not actual lakes in the landscape
(Image from: http://de.wikipedia.org/, ‘‘Vierseenblick”).
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showed that local contrast of an object with respect to its
immediate surroundings is an important criterion for
reporting it as a landmark. This contrast may occur in
any sensory dimension, e.g., size, colour or texture. Sal-
iency is, however, not sufficient for sensible landmark
selection, as was shown in the study by Cornell et al.
(1989).

The notion of landmark reliability or permanence refers
to the likelihood of finding the same landmark again when
returning to a place after some time. For example, a car
parked at an intersection does not make a good landmark
even though it may be salient and also navigationally rele-
vant. In the rat head-direction system, Zugaro et al. (2004)
found a preference for the more distant one of two land-
marks covering the same visual angle from the rat’s point
of view, where distance was judged by motion parallax.
The authors suggest that the ecological advantage of this
preference may lay in the fact that the more distant land-
mark covering the same visual angle is the larger one in
absolute measures and will therefore be less likely to move
away.

The relevance of a landmark or the place characterized
by this landmark can be defined as the landmark’s or
place’s importance in making navigational decisions. In
experiments by Allen et al. (1979), subjects learned a route
via a slide presentation and were then asked to name ob-
jects with potential landmark value. It turned out that ob-
jects at decision points are named more frequently than
objects along the route. This result has been confirmed
by Aginsky, Harris, Rensik, and Beusmans (1997) who
showed that environmental changes occurring close to
decision points are more readily detected than changes
along a route. Faster recall rates for objects at decision
points were also reported by Janzen (2006) who asked sub-
jects to learn a route through a maze containing objects at
decision points and non-decision points. This difference
could also be demonstrated on the basis of neural activa-
tion (Janzen & van Turennout, 2004). In a learning phase,
human subjects had to remember objects from one class
(toys) placed at decision points or at neutral locations
along the route. Contrasts of fMRI responses to toys vs.
non-toys correlated with activity in the right fusiform
gyrus whereas contrasts of objects at or off decision points
correlated with activity in the left and right parahippocam-
pal gyri. The study thus reveals a dissociation between ob-
ject and landmark processing, where ‘‘landmarks” are
defined by navigational relevance.

1.1.3. Usage of landmarks
In navigation, landmarks or local position information

are used for the recognition of, the approach to, and the
heading-on from places. The latter two of these usages cor-
respond to the distinction of guidance and direction sug-
gested by O’Keefe and Nadel (1978) and Trullier et al.
(1997). For the mechanism of guidance an organism moves
such that the currently visible image or some aspect of this
image is equal to previously stored image information of a
certain location or route. An important example of guid-
ance is visual homing where the approach to a place (the
‘‘home”) is guided by memorized visual information ac-
quired at that place (the snapshot). In direction (or recogni-

tion triggered response), recognition of a place (or view)
triggers the execution of a certain, memorized action, such
as ‘‘go left at the purple house”. Waller and Lippa (2007)
trained human subjects to navigate a route composed of
19 binary (left/right) decisions by either associating a
directional decision with a landmark (‘‘direction” in the
sense of O’Keefe & Nadel, 1978) or by choosing a way
marked by a beacon. They found that beacon (or guidance)
usage of landmarks allows better learning than associative
landmark usage. However, beacon-based knowledge was
found to be less enduring that associative knowledge. This
may indicate that landmarks involved in the two naviga-
tional mechanisms are represented differently. In a general
discussion of the notion of a landmark, this may indicate
that there are different types of landmark knowledge cor-
responding to different behavioural contexts. As a further
behavioural context, this may also hold for human verbal
direction giving, where nameable object landmarks clearly
seem to be preferred over non-nameable landmarks that
may be equally useful navigationally (e.g., the structural
landmarks of Stankiewicz & Kalia, 2007).

1.2. Snapshot memory in humans

While the existence of snapshot-based place memory is
well established in insect research, little is known about
the role of snapshot in human place finding and place rec-
ognition. The main reason for this is the problem of design-
ing environments providing raw snapshot information but
at the same time lacking identifiable landmark-objects. We
addressed this problem by using an immersive virtual
environment featuring a circular or square room with a
smooth colour gradient covering the wall. As the gradient
contained a full colour circle, no edges or discontinuities
were present. In the vertical direction, wall colour was kept
constant. Ceiling and floor were coloured in black and
white, respectively (Fig. 2). We measured subjects’ perfor-
mance in homing to places within this environment
depending on the contrast of the wall texture and the size
and geometric layout of the room.

Algorithms working in the absence of identifiable land-
mark features rely on (i) local image contrast or (ii) local
depth or distance to the objects. For each version of these
algorithms, different predictions about homing perfor-
mance can be made. In the original paper, Cartwright and
Collett (1983) suggested that the raw images are trans-
formed into edge images to gain some invariance with re-
spect to illumination, changing colour of foliation, etc. In
our circular environment, the only detectable edges are be-
tween the wall and the ceiling and between the wall and
floor. For the circular room, edge based snapshots therefore
predict a confusion of all places on a circle about the centre
of the room, passing through the remembered place. Inten-
sity-based mechanisms for snapshot matching using some
sort of image correlation have been suggested e.g. by Franz,
Schölkopf, Mallot, and Bülthoff (1998) and Vardy and
Möller (2005). These algorithms are able to exploit the
smooth texture information on the wall, but their perfor-
mance will depend on texture contrast. An additional
prediction made by all snapshot-based homing algorithms
is that homing accuracy should decrease with decreasing
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local image variation (Hübner & Mallot, 2007; Stürzl &
Mallot, 2006). Clearly, when moving in the centre of a large
featureless room, the snapshot will change less than for the
same movement performed at the threshold of the en-
trance door. Therefore, the places in the centre will be less
clearly characterized. Depth to the surrounding boundaries
may be used in various ways. An egocentric depth model
looking at the pattern of wall distances in egocentric
coordinates predicts that positions on equidistant rings
parallel to the wall should be confused. Note that this
model is equivalent to the edge-based snapshot model of
Cartwright and Collett (1983), at least for our circular
environments; it is also equivalent to the depth signature
approach of Stürzl and Mallot (2002). The relation of inten-
sity- and edge-based snapshot models has recently been
analysed in detail by Stürzl, Cheung, Chen, and Zeil
(2008). Depth information might also be combined with
image contrast, e.g. by assuming that a place is remem-
bered by the colour of the closest wall segment, together
with the distance from that wall segment (closest wall seg-
ment model). Finally, in the boundary vector cell model,
wall distance is measured with respect to some allocentric
room axis, such as the magenta-to-green axis in our virtual
environment. All depth-based models predict that decreas-
ing image contrast should not affect positional uncertainty
with respect to the distance from the wall (radial position),
since depth measurements are not affected by image con-
trast. Vice versa, positional uncertainty with respect to the
tangential position (parallel to closest wall section) should
depend on image contrast in the closest wall segment and
boundary vector models.

1.3. Predictions

In this section, we will lay out the predictions for place
recognition generated by the various models in a semi-
quantitative way. The following models will be considered:
(i) the image difference model (snapshot), (ii) the egocen-
tric depth model (wall distances in egocentric directions),
(iii) the closest wall segment model (colour and distance

of closest wall segment) and (iv) the boundary vector cell
model (allocentric room axis and wall distances in allocen-
tric directions; Barry & Burgess, 2007; Barry et al., 2006).
Since the only model in qualitative agreement with our
data turns out to be the raw snapshot model, we will pres-
ent more quantitative predictions from this model later in
the paper.

1.3.1. Image based models
All models discussed are image based in the sense that

they consist of (i) a place code or data vector which is close
to the raw image, and (ii) a comparison or similarity func-
tion specifying the similarity between the codes of two
places. Throughout this discussion, we assume that the
arena is a circle with radius 1. We denote places and their
coordinates by g = (g1,g2) (goal) and p = (p1,p2) (current po-
sition), and place codes by c(g) and c(p). The similarity
function will be given by

Sðg;pÞ :¼ exp �1
2

X
i

jjciðgÞ � ciðpÞjj2

riðgÞ2

( )
; ð1Þ

where ri(g) is the standard deviation of the i-th component
of the code vector representing g. The code functions will
be specified for each model below. Table 1 shows a semi-
quantitative account of four possible models by plotting
the similarity functions for two goal points marked in
red. The grey areas model the expected confusion areas,
i.e., for each place, the shading corresponds to the likeli-
hood of confusing this place with the respective goal. The
diameters of the confusion area measured in radial (centre
to goal) and tangential directions, averaged over all goal
position for a given colour modulation level, are sketched
schematically in the bottom row of Table 1.

In the image difference model, place-codes are simply the
images obtained from each location, c(w) = I(Tp(w)), where
Tp(w) ¼: u denotes the bearing obtained at the room centre
of a wall point appearing at direction w when viewed from
p. (Note that we consider here only the image intensities
on a horizontal ring of pixels. A two-dimensional extension
will be presented in the more quantitative simulations of

Fig. 2. Virtual environment. (a) Cylindrical room used in Experiment 1 (radius = 2.25 m, height = 4 m) with a smooth colour gradient covering the wall and
uniform floor and ceiling. (b) Goal positions. While resting at one of five goal positions, subjects were allowed to view the room and memorize the location.
Then they were teleported to another location and were asked to walk to the memorized place. The goal positions are fixed across all room sizes and shapes.
(c) Subject in the simulated room wearing an HMD and a gauge object for the head tracker, consisting of five reflective balls mounted to a helmet. The balls
appear luminous due to reflections from the photographic flashlight.

S. Gillner et al. / Cognition 109 (2008) 105–122 109
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Figs. 11 and 12 and, 16 below.) For a circular room with ra-
dius 1 and the centre at coordinates (0,0), simple trigo-
nometry yields u = w + sin�1(p2cosw � p1sinw). Each code
vector has the dimensionality of the number of image pix-
els. In the simulation, we used a numerical integration rou-
tine working on continuous image functions. The standard
variances ri are assumed to be constant over all pixels
(code dimensions). Simulations of S(g,p) are shown for
r = 0.07 (high contrast) and r = 0.12 (low contrast). Confu-
sion areas are circular in all cases, they increase in size for
lower colour modulation and they decrease in size towards
the margin of the environment. Radial and tangential
width both decrease in parallel for lower colour gradient
modulation.

In the wall distance model, places are coded solely by
their distance to the wall, cðgÞ ¼ 1� ðg2

1 þ g2
2Þ

0:5, i.e., by a
single number with standard deviation assumed to in-
crease with wall distance, r = 0.1 + 0.4c. This assumption
is equivalent to a logarithmic compression of perceived
depth and constant noise (see Barry et al., 2006). Note that
in circular environments, it does not matter whether dis-
tance is measured only in the direction to the closest wall
or in all directions. In any case, confusion areas are circular
rings concentric to the room margin. Clearly, confusion
areas do not depend on colour modulation in this model.

For the closest wall segment model, places are encoded
by two numbers, the distance to the wall c1ðgÞ ¼ 1�
ðg2

1 þ g2
2Þ

0:5 as before, and the wall colour obtained at the
closest wall segment. It is encoded by its angular position
in the room coordinate system, c2(p) = arg(p), where the
arg-function denotes the quadrant-specific inverse tan-
gent. Standard deviation of wall distance is modelled as

before, r1 = 0.1 + 0.4c1. For the standard deviation of the
angular position of the closest wall segment, we assume
a dependence on wall distance and on colour modulation.
In Table 1, we used r2 = r1/0.5 (low colour modulation)
and r2 = r1/0.8 (high colour modulation). In this model,
there is a substantial dependence of confusion areas on
colour modulation. In addition, the model predicts that
radial and tangential width vary with colour modulation
in different ways.

In the boundary vector model (Barry et al., 2006) places
are coded by probing the distance to the wall in a number
of fixed allocentric directions. An allocentric reference
direction must be determined by landmark cues, in our
case by the colour distribution on the wall. E.g., we may
pick the magenta-to-green axis of the room as a reference
direction. In this case, the place codes will also depend on
colour modulation, since the recognition of the reference
direction will be fuzzy if colour modulation is low. We
modelled this case by encoding places by wall distances
in eight regularly spaced allocentric directions of space.
Each distance estimate is affected by noise with distance-
dependent standard deviations as before. Since the obser-
ver cannot be sure about the reference direction, a fan of
seven directions centred about the actual allocentric refer-
ence direction was calculated spanning a width of ±5 de-
grees in the high colour modulation case and ±12 degrees
in the low colour modulation case. For each point p, the
similarity function over the eight-dimensional code vector
is calculated seven times, sampling the fan of possible ref-
erence directions. The overall place code difference is taken
to be the minimum of these seven place similarity calcula-
tions. Thus, if the reference vector is uncertain, places on a

Table 1
Semi-quantitative predictions of confusion areas for two places (red dots) and four models of place recognition, using different amounts of colour modulation

Colour modulation Image difference Wall distance Closest wall segment Boundary vector model

Low

High

Expected vart (—), varr (- -)

high low
colour mod.

high low
colour mod.

high low
colour mod.

high low
colour mod.

For explanation see text. Top two rows: predicted confusion areas for the various models at high and low image contrast (colour modulation). Bottom row:
expected width of confusion area in the radial (varr) and tangential directions (vart). (For calculation of radial and tangential width from data, see below,
results of experiment 2.)
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concentric circle in the arena may be confused since the
boundary vectors may be rotated so as to fit to the actual
wall distances also at neighbouring places. Results pre-
sented in Table 1 indicate that in the boundary vector
model, dependence on colour modulation is low. Eccentric-
ity of confusion areas depends strongly on wall distance.

In summary, we can make the following predictions:
P1 Both snapshot and depth-based models predict that

confusion areas should increase in large rooms. For the
depth-based models, this feature results from the variance
of the individual depth measurement which is assumed to
increase with absolute depth.

P2 Intensity-based snapshot models (Franz et al., 1998)
predict a positive correlation between homing accuracy
and contrast of the environment. Confusion areas are
roughly circular over all colour modulation levels and a
wide range of goal locations, i.e., radial and tangential var-
iance are affected by contrast in the same way.

P3 Egocentric wall distance models and edge-based
snapshot models (Cartwright & Collett, 1983) predict that
homing should be better in rectangular rooms. Depen-
dence on image contrast occurs only for the tangential
width of the confusion area, not for its radial width.

P4 The boundary vector cell model (Barry et al., 2006),
as all depth-based models, predicts that radial variance of
the confusion area should not depend on colour modula-
tion, at least if depth is judged from the upper and lower
margins of the wall which are always at high contrast.
The contrast dependence of tangential variance is only
marginal.

We will show later that the intensity-based snapshot
model is the only one consistent with our data. We will
therefore present more quantitative predictions from that
model below.

2. Methods

We performed navigation experiments in virtual reality.
A total of 18 healthy adults (9 females and 9 males) partic-
ipated in two experiments. This research follows the tenets
of the Declaration of Helsinki. All participants were naive
concerning the goal of our study; they were paid 8 €/h.

Subjects were asked to find certain locations within a
simulated, or virtual, indoor environment built on a circu-
lar or square ground plane (Fig. 2). Six subjects, three male
and three female, participated in the first experiment,
while 12 participated in the second experiment.

2.1. Hardware

Subjects were allowed to walk and move freely inside a
6 m � 8 m walking arena, while wearing a head mounted
display (HMD: Sony LCD Display: LDI – D100BE, Field of
view: 33� � 22.7�). We recorded the movement of the sub-
jects with an infrared-based 6-degrees-of-freedom move-
ment tracker (A.R.T. GmbH, Weilheim, Germany) with an
accuracy error of less then 0.1 mm. Subjects were wearing
a reflective target, i.e., an arrangement of five balls covered
with reflective foil (Fig. 2c). The simulated room was dis-
played in the HMD. Position and heading data from the

tracker were transmitted to the graphic computer by wire-
less Ethernet with a temporal resolution of 30 Hz. These
data were used to change the view point in the virtual real-
ity according to the movement of the subject in the real
world. The graphics computer was a laptop PC with NVidia
Gforce2Go graphics card carried in a backpack by the sub-
ject, the refresh rate for the computer graphic was 30 Hz.
The same computer was also used for data recording. Thus,
subjects could move freely without cable connection to a
base station.

2.2. Virtual environments

During the experiments, participants were asked to find
certain locations within a cylindrical or a square simulated
room. The experiments have been programmed by using
C++ and OpenPerformer as graphic library, using Suse
Linux 7.2 as operating system.

In Experiment 1, a circular room was used with a fixed
diameter of 4.5 m and a floor-to-ceiling height of 2.5 m.
Within the room, we use a coordinate system originating
at the room centre with the x-axis pointing in the u = 0
direction of the colour cycle. In this coordinate system, five
goal positions were defined as specified in Table 2. In
Experiment 2, additional circular rooms and square rooms
were used. The circular rooms had diameters of 4.5 m, 9 m,
18 m and 27 m, respectively. The square rooms had side-
lengths of 5 m, 9 m, 18 m, and 27 m. For mapping the col-
our gradient to the straight walls of the square room, the
cycle was cut into four equal sections which were scaled
and unfolded. The goal positions remained at the same
coordinates for all room shapes and sizes.

The experimenter prevented participants from leaving
the actual walking arena of 5.2 m by 6 m, corresponding
to the tracked area of the physical room. Inside the simu-
lated room, no objects or landmarks have been located.
As the sole landmark cue, the walls were covered with a
continuous colour gradient spanning the entire colour cy-
cle (Figs. 2 and 3). The gradient was generated using three
sinusoidal functions, one for the R, G, and B colour chan-
nels, respectively, with a phase shift of 120� between the
channels:

fið/Þ ¼
1þ c sinð2pð/þ i=3ÞÞ

2
ð2Þ

Table 2
Coordinates (x,y) of the goals as depicted in Fig. 2b with respect to the room
centre at (0,0)

Goal x [m] y [m] D [m] Chance level [m]

Small circular
room
(r = 2.25 m)

Small square
room
(5 m � 5 m)

Larger
rooms

1 0.51 0.49 1.5 1.61 2.00 2.22
2 �0.52 �0.68 1.4 1.66 2.04 2.26
3 �1.43 0.60 0.7 2.02 2.33 2.53
4 1.57 �0.45 0.6 2.07 2.37 2.57
5 1.20 1.25 0.5 2.14 2.43 2.61

By D, we denote the distance of each goal to the wall in the small cylin-
drical room. Also shown is the expected homing error, i.e., the chance
level as calculated from Eq. (4); for further information see text.
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where i takes the values 0, 1, and 2 for the red, green, and
blue channels. We chose sinusoidal functions for the com-
putation of the colour gradient since other functions re-
sulted in marked discontinuities in the gradient due to
color resolution limitations of the HMD, in particular at
lower contrasts.

The variable u in Eq. (1) ranges from 0 to 1 and denotes
the angle of the colour cycle where 1 corresponds to 360�.
Colour contrast was varied by adjusting the variable c con-
trolling the amplitude of the underlying sinusoidal func-
tions. In Experiment 1, we used the values c = {0.1,0.2,
0.3, 0.4, 0.7, 1.0}. In Experiment 2, c was fixed to 1.

It should be noted that c is not a formal measure of col-
our contrast as defined in colourimetry (see, for example,
D’Zmura & Singer, 1999), nor is the colour cycle equilumi-
nant. For the purpose of the experiment, it was important
to make sure that no localized features such as discontinu-
ities in the colour gradient could be perceived. Put differ-
ently, the discriminability of two colours separated by an
angle Du should be equal for all absolute locations on
the colour cycle. Therefore, discrimination thresholds were
measured in a control experiment for three subjects. In a

two-alternative forced choice task, subjects were pre-
sented with two colours from the sinusoidal gradient, sep-
arated by a distance Du. Using a standard staircase
technique, discrimination thresholds for Du were deter-
mined for a total of 15 equidistant points on the colour cir-
cle. Discrimination thresholds were shown to be roughly
equal over the entire gradient, ensuring that no colour dis-
continuities are present that could be used as localized
spatial cues (Fig. 4). The colour discrimination thresholds
at different angular positions along the colour gradient dif-
fer only slightly, as revealed by a one way ANOVA
(F = 1,957, df = 14, p = .06). A closer look reveals that only
the thresholds at positions at u = 0.266 and u = 0.533
shows a slightly significant difference (p < .1, multiple
comparison procedure after Milliken & Johnson, 1992)
which was considered negligible.

2.3. Procedure

Each experimental run consisted of 20 homing trials
and an initial training trial. The homing trials are carried
out in two phases.

Fig. 3. Wall texture of the simulated rooms. Homogeneous colour circles of varying color modulation have been generated from sinusoidal intensity
variations in the three colour channels (upper parts and Eq. (2)). The resulting texture is shown below. (a) Colour modulation (c) 10%, (b) colour modulation
100%.

Fig. 4. Result of the colour discrimination experiment. u denotes the position variable from Eq. (2). The thresholds Du vary between 0.01 and 0.04,
corresponding to angles of 3.6� to 14.4� (Hauser, 2005).
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2.3.1. Goal presentation phase
A subject was standing in the walking arena at the start

point or the end point reached in the preceding trial. The
view-point was then moved to one of the five goal loca-
tions (Fig. 2b), while the subject was resting at his or her
initial position (‘‘teleportation”). Subjects had been in-
structed to memorize this location as accurately as possi-
ble. At the goal position, heading changes, but not
translation movements, could be performed in closed-loop,
i.e., upon turning the head, the appropriate parts of the vi-
sual field came into view. Thus, subjects were able to ex-
plore the entire ‘‘visual array” of the goal location.
Memorization time was not restricted and ended when
the subject pressed a button. The view-point was then
moved back to the initial position.

2.3.2. Locomotion phase
After the goal presentation phase, virtual reality was

operated in closed loop. Subjects were instructed to walk
as accurately as possible to the target place encountered
during the goal presentation phase. Again, there was no
time limit for this. Subjects signalled the (perceived) arri-
val at the target position by pressing a mouse button. No
feedback was given as to the correctness of this decision
and the next trial was started from the chosen end point.

The initial trial was a training trial starting at a random
position and leading to goal positions 1 or 2. The general
procedure was as for the experimental trials except that
the subjects received feedback after finishing the locomo-
tion phase by presenting a button at the actual goal posi-
tion. The data from the initial trial were excluded from
further analysis.

From the five target locations, a sequence of 20 homing
trials was generated including all possible target transi-
tions in a closed trail (an Euler path of the completely con-
nected 5-graph). Thus, every goal position was visited four
times, once from each of the other goal position. The se-
quences used appear in Table 3; sequence 2 is a shifted
version of sequence 1.

2.4. Design

2.4.1. Experiment 1
Six subjects performed one experimental run for each of

six colour modulation conditions. The sequences in which
the colour modulation conditions were performed were
c1,c2,. . .,c6 for subject one, c2,c3,. . .c6, c1 for subject two
and so forth to c6,c1,. . .,c5 for subject six. Data were col-
lapsed over colour modulation condition, eliminating pos-
sible learning effects. Each subject performed an
experiment with one of two possible sequences for the
homing trials (cf. Table 3). The factor sequence did not lead
to a significant effect on homing accuracy (non-parametric

Friedman test, df = 1, v2 = 0.02, p = .9). The data from the
two sequence conditions will therefore be pooled in later
analysis.

2.4.2. Experiment 2
Twelve subjects participated in this experiment. They

were randomly divided into two groups of six, balanced
for gender, one group performing the square room condi-
tion and one performing the circular room condition. In
each of these two shape conditions, four size conditions
were tested, each with one experimental run per subject.
Altogether, each subject performed four experimental
runs, one in each size condition. As in the colour modula-
tion experiment, subjects started with different room sizes,
eliminating possible learning effects.

2.5. Data analysis

Complete head-trajectories of the subjects composed of
6 degree of freedom pose data (3D position and 3D orien-
tation) were recorded at a sampling rate of 1 Hz. From
these, head direction data could be obtained. From the
endpoints of the trajectories, we generated scatter-plots
with variance ellipses centred on the mean endpoint coor-
dinates. Mean homing error was calculated by calculating
the median of the Euclidian distances between each end-
point and the goal position. Since the distribution of these
errors is not normal, we used non-parametric tests to ana-
lyse the data.

2.5.1. Image difference model
The empirical results will be compared with predictions

from the root mean square model of image similarity as
used by Stürzl and Mallot (2006), Zeil et al. (2003), Stürzl
and Zeil (2007), and Stürzl et al. (2008). In this model, posi-
tions are encoded and stored as panoramic snapshots visi-
ble from each position. Deviations from the goal position
are detected and quantified by the associated image differ-
ences. As a measure of image difference, we use the square
root of the sum of the squared differences per pixel and
colour channel. Since these differences depend strongly
on the angular orientation of the snapshots, we orient all
images towards one standard direction given in world
coordinates (‘‘North”). This amounts to the assumption
that subjects are able to compensate for unintended image
rotations when judging the image difference. For the com-
putation of the theoretical results we took 360�-round-
shots of the experimental VR-environment (Fig. 5) with a
resolution of 800 � 300 pixels; the orientation of the cam-
era was equal in all these images. These correspond to the
places’ visual arrays rather than to the actual views visible
in the HMD, which had limited field of view. For every
environment we took images at the positions of each goal

Table 3
Trial sequences (sequence I and sequence II) of goal positions for one experimental run

Place sequence

I 2 4 1 5 3 1 2 5 4 3 2 3 4 5 2 1 3 5 1 4 2
II 1 2 5 4 3 2 3 4 5 2 1 3 5 1 4 2 4 1 5 3 1

The two versions were used in two ‘‘sequence conditions”. The gray column marked the initial training trial which was excluded for further analysis.
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position and at additional 1949 positions, equally distrib-
uted in the environment. The separation of the positions
p was 0.05 m in x- and in y-direction. The mean image dif-
ference d of each of theses images Ip to a certain goal image
Ig was computed as

dðg;pÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3� 800� 300

X3

c¼1

X800

i¼1

X300

j¼1

ðIgðc; i; jÞ � Ipðc; i; jÞÞ2
vuut ;

ð3Þ

where c denotes the colour channel and i, j number the pix-
els in x- and y-direction, respectively.

From Eq. (3) we obtain an image difference d for each
point in the environment p to each goal g. In the simula-
tions, we assume that subjects recognize the goal position
as soon as the image difference drops below a threshold do

which was set to 0.08. From all points satisfying d(g,p) < do,
we calculated a variance ellipse that can be compared with
the subjects’ performance. The threshold do was selected to
match the overall size of the empirical variance ellipses.

2.5.2. Chance level
We computed the chance level for the homing error by

assuming that no visual information whatsoever is used. If
the subjects were wandering around without any clue, we
expect them to indicate arrival at the goal g at random
positions p. In this situation, the expected distance error
e(g) for each goal position can be calculated as the integral

eðgÞ ¼ 1
jAj

Z Z
A
kg � pkdp; ð4Þ

where A denotes the walking arena, limited either by a vir-
tual wall (Experiment 1 and small room conditions of

Experiment 2) or the limits of the tracked area in the phys-
ical room (large room conditions of Experiment 2). |A| the
area of the walking arena, g and p are considered as two-
dimensional vectors and the double bars indicate the
Euclidian norm. The expected mean distance errors for
each goal location are shown in Table 2. The expected
homing error is larger for goal locations closer to the circu-
lar wall and varies in the range of 1.61–2.14 m.

Fig. 5. Sample images used for the image difference calculations. (a) 360�-snapshot of the 100% colour modulation environment (S-Size). (b) 360�-snapshot
of the XL-environment. The portions of the image showing ground and ceiling ground are much larger than in the smaller environment.

Fig. 6. Result of a time limited random walk, starting from goal No. 1.
Step length as well as step number and angle between two adjacent steps
were varied following a normal distribution. The resulting homing error is
comparable to those obtained by the chance level, calculated from Eq. (4).
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Chance levels and chance level dependence on room
size and goal position were also confirmed by simulating
a time limited random walk with normally distributed step
length and turning angle (Fig. 6). For the random walk sim-
ulation, the step length, step number and angle between
two adjacent steps very all varied according to a normal
distribution with mean and variance estimated from the
experimental data. The data are in overall agreement with
the simpler chance level calculation given in Eq. (4) and
Table 2.

3. Results

3.1. General

The experiments described in this paper measure the
homing accuracy of human subjects in a computer graph-
ics indoor environment without localized objects. In Exper-
iment 1, we varied the modulation (or contrast) of the
colour gradient covering the wall in the small room (dia-
meter 4.5 m). In Experiment 2, we varied room size while
colour modulation was kept constant at 100%. All accuracy
data will be compared with predicted homing accuracies
calculated from the squared image difference algorithm.
One experimental session lasted between 45 min and one
hour, one homing trial took on average 20.5 s in the first
experiment and 43.6 s in the second experiment.

Sample trajectories from Experiment 1 (colour modula-
tion) from one subject are shown in Fig. 7. Overall, subjects
are able to home to memorized locations on a more or less
straight path at least in the easier conditions (colour mod-
ulation of 100% or small room sizes). The viewing direction
in the easier conditions is less variable than in the more
difficult conditions (Fig. 8). The initial walking direction
from the direction to the goal was calculated as a vector
from the first to the fourth point of the trajectory (corre-
sponding to the initial 4 s of the trajectory) The angular
deviation of this vector from the goal vector pointing from

the initial position to the goal is plotted in Fig. 9. It is
around 45� in the easier experimental conditions and in-
creases with room size but not with colour modulation.

3.2. Experiment 1: Colour modulation

Six subjects (3 male, 3 female) participated in this exper-
iment. Colour modulation (variable c in Eq. (1)) was varied
in six levels from 10% up to 100%. In a within-design, each
subject performed 6 experimental runs, corresponding to
the 6 colour modulation levels.

Fig. 10a and b shows the trajectory endpoints of all sub-
jects in the 10% and 100% colour modulation conditions,
together with their means and error ellipses. Also included
in Fig. 10c and d are the variance ellipses predicted from
the image-based theory (Eq. (3)) for the same colour mod-
ulation conditions. Image based theory predicts that the
variance ellipses of homing locations should decrease for
higher colour modulation levels.

This prediction was confirmed by the empirical data for
the three goal locations closest to the wall. There was no
reduction in homing error for the two central goals (Nos.
1 and 2), which are depicted in red and yellow in Fig. 10.
The median of the homing error for all colour modulation
levels is shown in Fig. 11a and b (experimental data) and
Fig. 11c and d (prediction from image difference theory).
The homing error is well below chance level (1.61–
2.14 m, cf. Table 2) for all goals and all colour modulation
levels. Homing error increases for lower colour modulation
levels, the dependence of homing error on colour modula-
tion is significant (non parametric Friedman test,
v2 = 12.79, df = 5, p < .05). There is also an effect of goal
(v2 = 16.54, df = 4, p < .01). If the data from the two central
goals (1 and 2) are pooled and tested against the three
peripheral goals (3, 4, and 5), a significant effect of goal
eccentricity is found for the first two contrast levels
(c = 10%: df = 1, v2 = 4.08, p < .05; c = 20%: df = 1,
v2 = 10.08, p < .01). Smaller homing errors for the central

Fig. 7. Sample trajectories for one subject. (a–d) Four trials in the 100%-colour modulation environment and (e–h) in the 10%-colour modulation
environment. The goals are marked by a black circle, the endpoint of a trajectory is marked by a star (*).
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as compared to the peripheral goals are predicted both by
the theoretical chance level calculations (Table 2) and by
the image comparison algorithm (Fig. 11d). However,
chance level alone cannot explain the data since (i) the
overall performance is well above chance and (ii) the effect
of colour modulation is not predicted.

Fig. 12 shows the radial and tangential width of the
confusion area as a function of colour modulation. Radial
and tangential width was determined in the following
way: For each data set (one goal location, one colour mod-
ulation level, 6 subjects, 4 trials, i.e., scatter plot of 24
points), the mean position or centre of gravity was calcu-
lated by separately averaging the x and y coordinate val-
ues. The direction from the room centre to this centre of
gravity was called the radial axis, the orthogonal axis
was called tangential. Next, each data point was projected
to the radial and tangential axes, obtaining radial and tan-
gential coordinates for each point. The standard deviation

of the radial (tangential) values was then taken as a mea-
sure of the radial (tangential) width of the scatter field.
Finally, the width values were averaged over all five goal
locations from one colour modulation level. As colour
modulation increases, both widths decrease roughly in
parallel, as is revealed by a two way ANOVA (colour mod-
ulation � radial/tangential width) showing a significant
main effect for colour modulation (df = 5, v2 = 3.93,
p = .005), a marginally significant main effect for radial
vs. tangential measurements (df = 1, v2 = 4.62, p = .04),
and a marginally significant interaction (df = 5, v2 = 2.56,
p = .04). The theoretical prediction from the image differ-
ence model (Fig. 10c and d) show that confusion areas
should get smaller for higher colour modulation but at
the same time keep their spherical shape. This is indeed
what we see in Fig. 12, where radial and tangential diam-
eters of the confusion areas decrease in parallel. In con-
trast, both the closest wall segment model and the

Fig. 8. Sample trajectories and head directions for one subject in the second experiment (different room sizes). Green dot: starting point, blue dot: goal, red
dot: endpoint of trajectory. (a) Small circular room (S-environment). The colour circle corresponds to the position of the cylindrical wall, the grey rectangle
marks the size of the tracked walking arena. (b) Large circular room (XL-environment), the cylindrical wall is outside the tracked arena.

Fig. 9. Initial walking direction of homing trajectory. Plotted is the deviation of the initial walking direction from the bearing of the goal. (a) In the small
rooms (expt. 1), the deviation is around 40–45 deg and does not depend on colour modulation. (b) In experiment 2, heading deviation is smaller in smaller
rooms (Friedman test df = 3, F = 51.29, p < .0045) but does not depend on room shape.
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boundary vector model predict that colour modulation
should affect tangential, but not radial, width, yielding
ellipsoidal or crescent-shaped confusion areas (cf. Table 1).

3.3. Experiment 2: Room size

For the second experiment, rooms of different sizes and
shapes were used as described in Section 2 and in Fig. 13.
Again we calculated the variance ellipses for both, the the-
oretical prediction and the empirical data, the results are
depicted in Fig. 14. The theoretical model predicts a reduc-
tion of the homing accuracy in larger rooms. This result
was confirmed by the experimental data. As can be seen
in Fig. 15, the homing error is low for small rooms and in-
creases to a level still well below chance level (2.3–2.5 m in
the XL-environments, cf. Table 2) for the largest rooms. A
Friedman test reveals a significant influence of room size
(df = 3, v2 = 209.15, p << .01) but no significant difference
for the factor ‘‘shape” (circular vs. square room) (df = 1,
v2 = 0.17, p = .68). Therefore, we do not show data from
the square room experiment graphically. In addition, a sig-
nificant influence on the factor ‘‘goal” (df = 4, v2 = 20.45,
p << 0.01) was found.

4. Discussion

The experiments described in this paper use environ-
ments void of localized ‘‘cues” to show that visually guided

place finding (‘‘homing”) can be based solely on smooth
variations of colour and intensity in the visual snapshot.
Homing accuracy decreases with colour contrast and with
room size. Confusion areas around the goal locations are
roughly circular or do at least not show preferred orienta-
tions with respect to the radial and tangential axes induced
by the room geometry. Finally, a comparison of circular
and square rooms did not reveal significant performance
differences even though the corners of the square room
may provide salient place cues. This finding indicates that
localized cue information might even be neglected in some
situations. We will now discuss these results in the light of
the theoretical predictions summarized in Table 1.

4.1. Image-difference model

The results are consistent with the quantitative predic-
tions of the image difference model. Homing accuracy de-
creases at lower colour contrasts and in larger rooms, at
least for the more peripheral goal points. However, the ex-
act shape of the curve showing the dependence of accuracy
on contrast is only poorly matched by the prediction
(Fig. 11). The reduction in colour modulation influenced
homing accuracy only for modulation levels below 30%.
This is not predicted by our simple image comparison
model but is very plausible with respect to human percep-
tion. Detection and identification are known to be contrast
dependent for small, sub-threshold contrasts, while

Fig. 10. Endpoints of the trajectories in Experiment 1. The black symbols mark the goal locations. (a and b) Empirical data (scatter-plot, means and error
ellipses) (c and d) Simulation (only means and error ellipses are shown). Left column (a and c) colour modulation c = 10%. Right column: (b and d) colour
modulation c = 100%. As predicted by the model, the variance ellipses of the empirical data are smaller with higher colour modulations.
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increasing contrast beyond threshold will not make much
difference (e.g. Campbell & Maffei, 1974). Better quantita-
tive agreement of the behavioural data with the image dif-
ference model can probably be achieved by application of
some nonlinear compression function on the image inten-

sity data. However, the qualitative result, i.e., the mono-
tonic decrease, seems to be the more relevant finding.

In terms of the individual goal points, the decrease in
accuracy was found only for the peripheral locations, not
for the central ones. One possible interpretation of this
finding is that in the approach of the central points,
depth-dependent strategies play a stronger role.

It could be argued that any navigational system that has
to extract visual information might be sensitive to a reduc-
tion in contrast. It should be noted, however, that the col-
our modulation parameter c in out experiment does not
affect the visibility of the edges between the wall and the
floor and ceiling. Since we assume that these edges make
the most salient cues to depth, depth-based models should
not be affected by colour modulation.

A version of the image-difference model used in our
simulations is the edge-based model of Cartwright and
Collett (1983) where local edges are extracted prior to im-
age comparison. Clearly, this model will be less sensitive to
colour modulation change, but will be hardly able to ex-
tract any useful feature in our circular environments. In
the square-room conditions, performance was not im-
proved, even though the corners of the room do provide
useful edge information. Thus, the additional edge infor-
mation is either not used or does not lead to improvement.

The image difference model also predicts that the shape
of the confusion areas should be roughly circular in all

Fig. 11. Homing error as a function of colour modulation in Experiment 1. (a and b) Median of the experimental homing error in meter. (c and d) Simulation
using the image difference model. The left column (a and c) shows simulation and data pooled over all goal locations. The right column (b and c) shows
simulation and data separately by goal location. The goals are colour coded as shown in the inlay and in Fig. 10.

Fig. 12. Radial and tangential standard deviation of trajectory endpoints
in Experiment 1. The standard deviations correspond to the diameters of
the confusion area in tangential and radial directions. Both curves are
roughly parallel, indicating that the confusion areas are approximately
circular for all colour modulation values. This result should be compared
to theoretical predications in Fig. 10c and d and Table 1 (bottom row).
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Fig. 13. Birds eye view of the S, M and L circular environments in the second experiment. The grey rectangle marks the size of the (physical) walking arena.
The goal locations were equal in all conditions, while the diameter of the circular room has been varied (a) S-environment, 4.5 m, (b) M-environment, 9 m,
(c) L-environment, 18 m. There was also an XL-environment (27 m), which is not shown here. In addition, we used four square environments of roughly
equal size (see ‘‘Methods” Section).

Fig. 14. Endpoints of the trajectories in Experiment 2, circular room. The black or heavy coloured symbols mark the goal locations. (a and b) Experimental
data (scatter-plot, means and error ellipses) (c and d): simulation (only means and error ellipses are shown), Left column (c and d: the XL environment
(circular wall outside tracked area). Right column (b and d): S-environment. As predicted by the model, the variance ellipses of the empirical data are
smaller in smaller rooms.
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conditions. The quantitative prediction for the radial and
tangential diameters of the confusion areas (Fig. 12b) is
not matched, but the parallelity of the two diameter curves
is clearly visible in Fig. 12a. This parallelity is not predicted
by any of the other models (cf. Table 1).

4.2. Models based on wall-distances

If wall-distance was used as a cue to place localization,
the radial diameter of the confusion area will depend only
of the quality of this distance measurement and will there-
fore not be affected by colour modulation. Still, in the clos-
est-wall-segment and boundary-vector models, the size of
the confusion area will increase for low colour modulation
and larger rooms, but only in the tangential direction. As a
result, the shape of the confusion area at least for periphe-
ral locations should vary, from circular to elongated or
compressed with respect to the radial axis. This prediction
cannot be confirmed. Indeed, the shape of the confusion
areas was roughly circular in all conditions. The wall-dis-
tance models are thus consistent with the results pre-
sented in Fig. 11 (homing error decreases with colour
modulation) and Fig. 15 (homing error increases with
room size), but not with the overall circular shape of the
confusion areas (Fig. 10a, b and Fig. 12).

The decrease of homing accuracy with colour modula-
tion is apparent for the peripheral goals, but not for the
central ones (Fig. 11b). For the central goals, information
from image differences is less reliable, due to a reduced lo-
cal image variance (Hübner & Mallot, 2007; Stürzl & Mal-
lot, 2006). On the other hand, a simple wall distance
strategy works better for central goals, since the area of
the equidistant ring gets smaller for more central point.
One might therefore speculate that subjects use different
strategies for different goal eccentricities, image difference
close to the wall and ‘‘thigmotaxis” (Jacobs et al., 1998;
Kallai et al., 2007) in the centre.

How can subjects judge the distance to the walls? The
strongest cue is probably the elevation of the wall in the vi-
sual field together with the vertical visual angle subtended
by it. Another possibility is motion parallax obtained from
the high-contrast upper and lower margins of the wall. Ste-
reocues were absent in our setup since both eyes were pre-

sented with the same image. Motion parallax may provide
additional information if movements in the radial direction
are carried out. Note that the elevation cue to distance also
enters our intensity-based image comparison scheme,
since comparisons are done for full two-dimensional
images, not just for horizontal rings (see also Stürzl et al.,
2008 for edge information in image difference models).
Still, the algorithm does not predict the different con-
trast-dependencies for central and peripheral points. This
further supports the idea that a separate, distance based
strategy is adopted at the central points.

4.3. Initial approach direction

The initial approach directions chosen by the subjects
when first starting their walk to the goal show fairly small
deviations from the ideal direction. This is apparent from
the sample trajectories shown in Fig. 7 but also from the
quantitative plots of Fig. 9. When judging the numbers,
one should keep in mind that all deviations below 90� will
lead to a reduction of the distance to the goal. For the head
directions shown in Fig. 8, a similar trend is obvious at
least for the small room (Fig. 8a): here the subject is look-
ing predominantly towards the goal location. Taken to-
gether, this findings suggest that subjects are not only
able to recognize the goal location once they reach it, but
that they also are able to infer the appropriate approach
direction from a distance. From the discussion of homing
accuracy given above, it seems clear that this performance
must be based on the same image cues as place recognition
itself. Indeed, the visual homing algorithms from the insect
and robotics literature (Cartwright & Collett, 1983; Franz
et al., 1998; Vardy & Möller, 2005) solve both problems
simultaneously. In the ‘‘optic flow”-approach of Cartwright
and Collett (1983) and Vardy and Möller (2005), feature
points from the stored and current images are matched
and used to calculate an optic flow field whose focus of
expansion will point to the target location. In the ‘‘image
warping” approach of Franz et al. (1998), predictions of ex-
pected image change are produced for a number of direc-
tions and the predicted images are compared to the
target image. The travel is continued in the direction asso-
ciated with the biggest improvement in image similarity.

Fig. 15. Homing error in rooms of different size and shape. (a) Simulation for the circular room. (b) Empirical results. Reduction of the environment size
results in an improved homing accuracy.
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From the data presented in this paper, we cannot decide
which of the two algorithms might be used in human
navigation.

4.4. Landmarks and objects

Our results add further evidence to the distinction be-
tween objects and landmarks discussed already in the
introduction section. In a domain-specific view of cogni-
tion (for review, see Kinzler & Spelke, 2007), spatial cogni-
tion is usually treaded as one subpart of cognition which to
some extend is independent of visual and object cognition.
Biologically, this makes sense because navigational abili-
ties are useful for all freely moving animals while object
cognition seems most useful only for those who already
evolved hands (or beaks) for manipulation. The type of
landmark navigation demonstrated in this paper is not
dependent on a powerful system for object recognition. It
might therefore be part of an evolutionarily old system
operating already before the invention of object recogni-
tion proper.

5. Conclusion

In summary, our results indicate that humans are able
to approach to and recognize places based on raw image
information void of localized cues, landmarks, or objects.
This performance is similar to visual homing behaviour de-
scribed for various insects. As has been shown in a large
number of robotic studies, image-based homing is a pow-
erful strategy in real-world navigation. Our findings do
not rule out other forms of landmark usage such as locali-
zation with respect to local wall-distance or recognized ob-
jects, which may be used additionally in richer
environments.
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