

Dense and Occlusion-Robust Multi-View Stereo for Unstructured Videos

Jian Wei, Benjamin Resch, Hendrik P. A. Lensch

Computer Graphics Group
Tübingen University

CRV 2016

MVS for High-Frame-Rate Videos

- Our input data
 - Videos:
 - High image resolution
 - High frame rate
 - Unstructured camera trajectories

- Compared with photographs
 - Pros:
 - Easier capturing
 - More information
 - Cons:
 - Smaller baselines
 - Larger amount of data
 - Common problems:
 - Homogeneous surfaces
 - **Occlusions**

Our Main Idea

- Recovery of homogeneous areas
 - Flat surface assumption:

Our Main Idea

- Recovery of homogeneous areas
 - Solution:

All solved in this paper!

Related Work

Textured region reconstruction

- Patch matching [Bailer et al. 2012; Wei et al. 2014]
 - Surface orientation calculated
 - Blur edges

- Ray-based correlation [Kim et al. 2013]
 - Sharp edges

Related Work

- Homogeneous surface recovery
 - Plane segmentation

```
[Gee et al. 2007; Zhang et al. 2009; Kundu et al. 2014]
```

- Multi-resolution framework
 - [Kim et al. 2013; Wei et al. 2014; Kang and Medioni 2014]
- Domain transform filter or diffusion

```
[Stefanoski et al. 2014; Rzeszutek and Androutsos 2013, 2015]
```

- Visibility consistency
 - Careful cross-view depth propagation or filtering [Kim et al. 2013; Wei et al. 2014; Rzeszutek and Androutsos, 2015]
 - Bundle optimization [Zhang et al. 2009]
 - Tetrahedra carving [Hoppe *et al.* 2013]

Pipeline

Edge Depth Estimation

- Approach overview
 - Ray-wise depth sweeping [Kim et al. 2013]
 - Novelties:
 - Two-scale image selection
 - Dense scale → similar image content → high robustness
 - Sparse scale → large baselines → high depth resolution
 - Robust score aggregation
 - Better handling of large-baseline occlusions / out-of-image projections
 - Pre-processing:
 - Structure from Motion (SfM) [Resch et al. 2015]
 - Detect high-gradient pixels: Sobel

Pixel-Wise Color and Score Maps

Primary image Secondary image

- Depth score:

$$S = G(I_p(\mathbf{p}) - I_s(\mathbf{q}))$$

Dense scale

Two-Scale Image Selection

Sparse scale Sparse scale Color map Score map Color map Score map Color map Score map Color map Score map

Dense scale

Two-Scale Image Selection

Pipeline

Assumed flat surface

Classic diffusion

Perspective diffusion

Classic diffusion

Perspective diffusion

Pipeline

Depth Invalidation

Occlusion problem

Depth map

Front view

Top view

Depth Invalidation

- Our solution
 - Region growing

Sparse errors

Dense errors

Remove all large errors!

Depth Invalidation

Invalid area growing

Pipeline

Cross-View Propagation

Other valid depth maps

One valid depth map

Closest depth values

Propagated depth map

Evaluation

- Datasets
 - Arbitrary camera trajectories
 - Large homogeneous surfaces + occlusions
 - Resolution: 1920 x 1080

Bathroom

Pabellon

Boxes

Building

Synthetic (with ground truth)

Real-world (no ground truth)

Evaluation

- Compared algorithms
 - [Bailer *et al.* 2012]
 - [Wei et al. 2014] (Our previous work)
 - [Kim et al. 2013]
 - Our work without depth propagation (w/o DP)
- Output
 - Create 100 depth maps

Synthetic Scenes

Depth and relative error maps

Completeness (%): *c* ↑ Mean rel. error (x10⁻³): $e \downarrow$

Rel. error 0.001

Realworld Scenes

Wei et al.

Kim et al.

Ours

Building

Runtime

- Implementation platform
 - Kim et al.: NVIDIA GeForce GTX 680 GPU
 - Others: NVIDIA GeForce GTX Titan GPU

Runtime (sec.) for calculating one depth map

Method	Bathroom	Pabellon	Boxes	Building
Bailer et al.	68.12	63.28	71.29	75.92
Wei et al.	34.02	35.14	32.84	35.30
Kim <i>et al</i> . (256)	33.72	33.27	31.74	35.77
Kim <i>et al.</i> (1024)	121.55	117.12	119.76	125.39
Ours	10.21	12.53	11.67	11.07

Conclusion

- Efficient and dense recovery of textureless surfaces from videos
 - Two-scale image selection
 - Robustness to camera trajectories
 - Region-growing-based invalidation
 - Pixel-level computations
- Future work
 - Merging of redundant per-view results
 - Extension to large scale

Thank you.