Exercise 1 ($5+2+2$ points)
We consider the following λ-terms:
(i) $\lambda y . z$
(ii) $(\lambda x . x x y)(\lambda y . x y y)$
(iii) $(\lambda y . y y)(\lambda x . x x)$
(iv) $(\lambda y x . x y)((\lambda z . z) y)(\lambda x z . x)$
(v) $(\lambda x . x y y)(\lambda x . x x y)$
(vi) $(\lambda x . y) x$
(vii) $(\lambda x y z . x z)((\lambda z y \cdot y y) z)((z z)(z z))(\lambda x . x x)$
(viii) $(\lambda x . x(x y)) z$
(ix) $(\lambda x .(\lambda y \cdot y x) z) v$
(a) Determine by successive β-contractions, which terms have a β-normal form.
(b) Which terms are strongly normalisable?
(c) Which terms are β-equal?

Exercise 2 (8 points)
Give β-reduction series for the following λ-terms (which are formed by applications of the combinators $\mathbf{S}: \bumpeq \lambda x y z . x z(y z), \mathbf{K}: \bumpeq \lambda x y . x$ and $\boldsymbol{\Omega}: \bumpeq(\lambda x . x x)(\lambda x . x x))$:
(a) SSS
(b) $\mathbf{K K}(\mathbf{K K})$
(c) $\boldsymbol{K} \boldsymbol{\Omega}(\mathbf{K} \boldsymbol{\Omega})$
(d) $\boldsymbol{\Omega} \mathbf{K}(\mathbf{\Omega} \mathbf{K})$

Exercise 3 ($1+1+1$ points)
Which of the following statements holds for arbitrary λ-terms M and N ?
(a) If $M[N / x]$ is in β-normal form, then M is in β-normal form.
(b) If $M[N / x]$ has a β-normal form, then M has a β-normal form.
(c) If M has a β-normal form, then $M[N / x]$ has a β-normal form.

