Lambda Calculus and Combinatory Logic		SS 2016
Exercise sheet 2	due 29.4.	T. Piecha

Exercise 1 (5+2+2 points)We consider the following λ -terms:

- (i) $\lambda y.z$
- (ii) $(\lambda x.xxy)(\lambda y.xyy)$
- (iii) $(\lambda y.yy)(\lambda x.xx)$
- (iv) $(\lambda yx.xy)((\lambda z.z)y)(\lambda xz.x)$
- (v) $(\lambda x.xyy)(\lambda x.xxy)$
- (vi) $(\lambda x.y)x$
- (vii) $(\lambda x y z. x z)((\lambda z y. y y) z)((z z)(z z))(\lambda x. x x)$
- (viii) $(\lambda x.x(xy))z$
- (ix) $(\lambda x.(\lambda y.yx)z)v$
- (a) Determine by successive β -contractions, which terms have a β -normal form.
- (b) Which terms are strongly normalisable?
- (c) Which terms are β -equal?

Exercise 2 (8 points)

Give β -reduction series for the following λ -terms (which are formed by applications of the combinators $\mathbf{S} := \lambda x y z . x z (y z)$, $\mathbf{K} := \lambda x y . x$ and $\mathbf{\Omega} := (\lambda x . x x) (\lambda x . x x)$):

- (a) SSS
- (b) **KK**(**KK**)
- (c) $K\Omega(K\Omega)$
- (d) $\mathbf{\Omega}\mathbf{K}(\mathbf{\Omega}\mathbf{K})$

Exercise 3 (1 + 1 + 1 points)

Which of the following statements holds for arbitrary λ -terms M and N?

- (a) If M[N/x] is in β -normal form, then M is in β -normal form.
- (b) If M[N/x] has a β -normal form, then M has a β -normal form.
- (c) If *M* has a β -normal form, then M[N/x] has a β -normal form.