Exercise 1 (4 points)
Show that $(\lambda x y z \cdot x z y)(\lambda x y \cdot x)={ }_{\beta}(\lambda x y \cdot x)(\lambda x \cdot x)$.

Exercise 2 (3 +3 points)
Find two pairs of terms M_{1}, N_{1} and M_{2}, N_{2} such that, for $i=1,2, M_{i}={ }_{\beta} N_{i}$, but neither $M_{i} \triangleright_{\beta} N_{i}$ nor $N_{i} \triangleright_{\beta} M_{i}$.

Exercise 3 (4 points)
We extend $={ }_{\beta}$ to a relation $={ }_{\beta \phi}$ by allowing for steps of the form $P[\lambda x y \cdot x]={ }_{1 \phi} P[\lambda x y \cdot y]$.
Prove that for all λ-terms $M, N: M=\beta_{\beta} N$.
Hint: The proof can be given by simply showing this $\beta \phi$-equality.

Exercise 4 (6 points)
Find two terms P and Q such that neither P nor Q has a β-nf, but $P Q$ has a β-nf.

