Lambda Calculus and Combinatory Logic		SS 2016
Exercise sheet 3	due 6.5.	T. Piecha

Exercise 1 (4 points) Show that $(\lambda xyz.xzy)(\lambda xy.x) =_{\beta} (\lambda xy.x)(\lambda x.x).$

Exercise 2 (3 + 3 points) Find two pairs of terms M_1 , N_1 and M_2 , N_2 such that, for $i = 1, 2, M_i =_{\beta} N_i$, but neither $M_i \triangleright_{\beta} N_i$ nor $N_i \triangleright_{\beta} M_i$.

Exercise 3 (4 points) We extend $=_{\beta}$ to a relation $=_{\beta\phi}$ by allowing for steps of the form $P[\lambda xy.x] =_{1\phi} P[\lambda xy.y]$. Prove that for all λ -terms $M, N: M =_{\beta\phi} N$.

Hint: The proof can be given by simply showing this $\beta\phi$ -equality.

Exercise 4 (6 points)

Find two terms P and Q such that neither P nor Q has a β -nf, but PQ has a β -nf.