Prof. Schroeder-Heister René Gazzari Wintersemester 2017/18 Universität Tübingen

Aufgabe 29: Geben Sie für jede natürliche Zahl $n \in \mathbb{N}$ eine aussagenlogische Formelmenge $\Gamma_n \subseteq \text{PROP}$ an, so dass die folgenden Bedingungen erfüllt werden:

- 1. $|\Gamma_n| = n + 1$. (Die Menge Γ_n enthält also n + 1 Elemente.)
- 2. Γ_n ist inkonsistent. (Es gilt also $\Gamma_n \vdash \bot$.)
- 3. Jede echte Teilmenge $\Delta \subseteq \Gamma_n$ ist konsistent.

Beweisen Sie, dass die von Ihnen angegebenen Mengen die geforderten Eigenschaften haben; Sie dürfen voraussetzen, dass die leere Menge \varnothing konsistent ist.

Aufgabe 30: Es soll in einer formalen Sprache \mathcal{L} über Strukturen gesprochen werden, in denen zwei 2-stellige Funktionen + und ×, eine 3-stellige Funktion min und zwei 2-stellige Relationen \leq und | (teilt) sowie 3 Konstanten ausgezeichnet sind.

Definieren Sie geeignete Indexmengen I, K und L und geben Sie eine geeignete Signatur an; geben sie dann alle nichtlogischen Zeichen der Sprache \mathcal{L} (wie definiert) an.

Definieren Sie zudem zwei Strukturen zu dieser Sprache \mathcal{L} über dem Grundraum \mathbb{N} . Dabei soll in der ersten Struktur die Interpretation der nichtlogischen Zeichen kanonisch sein; in der zweiten alle Interpretationen verschieden von der Interpretation in der ersten.

Aufgabe 31: Sei $\mathcal{L} = \mathcal{L}_{G'}$ die erweiterte Sprache der Gruppentheorie und $\mathfrak{A} = \langle \mathbb{N}, +, -, \leq, 1 \rangle$ eine \mathcal{L} -Struktur. Dabei sei die einstellige Funktion – wie folgt definiert:

$$-: \mathbb{N} \to \mathbb{N}: n \mapsto \left\{ \begin{array}{ll} n+1 & \text{falls } n \text{ gerade} \\ n-1 & \text{sonst} \end{array} \right.$$

Die übrigen ausgezeichneten Objekte der Struktur seien wie üblich gegeben. Sei zudem eine Belegung $v: VAR \to \mathbb{N}: x_k \mapsto k^2$ der Variablen gegeben. Werten Sie die folgenden Terme und Formeln schrittweise in \mathfrak{A} unter der Belegung v aus:

(a)
$$(0+\overline{0}) + (x_2 + \overline{x}_3)$$
 (b) $\overline{(x_3+0)} + \overline{x}_2$
(c) $(x_3 \le x_4 \to x_2 \le x_3)$ (d) $\forall x \exists y (0+\overline{y} \le x)$

Aufgabe 32: Sei $\mathfrak L$ beliebige formale Sprache, $\mathfrak A$ beliebige $\mathfrak L$ -Struktur und $\phi, \psi \in \mathfrak L$ beliebige Formeln. Beweisen Sie die folgenden Aussagen.

- 1. Wenn $\mathfrak{A} \models \phi$ oder $\mathfrak{A} \models \psi$, dann auch $\mathfrak{A} \models \phi \lor \psi$.
- 2. Die Umkehrung gilt im Allgemeinen nicht. (Beweisen Sie dies durch Angabe und Überprüfung eines möglichst einfachen Gegenbeispiels.)
- 3. Falls ϕ und ψ Aussagen sind, dann gilt die Umkehrung.