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A Model-Theoretic Reconstruction

of Frege's Permutation Argument

PETER SCHROEDER-HEISTER*

/ Introduction In Section 10 of [3] (p. 171) Frege claims:

. . . without contradicting our setting 'eΦ(e) = eΫ(e)' equal to *-Θ-Φ(α) =
Ψ(α)' it is always possible to stipulate that an arbitrary course-of-values is
to be the True and another the False.

In what follows this assertion will be called the identifiability thesis since it states
that two arbitrary but different courses-of-values can be identified with the truth-
values. Frege considers the identifiability thesis a consequence of his previous
argumentation ([3], p. 17, lines 23-36)2 which, following Dummett ([1], p. 408),
will be called the permutation argument, because the concept of a one-one map-
ping from the considered domain of objects onto itself, i.e. a permutation, is
essential for it. More precisely, Frege gives a specific permutation which inter-
changes the True and the False with two objects denoted by names of the form
ζηΦ(η)\ This paper attempts to show that the permutation argument is correct,
but that it is no argument for the identifiability thesis, and that the same holds
for related arguments using arbitrary transformations of the domain of objects
into itself instead of permutations. This contradicts every interpretation of Sec-
tion 10 of the "Basic Laws" with which I am familiar, even the most careful and
detailed presentation by Thiel [6].3 The validity of the identifiability thesis itself
and the conclusions which can be drawn from it4 are of course quite indepen-
dent of this result. However, at the end a counterexample will be given which
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shows that the identifiability thesis does not hold in the generality claimed by
Frege.

Frege's argument will be reconstructed within a model-theoretic framework.
However, due to the particular features of Frege's system, the following modifi-
cations of the usual model-theoretic procedure are necessary:

(1) Truth-values are objects in the sense that they belong to the range
of quantifiers and that they can be arguments of the identity function like
any other object. Syntactically this means that first-level function names can
be combined even with names of truth-values as argument signs; e.g., the sen-
tence ' -^(α = α)' may occur to the right or left of the identity sign ' = ' . In
particular, ' = ' can function as a sentence connective.5

(2) Closed abstracts (i.e., expressions of the form 'eΦ(e)' without free vari-
ables) are the smallest semantic units; an interpretation will be an assignment
of objects to closed abstracts. Thus closed abstracts function as the only non-
logical constants of the language being considered here.6 This view is chosen
because nothing is assumed about courses-of-values: If in the definition of the
value of an expression under an interpretation one wanted to take into account
the internal structure of abstracts, one would already have to presuppose that
closed abstracts are used to denote sets and in particular that the abstraction
principle (Frege's Basic Law V) holds. But this is just what is not intended. We
want to investigate which interpretations are compatible with the abstraction
principle and which are not.

2 The language When constructing a model-theoretic semantics, we must
first specify the language to be interpreted semantically. We use the means of
expression provided by Frege in the first nine sections of the "Basic Laws". That
is, we use a language with the horizontal ('—'), the negation-sign ('-r') and the
identity-sign ('=') as function symbols, the first-order universal quantifier ('-v '̂),
and the abstraction-sign for courses-of-values ('' '). In doing so, we restrict our-
selves to the first-order subsystem of the system developed in the "Basic Laws"
containing course-of-values abstraction but not second-order quantification. This
is justified because in Section 10 Frege argues for his identifiability thesis solely
on the basis of the system he has thus far developed.7

We follow Frege's original notation fairly closely, but in some places we
use a terminology that is more modern. Furthermore we distinguish between
metalinguistic (i.e., syntactical) variables and signs of the object-language, and
use, following Quine, quasi-quotation marks < Γ ' and < π ' to refer to the result
of a concatenation of signs which are themselves partly referred to by syntac-
tical variables.

Symbols of the language under consideration are:

(1) Parameters 6a\ tb\ 'c' (with and without indices)
(Syntactical variables: V, with and without indices)

(2) Bound variables of two sorts:
Quantifier-variables V, 6h\ 'c' (with and without indices)
(Syntactical variables: V, with and without indices)
Abstractor-variables V , V (with and without indices)
(Syntactical variables: V, 'μ')
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(3) Function expressions i—\ V , ' = '
(4) Universal quantifier (briefly: quantifier) ' v '
(5) Course-of-values abstractor (briefly: abstractor) * ' '

(6) Round brackets '(', ')'•

An expression is the result of an arbitrary concatenation of symbols. Syn-
tactical variables for expressions are (X\ Ύ\ 'Z\ A three-place substitution oper-
ation [•:] is defined as follows: For expressions X9 7, Z, where Y is a symbol,
\Xz\ is the result of replacing all occurrences of Yin X by Z. (If Y does not
occur in X, [X%] is identical with X.)

Terms are defined as follows:

(1) Every parameter is a term.
(2) If X and Y are terms, then so are Γ—X~]

9

 Γ-r-X~1 and Γ(X= Y)n.
(3) If X is a term which contains no occurrence of a parameter u within

a part Γ^-Y~1 of * , then -5-[^w] is a term.
(4) If X is a term which contains no occurrence of u within a part ΓκY~]

of * , then Γ jί[Λ7]π is a term.

Syntactical variables for terms are Ά\ «B\ ' C , '£>', '£", with and without indi-
ces. When considering expressions [A"] or [A^] we shall always assume that
A contains no occurrence of u within a subexpression of the form ΓS-X~]

or rκX']9 respectively. Outer brackets may be omitted. Note that our way of
bracketing is somewhat different from Frege's.

A formula is a term of the form r—A~1, Γ-τ-v4"\ ΓA = £ π or Γ-^[AU

XΓ.
An abstract is a term of the form rκ[Au

κ ]π. Terms are called closed if they do
not contain any parameter; otherwise they are called open. Closed formulas are
called sentences. The set of all closed abstracts will be denoted by *6\

The universal closure Ac of a term A is defined to be Γ • & [ . . . -ί?- [-£j-
[^4"J]"2] . . . £ « ] , where uu . . . ,un are the parameters occurring in A and
xu . . . ,xn are quantifier-variables that do not occur in A Here a certain stan-
dard order of the parameters and of the quantifier-variables is assumed in order
to guarantee uniqueness of Ac.

'ΞΞ' will be used as the metalinguistic identity-sign. 'T ' and 4JL' are (metalin-
guistic) abbrevations of < - ^ ( α = α)' and '-i—>S-(α = α)' (i.e. Γ-τ-τ"1), respec-
tively.

The rank of a term is defined as follows:

(1) Parameters, abstracts, T and ± are of rank 0.
(2) If A and B are of rank n and m, respectively, then Γ—A~] is of rank

n + 1, r-rA~x is of rank n + 1 if different from _L, rA = Bn is of
rank max(n,m) + 1, and Γ-&[A%]~] is of rank n + 1 if different
from T.

This definition of "rank" underlies the inductive definition of the following
semantics. Abstracts are of rank 0, because, if closed, they are counted as
smallest semantic units. T and ± are given rank 0 in order to have, in every
case, standard names of rank 0 at our disposal not only for courses-of-values,
but also for truth-values.
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3 Semantics A structure 21 is a triple (U, t, f), where Uis a set, called the
domain of 2ί (also denoted by '|2l|'), and where t and/are two distinct elements
of U9 called the truth-values of 2ί (also denoted by ' V and %\ respectively).
An interpretation β in 21 is a mapping from the set of all closed abstracts to U,
such that 3(6) U {t,f} = U. (I.e., at most / and/are not values of closed
abstracts under β.) The elements of 3(6) are called the courses-of-values un-
der β.

Let an interpretation β in 21 be given. A mapping 5ί* from the set of all
closed terms onto U, called the extension of β9 is inductively defined as follows:

(1) β*(A) = β(A) for closed abstracts A

(2) S ( τ ) S f , 0 U)EE/

v ' v I / otherwise

(4M*Γ-wΓ)J{ *fWW
[ / otherwise

v ' v I / otherwise

{ ί if for each 1? which is either T, j , or a closed
abstract: £J*( [̂ 4 ]̂) = t

f otherwise.

A term A is valid under β in 21 (3 is a mo*/ of ,4, β N ,4), if 3*(v4c) = t
(A need not be a formula!). 5f is called a model of the abstraction principle, if
for all w, /c, μ, x, ^ , B: β N Γ(ic[^ϊ] = /ί[ftf]) = ^ ( [ ^ 1 = [^ w ]) π .

One could object to this semantics that the universal quantifier is inter-
preted substitutionally, i.e. with reference to the instances of the quantified
formula, and not (as in Frege's introduction of the quantifiers in Section 8
of the "Basic Laws") referentially, i.e. with reference to the objects of the
domain. This is not a problem because we assume that, for all elements of the
domain, names are at our disposal in the formal language: It holds that 0*(C U
{T, ±}) = |2ί|. The assumption that each object can be denoted is certainly not
un-Fregean. A referential interpretation of quantification is not possible within
our framework, because closed abstracts are smallest semantic units and open
abstracts cannot be interpreted satisfactorily, not even with respect to a valua-
tion of parameters. Terms cannot be semantically decomposed down to the level
of parameters.

4 Frege's metalinguistic usage of abstracts—abstracts of the form '*. . . . 'and
'7. . . . ' (In this section we use Frege's original notation 'eΦ(e)' for
abstracts.) Frege did not yet have at his disposal the model-theoretic way of
speaking about signs and their denotations, in particular not the strict distinc-
tion between object-language and metalanguage. In model-theoretic argumen-
tations one talks about signs as well as about objects in the metalanguage
without using any expression of the object-language. We can, for example, say
that the object ω! is assigned to 6iΦ(eY by the interpretation β\9 and that ω2 is
assigned to the same sign 'eΦίe)' by the interpretation ύ2- I n doing so we use
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'ωi' and 'ω2' as metalinguistic names for objects which have nothing to do with
the signs of the object-language. Frege, however, also uses, when speaking about
courses-of-values, signs of the object-language like 'e'Φ(e)' as names. Accord-
ing to Frege, 'eΦ(e)' is always a name for the object e*Φ(e), which means that
for Frege closed abstracts are always names with courses-of-values as fixed
denotations.

Thus Frege is, strictly speaking, not in a position to discuss the non-
uniqueness of the denotations of abstracts as he does in Section 10 of the "Basic
Laws". If 6eΦ(eY denotes the course-of-values €*Φ(e), then one cannot even
formulate that another denotation of 'eΦ(e)' is consistent with the abstraction
principle. In not only mentioning but also using abstracts throughout his inves-
tigations, Frege presupposes their denotative relationship to fixed objects. (This
is not the case with sentences and truth-values: Here Frege never uses signs of
the object-language (such as ' ^ - ( α = α)' or '-r-̂ 2/-(α = α)') in order to refer to
the truth-values, but always the metalinguistic names 'the True' and 'the False'!)

In order to treat this problem nevertheless, Frege uses another sort of term,
which he writes as 'eΦ(e)'.8 He expresses the view that the abstraction princi-
ple determines no unique model but admits different interpretations ύ\ and β2

where, e.g., tfi('eΦ(e)') = ωx and £f2('eΦ(€)') s ω2 about as follows: In addition
to terms 'e'Φ(e)' we may introduce terms 'rjΦiηY by the abstraction principle
"without the identity of eΦ(e) and rjφ(η) being derivable from this" ([3], p.
17).9 That means, instead of directly speaking metalinguistically about differ-
ent objects, he introduces new signs into the object-language and uses them
within his metalinguistic reflections as names for objects.

Since in our model-theoretic investigations a sign of the object-language can
never be used, there is no reason for us to introduce a new kind of abstract.
Rather, from this point of view, two languages, whose abstracts are formed with
' ' ' and '~', respectively, appear to be identifiable: The form of the symbols of
the object-language is quite unimportant.

5 The permutation argument According to the previous section we need not
take into account Frege's distinction between abstracts of different forms. So
we propose the following reconstruction of his permutation argument: Let an
interpretation βι in the structure 21 ΞΞ (U, t,f) be given. Let ω1 and ω2 be dif-
ferent courses-of-values under βu i.e., ωi Φ ω2 and α^ s- β{(A), ω2 s βγ(B) for
closed abstracts A, B (thus it holds: ΰ\ |= r-τ-(A = B)n). LetpF be the permu-
tation of U which is defined as follows:

coi if ω = t
ω2 if ω = /

P F ( W ) Ξ ' t if ω = ω\
f if ω Ξ= ω2

w ω otherwise.

That is, pF interchanges t and/with ωi and ω2, respectively, and leaves other
arguments unchanged. Let 93 be the structure <t/, ωu ω2) and β2 the interpre-
tation in S3 which is defined as follows: β2(C) s pF(βι(C)) for all closed
abstracts C. Then for each term D: βx N D iff β2 N Zλ In particular, β2 is a
model of the abstraction principle iff $ι is a model of the abstraction principle.
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This can be proved for arbitrary permutations; so the permutation argu-
ment is a special case of the following theorem:

Theorem 1 Let ϋt be an interpretation in SI = (U, t,f). Let p be a permu-
tation of U. Let 33 be < U, p(t), p{f)). Let β2 be the interpretation p°3χ {com-
position of the mappings βi and p) in 33. Then for each term D, βι \= D iff

Proof: We show

(*) p{$ΐ{C)) s £}2*(C) for any closed term C.

Then the assertion can be inferred as follows:

3i h £> iff 3,*(£>c) = t (definition of ύx \= D)

ifΐ p(β*(Dc))=p(t) (p one-one)

iff £J2*(£>C) ^ ( 0 ((*))

iff β2 h D (definition of β2 N D).

We prove (*) by induction on the rank of C.

(1) If C is a closed abstract, we have

p(3f(C)) =p(βdC)) = 32(C) = 52*(C).
( 2 ) ^ , * ( T ) ) Ξ / 7 ( 0 = ί)2*(τ).

p(ϋι*(±))=p(f)mϋ2*(±).
(3) />(£>,*( Γ - C π ) ) mp{t) iff S f C - C " 1 ) = /

iff £J,*(C) s ί
iffp(fl!*(C))-p(O
iff d2*(C) =p(t) (induction hyp.)
iff ί a ' C - C " 1 ) •/»(/).

;,($,•( Γ _ c π ) ) = p(f) iff 32*( Γ - C π ) = p(f) analogously.
(4) p(βι

m( Γ^Cn)) = p(t) iff U2*( Γ^C~[) m p{t) analogously.
p(3f( Γ^Cn)) m p(f) iff ϋ2*( Γ ^ C Π ) - p(f) analogously.

(5) ^(31*(ΓC1 = C,"1)) mp(t) iff 0!*(ΓC! = C2

Π) - /
iff 3Γ(C,)-3Γ(C 2)
iffpίS^ίCOί-pίίΓίCa))
iff£)2*(C,) = 92*(C2) (ind. hyp.)

iff £J2*(ΓC, = C 2

Π)-/?(/).
^(ί,*( Γ C, = C2

n)) = p(/) iff 32*( Γ C, = C2

Π) = p(/) analo-
gously.

(6)/>(Si ( I \£.[C?Γ))«p(f) i f f3,*( r -^[C x "] n ) S /
iff 3j*( [Ci]) s r for each £• which is

T, x or a closed abstract
ifΐp(ύ*([C%])) =p(t) for such £"s
iff 32*([C£]) •/>(/) for such £"s

(ind. hyp.)

iff 3 2 * ( Γ - £ [ C « Γ ) S P i t ) .
p{dCir^[C»XΓ)) - P ( / ) iff 3 2 *( Γ -£[C?Γ) - p ( / ) analo-

gously.10

If p is the Fregean permutation pF and 5̂  is a model of the abstraction
principle, then β2 is a model of the abstraction principle for which β2(Λ) = t
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and β2(B) =f holds. This result may suggest that we have obtained a model of
the abstraction principle in which A denotes the True and B denotes the False,
just as Frege claims in his identiflability thesis. This, however, is wrong: Which
objects are truth-values depends on the chosen structure. Now / a n d / a r e the
truth-values of 21 whereas pF(t) and pF(f) are the truth-values of 93. This
means that, under β2, A and B denote the truth-values of 21 but not the truth-
values of S3 (provided pF({t,f}) Φ {*,/})—and, similarly, under ϋl9 A and B
denote the truth-values of S3 but not the truth-values of 21. Therefore, if A and
B do not already denote the truth-values of 21 under β{ they cannot denote the
truth-values of 93 under £J2. If the truth-values of 21 are not already courses-of-
values under βu the truth-values of 93 are not courses-of-values under β2.

When Frege writes, "that an arbitrary course-of-values is to be the True and
another the False", he obviously means (in our terminology) that this must be
the case in one and the same model. This can easily be seen if one reformulates,
following Thiel, Frege's identifiability thesis in such a way that Frege's aim is
"the explicit stipulation that two certain expressions having the given form of
abstracts can serve for denoting the True and the False, respectively" ([6], p. 288;
my translation). According to this interpretation, for which Thiel gives strong
reasons, the stipulation should have the effect that Γ T = A~* and Γ± = Bn

become valid. That is, the denotations of A and B under β2 must be determined
in such a way that 32*(T) = $i{A) and 32(±) = 3i(B), which means that A
and B must under β2 denote the truth-values of 93 (which are, according to our
semantics, assigned to T and _L).

So the transition from the interpretation 3\ in (U, t,f) to the interpreta-
tion ύ2 in <£/, pF(t), pF(f)) by means of pF does not contribute anything to
the goal of determining certain abstracts to be names of the truth-values, because
the truth-values are transformed by pF as well. This argument is obviously inde-
pendent of the specific choice of pF and holds for all permutations p of |2ί|.

One could object to our formulation of Theorem 1 that Frege's permuta-
tion argument only concerns the domain U of 21 but not the structure 21 itself,
i.e., the interpretation of sentences by truth-values. This means that although
β2 is defined as p ° β\ for a permutation /?, β2 should remain an interpretation
in the same structure 21 (i.e., in (U, t,/> instead of (U, p(t),p(f))). In other
words, even under £f2*, sentences should be interpreted by t and/, as under β*,
and not by p(t) and p(f).

In fact, the stated objections would become superfluous if Theorem 1, or
at least its special case for pF as /?, held with β2 considered an interpretation in
21. Then β2 (= Γ T = An and ύ2 N Γ ± = £ π would hold since 52*(T) = t =
p(βdA)) Ξ β2(A) s β2\A) and £ί2*(±) Ξ / m p{βλ(B)) s S2(B) = 32*(B).
So A and B would really be names of the True and the False under ύ2 because
t and/are also the truth-values of $2.

However, for this alternative one would have to abandon the restriction
U = β2(Q) U {t,f}. For if t and/are not already courses-of-values under βx

(i.e., if {/,/} $έ 3i(6)), then/?(O and/?(/) are not courses-of-values under β2

(i.e., {p(t), p(f)} £ #2(6)). Another possibility would be to consider β2 an
interpretation in <(/', t,f) for V c £/. But not even this method would be via-
ble. Not only no permutation but even no mapping exists which has the desired
property, as the following theorem demonstrates.
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Theorem 2 Let u{ be an interpretation in 21 = <(/, t9f) which is a mod-
el of the abstraction principle. Let h be a mapping from U to ί/, such that
h{ω{) = t for an ω{ E $ι(Q) which is different from t. Let β2 be the interpre-
tation h o βx in <£/', t, f) for Uf = h(ex(e)) U {tj} c U. Then β2 is not a
model of the abstraction principle.

Proof: Let A be a closed abstract such that β\(A) = ω\. Then β{ f= Γ e(—A =
e) = e(X = e)~\ since, because of ω{ Ψ t (which implies β*(Γ— A"1) = / ) , it
holds that βx N Γ - ^ ( ( — , 4 = α) = (X = α))"1. However, it does not hold that

3 2 N Γ -£-((—A = α ) = (x = α)) π , since 02(Λ) = h{βx(A)) = h(ωx) = t (thus
β2(

r—An) s f). On the other hand we have 02 N Γe(—^4 = e) = e(X =
e) π , because from β{(

Γe(—A = e) π ) s fl^^ίx = e)"1) it follows that
Λ ( 0 1 ( Γ e ( ~ ^ = e ) π ) ) Ξ Λ ( ί ί 1 ( Γ e ( X = e)"1)), i.e., β2(

Γe(-A = e) π ) ^
£ J 2 ( r 6 ( X = e ) n ) .

A corresponding theorem can be proved for h(ω2) = / f o r ω2 E £J2(C),

Theorem 2 shows that it is not possible to create a 'new' interpretation in
21, which is a model of the abstraction principle and under which ΓA = T π is
valid for a closed abstract A, by simply adding a transformation of the domain
of 2ί to a given interpretation in 21 which is a model of the abstraction princi-
ple and under which A does not denote the True. Roughly speaking: Transfor-
mation of the domain is not sufficient for stipulating a closed abstract to be a
name for the True.

Frege's aim can, however, be understood in yet another way. Whereas
Theorem 2 dealt with the problem of reinterpreting closed abstracts A and B as
names of the truth-values t and/of a given model, one could try to interpret
A and B as names for the True and the False, independent of how truth-values
were specified in a previously given model. More precisely, let an interpretation
ύγ in 21 = (U, /,/>, which is a model of the abstraction principle, and let closed
abstracts A, B be given such that $i(A) Φ $\(B). Then an interpretation β2 in
33 = <£/', 3 i G 4 ) , βx(B)), for U' c 3i((B), is t o be construed in such a way that
β2(A) = 3i(A) and $2{B) = $\{B). In this case we would obtain as desired
β2 N ΓA = T π and ϋ2 |=

 rB = X~\ However, this purpose too cannot (in non-
trivial cases) be reached by simply adding to ϋ\ a transformation h from U to
#i(G), as can be shown analogously to Theorem 2:

Theorem 3 Let ϋι be an interpretation in 21 = (U, t9 f), wΛ/cΛ /s # model
of the abstraction principle. Let A, B be closed abstracts such that t Φ β1 (A)
and βι(A) Φ β{(B). Let h be a mapping from U to βx(Q) such that h{βx{A)) =
$ι(A). Let β2 be the interpretation h ° βx in 33 = <£/', MA), MB)) for £/' s
h(M®))V{MA),MB)}. Then β2 is not a model of the abstraction principle.

Proof: As in the proof of Theorem 2 we consider the closed abstracts
Γ e ( — A = e)"1 and Γe(X = e)n. By the abstraction principle and t Φ $\(A)
(which implies β*(r—An) = / ) , β1(

re(—A=e)'1) = 3i(Γe'(X = e)n) holds,
and therefore Λ(£J1(

Γ
€'(—A = e ) π ) ) = Λ(£l1(

Γe(X = e ) π ) ) , i.e. β2(
Γi(—A =

e)"1) Ξ 32(Γe(X = e)"1). However, it does not hold that β2 N Γ-^((—A = α) =
(X = α ) ) π , because 32*(^) Ξ MA) = A ^ M ) ) = 5^^), therefore 32*(Γ—^Ί) =
£Jj(yl), but 32*(X) = S^JΪ) # β^A).11
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A corresponding result can be proved if one assumes/^ $\{B) instead of
t Ψ ex(A) and h(3γ{B)) s βx(B) instead of h(βx(A)) = β{(A).

From a given model of the abstraction principle no model of the abstrac-
tion principle can be construed just by transforming its domain, such that two
given courses-of-values of the 'old' model are truth-values of the 'new' model
and are at the same time denoted by the 'old' abstracts.

The proofs of Theorems 2 and 3 show that the stipulation of closed
abstracts as names for the True and the False, together with the abstraction prin-
ciple, has the effect that closed abstracts which have the same denotation, can
lose their synonymity: Γ e(—A = e ) π and Γ e( i . = e) π have the same denota-
tion as long as A does not denote the True, but obtain different denotations if
A is defined to be a name of the True. If one wants to transform a model of
the abstraction principle into a new model of the abstraction principle where a
closed abstract which has not denoted the True in the 'old' model now denotes
the True, then one has to proceed in such a way that abstracts which are syn-
onymous under the old interpretation can receive different denotations under
the new interpretation. This is not possible by simply mapping the domain of
a structure. Such mappings can transform several objects into one (and so closed
abstracts with different denotations into synonymous ones), but not one object
into several (and so synonymous closed abstracts into closed abstracts with dif-
ferent denotations).

This does not mean that Frege's identifiability thesis is wrong but only that
his permutation argument cannot serve as a foundation for it. It can, however,
be shown in our framework that the identifiability thesis does not hold in full
generality, namely that not any two arbitrary closed abstracts A, B which denote
different courses-of-values can be defined to be names of the truth-values.
Define^!, Bu A2, B2 as follows: Ax = Γ e(T = e ) π , £ i Ξ re(A{ = e ) π , ^ 2

Ξ

Γ e(± = e)~\ B2 s re{-r-A2 = e) π ) Let βγ be an interpretation in 21 s <£/, /,/)
which is a model of the abstraction principle. If 3\(AX) Φ t, then e*(Ax) Ψ
βf(Bγ). But every model β2 of the abstraction principle which is a model of
ΓAX = T π is a model of ΓAX — Bx

n and thus not a model of ΓBX = J."1. So
A i and BΪ9 though interpreted differently by £Jly cannot denote the truth-values
under an β2 which is a model of the abstraction principle. If β\(Aι) = t9 then
ϋι(A2) Φ t, and one can argue analogously for A2 and B2.

This example shows that there are closed abstracts A and B that have dif-
ferent denotations in a model β{ of the abstraction principle but that receive the
same denotation in any model ϋ2 of the abstraction principle, in which A is
used as a name for the True (i.e., 32(A) = $2(T)). Thus they are not suitable
as candidates for names of truth-values, since the True must be different from
the False.

This leads to the question of which necessary and sufficient conditions
closed abstracts must satisfy, so that for each given model βx of the abstraction
principle there is a model β2 of the abstraction principle in which A and B are
names of truth-values, i.e., for which β2 \= ΓA = T π and β2 f= ΓB = ±n hold.
As has been shown, it is not sufficient that A and B have different denotations
under 3{ (i.e., 3\(A) Ψ $\(B)). It is not even obvious that this is a necessary
condition, for it seems that it cannot be precluded that β2(A) Φ 32(B) holds in
spite of β\(A) Ξ= βx(B). If one could give sufficient conditions, one could check
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whether Frege's own choice of 'e(—e)' and 'e(e = -r—&-(a = α))' for A and B
satisfy them. Concerning necessary conditions it would be interesting to see how
far they restrict the choice of A and B, and whether Frege would have had essen-
tially different possibilities in his choice of A and B. This could perhaps remove
the impression of conventionalism (which is rather far from Frege's other
thoughts) from the stipulation of the truth-values and names for truth-values
in Section 10 of the "Basic Laws".

An even more basic question is whether there is a model of the abstraction
principle at all and whether in such a model closed abstracts A and B can denote
the truth-values. This problem does not concern the conditions A and B have
to fulfill, with respect to a given model ΰ{ of the abstraction principle, in order
to become names for the truth-values in another model 02 of the abstraction
principle, but the initial construction of such a model. The inconsistency of
Frege's second-order system is no argument against the existence of a model
because we have confined ourselves to its first-order part including the abstrac-
tion principle. Since in this restricted system the elementhood-relation (which
is crucial for the derivation of the antinomy) is not definable, we have assumed
its consistency throughout this paper.12

NOTES

1. For the English translation, cf. [2], p. 48.

2. In English, cf. [2], p. 47, line 28-p. 48, line 3).

3. Also Dummett, whose sketch of the permutation argument ([1], p. 403 seq.) comes
close to the model-theoretic interpretation proposed below, seems to consider this
argument a correct foundation for the identiflability thesis.

4. For example, the incompleteness of the first-order part of Frege's formalism; cf.
Thiel [5].

5. This is overlooked by Resnik ([4], p. 209) who in his short presentation of the per-
mutation argument considers only courses-of-values but not truth-values to belong
to the domain of the model he assumes to be given.

6. In particular, our language contains no descriptive function or predicate symbols.
Thus no conflict arises between Frege's central claim that denotations of function
symbols are functions rather than objects and the model-theoretic way of assign-
ing objects to descriptive symbols.

7. It seems difficult to carry over our approach to the full second-order system of the
"Basic Laws" because then, in order to deal with second-order quantifiers, we would
need denotations of predicate or function symbols, something which is avoided here
(see note 6). Besides that, results would probably become trivial since, due to the
inconsistency of this second-order system, no model of the abstraction principle
would exist.

8. To be exact, Frege would have to write something like '€Φ(e)\ where 'Φ(e)' results
from 'Φ(€)' by throughout replacing ' *' by *~\

9. In English, see [2], p. 47).
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10. At the beginning of "Basic Laws", Section 10, Frege gives an argument which is in
some respect similar to the later one and whose assertion can be reformulated as
follows: Let 2ί and 93 be structures with the same truth-values (i.e., t% = t%, f% =
fsβ) and g be a one-one mapping from |H| onto |93| leaving the truth-values fixed
{i.e., g(t%) = t%, g(Λ) = /$). Let $ι be an interpretation in 5ί and β2 be the
interpretation g ° βx in 93. Then for each term D: $x \= D iff ύ2 1= D. This argument,
which can be proved similarly to Theorem 1 and which shows that the abstraction
principle does not completely determine a range of objects, differs from the per-
mutation argument in that |$l| and |53| may be different but that the truth-values
must remain fixed.

11. It is not even necessary to require in Theorem 3 that h(βγ{A)) = $ι(A). It suffices
to assume the existence of a closed abstract C such that h(β{(C)) s= βι(A) and
βι(C) Φ t, and to consider Γ e(—C = e)"1 instead of Γ e(—A = e)"1 in the proof.

12. T. Parsons has now established this consistency (see his contribution to this issue).
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