
Classical Lambek Logic 

Jrrg Hudelmaier and Peter Schroeder-Heister 

Wilhelm-Schickard-Institut, Universit~t Ttibingen 
Sand 13, 72076 Tfibingen, Germany 

e-mail: {joerg,psh} @ logik.informatik.uni-tuebingen.de 

Abstract;. We discuss different options for two-sided sequent systems of non- 
commutative linear logic and prove a restricted form of cut elimination. 

By "classical Lambek logic" we denote a sequent system with sequences of propositional 
formulas on the right and left side of the sequent sign, which has no structural rule except 
cut. We credit this logic to J. Lambek since he was the first to investigate Gentzen-systems 
without structural roles - -  originally in an intuitionistic setting, i.e. with not more than 
one formula in the succedent of a sequent, and motivated by linguistic considerations (see 
[4]). From the point of view of linear logic classical Lambek logic can be considered 
as pure (i.e., without exponentials) noncommutative (i.e., without the structural rules 
of exchange) classical (i.e., multiple succedent) linear propositional logic. This is the 
starting point of Abrusci's [ I] paper. Abrusci presents a sequent calculus together with 
a semantics in terms of phase spaces. By proving completeness he gives a semantic 
justification of the sequent system. Independently, under the heading "bilinear logic" 
Lambek himself has studied this system (see [6]) based on categorical considerations. 

The following investigation is purely proof-theoretic. In the first part we will attempt 
to give a proof-theoretic motivation of the sequent-systems Abrusci and Lambek pro- 
pose. This motivation is not obvious since the cut rule, the negation rules and the rules 
for the binary multiplicatives have to be formulated with restrictions (side conditions) 
which at first sight do not seem natural at all. We will consider different possible forms 
of these rules and show that essentially two systems, Jt (corresponding to the calculi 
proposed by Abrusci and Lambek) and B are possible, which by permutation of an- 
tecedents or succedents of sequents can be embedded into each other. It can be shown 
that the unrestricted rules one would expect from usual sequent systems make exchange 
derivable. So our criterion for the acceptance of a rule is that its side conditions preclude 
the derivation of exchange, but are as weak as possible in that respect. 

In the second part of this paper we deal with cut elimination. Abrusci has given an 
example which shows that even the restricted cut rule cannot be eliminated from the 
sequent system considered. We show that cut elimination holds if we confine ourselves 
to sequents in which in the scope of a negation sign no connective except the same 
negation occurs. 

Part I: Sequent Systems for Classical Lambek Logic 

We write sequents in the form Ft-A, where F and A stand for sequences of formulas. 
When no confusions can arise, we write these sequences without commas. Expressions 
like/'1,41 or A1ABA2 are then understood in the obvious way. 
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1. The invalidity of unrestricted cut 

In his thesis, Gentzen [2] formulates the cut rule in the following way (the differences 
being just notational): 

(CutG) 
Ft-A1A AF2FA 

F I-'2F-A1 A 

Here the cut formula A occurs in rightmost position in the left premiss and in leftmost 
position in the right premiss. This is no loss of generality since, due to the presence of 
exchange rules 

F~A1ABA2 QABF2~A 

FFA1BAA2 F1BAF2FA ' 

Gentzen can assume that an A occurring somewhere in the succedent of the left premiss 
can be permuted to the rightmost position, and an A in the antecedent of the right premiss 
can be permuted to the leftmost position. Since in classical Lambek logic we discard all 
structural rules, particularly exchange, this can no longer be assumed. In this logic, the 
natural unrestricted formulation of cut covering (Cuta) as a special case would be the 
following: 

(Cutv) 
FF'A1AA2 FIAFzFA 

I-'I I"I-'2F-A1AA 2 

However, it turns out that this formulation is too strong. Firstly it violates the principle 
that two consecutive cuts in a derivation should be permutable 1 . Although the following 
derivations result from each other only by permuting cuts, their end sequents differ from 
each other with respect to the order of B1 and B2 - -  in the absence of exchange rules a 
crucial difference: 

F]--A2A1 AIBI[-A1 FF-A2A1 A2B2F-A2 

UB1 }--AzA1 A2B2F A2 F B2I-A2A1 A1 B1 F A1 

FBIB2["A2A1 FB2B1]-A2A 1 

Secondly, (Cutv) makes certain rules of exchange derivable, if negation is available. 
To show that, we need not discuss the precise form of negation rules in classical Lambek 
logic here but just assume that at least one of the following four pairs of negation axioms 
is available: 

(N1) I--A-..,A A~AF (N3) F--,AA A--,AF 

(N2) ~-A--,A .-,AAF- (N4) F---,AA --,AAI- . 

If (N1) holds, then with unrestricted cut we obtain the following derivations: 

We cannot discuss this principle here but mention only that it has proved quite useful, e.g. in 
proofs of cut elimination (see Girard's proof in [3, p. 109]) and as an equality law in a categorical 
setting of sequent systems (see Lambek [5]). 
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SB~B ABFP'4 FSABA B~BS 
AFPA~B B~BS SB~B F~BSAA 

BAF~'4 F~BA'4 , 

which yield forms of exchange in the antecedent and in the succedent. Similar derivations 
can be given for any other pair of negation axioms (N2), (N3) or (N4). 

2. Possible formulations of the cut rule 

Both Abrusci [1, p. 1414] and Lambek [6, p. 220] have proposed the following restricted 
cut rule: 

F~A1AA2 F1AF2F'A provided A2F1 or A l E  2 
(Cut)A 

ff'l/"/-'2~- A 1A'42 or A 1A 2 or/"1/"2 empty. 

This means that the cut rule splits up into the following four unrestricted rules: 

F~-A1A AFz~-A FF-A F1AF2~-A 
(Cut.1)A FF2~_A1A (Cut.3) F1FF2I--A 

F[-AA2 F1A~-A F}'AtAA 2 AI-A 
(Cut'2)A F1F~-AA2 (Cut.4) FF-A1AA2 

The first rule is Gentzen's rule (Cutt), the second one a dualized version of it with the cut 
formula A standing in the opposite outermost positions. Rule three is just an adaptation 
of the unproblematic intuitionistic (single-succedent) cut rule to the classical case, and 
rule four is its dual with right and left sides interchanged. Since we would always expect 
the last two rules to hold, the crucial cases are the first two. In the following they will 
also be called the "critical" as opposed to the "uncritical" cases of cut. We call the cut 
rule with these four subcases "(Cut)A" to distinguish it from another possible cut rule 
"(Cut)t3" to be discussed later on. 

To justify (Cut)A, we show that the restrictions on cut are strong enough to prevent the 
deficiencies of unrestricted cut, and that weaker restrictions would again have undesired 
consequences. 

Consecutive applications of (Cut) A are permutable: Consider derivations of the 
following kind, where we use/-'[A] or F[A, B] to express that the formula A or the 
formulas A and B occur at certain places in the sequence of formulas F (A and B not 
necessarily next to each other): 

FinAl[A, B] F2[A]I-A 2 FII-AI[A, B] F3[B]~-A 3 
Fz[F1]~-AI[A2, B] /-'3[B]1--'43 Fa[F1]~AI[A, , 4 3 ]  ff2[A]l-,42 

/-~3 [/"2[/-'11]~-,41 [,42, ,43] /-'2[ff'3[/"11]~-,41 [A2, A3] 

If the restrictions of (Cut) A are met in all four cuts in the two derivations, then, by 
checking cases, it is easy to see that F3[F2[F1]] is the same as F2[F3[F1]]. 

Only two pairs of negtion axioms are compatible with (Cut)A: If we combine (Cut)A 
with (N1) or (N4), we obtain examples of exchange such as the following: 
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~-B-,B FABt-  [--~AA ABF[- 
FA[--,B B-,B~- BFt--,A "~AA[- 

BFA~- Bf'AI- 

With (N2) or (N3) no such examples can be constructed. (This follows from Corollary 9 
proved at the end of this paper.) 

The provisos for (Cut) A cannot be weakened: If we allow for less sequences of side 
formulas to be empty, we can again derive exchange. For instance, if we permit AzF1 to 
be nonempty, then with any pair of negation axioms we can derive a form of exchange. 
As an example we consider (N3): 

I---,BB ABF2~-A 

AF2~---,BA B--,B~- 

BAF2b-A 

So the restrictions of (Cut)A are optimal in a certain sense. 

Another version of cut: There are other possible restrictions of cut which cannot be 
compared directly with (CUt)A. Such restrictions lead to (Cut)B: 

F~-A1AAz F1AF2t-A provided A2F 2 or A1F1 
(Cut)t3 

FI F F2~-A1AA2 or A1A2 or Fi F2 empty. 

Decomposed into single rules (Cut)t~ contains 

Ft-A1A FIAFA FF-AAz AF2~-A 
(Cut. 1) B (Cut. 2) t3 

F1FF A1A F F21-A A 2 

as well as (Cut.3) and (Cut.4), which are the same in the .A- and B-systems. 
Whereas in the critical cases of (Cut)A, A occurs in opposite outermost positions 

(rightmost in succedent of left premiss/leftmost in antecedent of right premiss, or leftmost 
in succedent of left premiss/rightmost in antecedent of right premiss), in (Cut)B is occurs 
in parallel outermost positions (rightmost/rightmost or leftmost/leftmost). 

With (Cut)B the negation axioms (N1) and (N4) are compatible, whereas with (N2) 
and (N3) examples of exchange can be derived. 

Further candidates of a cut rule which might be generated by changing the critical 
cases in other ways (but, of course, by keeping (Cut.3) and (Cut.4)) can be excluded 
since they are incompatible with any pair of negation axioms. 

We conclude that there are essentially two alternative versions of cut for classical 
Lambek logic: (Cut)A and (Cut)m the first one being compatible with negation axioms 
(N2) and (N3), and the second one with negation axioms (N1) and (N4). 

3. Negation rules 

As is well known, in classical (multiple sequent) systems implication and negation are 
interdefinable (in the presence of certain other connectives). We follow Abrusci [1] 
in choosing negation as a primitive operation. Lambek [6] uses implication instead. 
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Corresponding to the two acceptable versions of cut - -  (Cut).a and (Cut)t~ - -  there are 
two possible sets of negation rules. We start with system .4. 

As we have seen, (Cut).a is compatible with each pair of negation axioms (N2) and 
(N3). Obviously we cannot have both pairs with the same negation, because otherwise 
we would obtain the incompatible pairs of negations (N1) and (N4) as well by taking 
one axiom from each of (N2) and (N3). This means that we have to use two different 
negations in order to use both (N2) and (N3). Each one would restrict the most general 
pair of negation rules 

F1AFz1-A1A2 F1F21-A1AA2 

FII-'21--AI~AA 2 FI~AF2I--A1A2 

in a different way. 
In view of the previous considerations and examples concerning the derivability 

of exchange, it is clear that both A and --,A must occur in outermost positions of the 
antecedents or succedents. For the two axioms of (N2) to be the conclusions of negation 
rules, there are two choices of right and left introduction rules: 

FA1-A F1-AA AF1-A F1-AA 
(1--~)IF1-A_~A (-%-)1_~AF1----- ~ (1--OZF1-A._,A (~1-)2_,AF1----- ~ �9 

Together with the initial axiom A1-A, each of (1--,)~ and (1--')2 generates 1-A-~A, and 
each of (-'1-)1 and (7-,I-)2 generates ~AA1-. Conversely, the rules (1-7-,)1 and (7-,1-)1 
are derivable from (Cut)A together with 1-A-~A and -,AA1-. This means that (1-')1 
and (-'1-)1 are always available, even if one chooses (1--")1/("1-)2 or (1-~)2/(~1-)1 or 
(1---')2/("1-)2 as a pair of negation rules. Actually, any of the three latter choices generates 
a form of exchange, as the following example with (-"1-)2 shows: 

F1-AAB 
1-B--,B --,BF1-AA 

F1-BAA 

Therefore, in combination with (Cut)A, the pair (1-"~)1/("~]")1 represents appropriate 
negation rules corresponding to (N2). 

Similarly, assuming the following rules: 

A F1- A F1- A A F A1- A F1- A A 
(1-"n)3 F1---~AA (~1-)3 F---,A1-A (1-"04 F1---,AA ('~1-)4 F--~A1-A 

we can justify the pair (1-7-,)3/(7-,1-)3 as corresponding to (N3). 
Adopting the notation l(_) for the negation corresponding to (N2) and (-)• for the 

negation corresponding to (N3) we obtain the following negation rules in the system 
based on (Cut)A: 

AF1-A • F1-AA FA1-A . 1- F1-AA 
(1-(-)• ~ ((-) ).a ~ (1-'(-)).a r1-A'A ( % ) ) ' ~  ~ " 

These are exactly the negation rules proposed by Abrusci [1] 2. 

2 To avoid terminological confusions, we also follow Abrusci in the mixture of prefix and postfix 
notations, although two prefix negations would be easier to handle later on. 
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If we base our system on (Cut)t~, by analogous reasoning we obtain the following 
negation rules: 

i I-'At-A FFAA (t-.L(_))B AFt-A F F A A  
(t-(-))~ ~ ((-)-LI-)s A• ~ (-L(-)t-)B --fi-2--AF A 

4. Binary multiplicatives 

Rules for multiplicative conjunction (times, | and disjunction (par, 7 )  can be justi- 
fied by treating those connectives as structure connectives, i.e. connectives expressing 
the structural association of formulas. Considering | as a structure connective for the 
antecedent and ~g for the succedent, we arrive at the following rules: 

F~ A B F2 b- A F~ A | B F2 t- A 
( | ) ( | 

F1A | B F2 t- A Q A B F2 t- A 
Ft-A1ABA2 Ft-A1A~BA2 

(t-7) (TE) 
Ft -AIATBA2 Ft-A1ABA2 

The rules (| and (t-7) are sequent-style Left- and Right-introduction rules, respec- 
tively. (| and (TE) are kinds of elimination rules which do not fit into the sequent- 
calculus pattern. However, in the presence of the initial axiom At-A and the uncritical 
cases of cut, (| and (~gE) are interderivable with the axioms 

(| axiom) ABt-A | B (7  axiom) ATBt -AB , 

respectively. In the presence of (Cut)A, (| axiom) and (7  axiom) are interderivable 
with the rules 

FIt-AIA F2t-BA4 FIAt-A1 BF4t-z~2 
(t- | .1).a ( ~ k  l ).a 

FIF2t-A1A | BA4 QA~BF4t -AIAz  ' 

respectively. Both rules are sequent-style rules in the genuine sense. The rule (t- |  1).4 
is the Right-introduction rule for | proposed by Lambek [6, p. 219]. To these rules we 
add the following rules, which in the presence of (Cut)~t do not add any power (they are 
easily derivable from (| axiom) and (7  axiom)), but are necessary for cut elimination 
(see Section 1 of Part II): 

t-A1A F2t-A3 BA4 
(t- | .2).4 F2t-A3AI A | Bz~4 (~2k2)A 

FIt-A1AA 2 t-Bz~ 4 
(t- | .3).a (7K3)A 

r l t -AlA | BA4z~2 

FIAt- F3BF4t-A2 
F31] A ~ B F4t- A2 

I"IAF2t-A1 BF4t- 
F1A T B F4 F2 t- A1 

Thus we obtain the following concise form of the (t-| and (Tt-) rules in the system 
based on (Cut)A: 

FIt-A1AA2 F2t-A3 B A4 
(t-@).A FIF2t-A3A1A @ Bz~4A2 (Tt-)A 

provided A2A 3 or AZF 1 
or A3F2 empty 

F1AFzt- A1 F3BF4t-A2 
F3 FI A T B F4 F2 t- z% A 2 

provided F2F3 or F2A1 
or F3A2 empty. 
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The rules (| and ([-~g) are independent of the form of cut. The rules for | and :~ 
correspond to those proposed by Abrusci [1]. 

In the system based on (Cut)13, we argue analogously, (~-| and (~[-)13 now being 
the equivalents of (| axiom) and (~  axiom) in the presence of (Cut)13 rather than (Cut).4. 
We obtain the following rules: 

/"I[-A1AA2 I'2[-A3 BA 4 
([-| /-,1/-,2[-A1A3A | BA2A 4 

prov ided  A 1 A 4 or A4/-' 2 
or A 1 F1 empty 

F1A/-'2[-A 1 F3BF4[-A2 
(~[-)13 F,l F,3 A ~ B F,2/-,4 [- A 1A 2 

provided/'1 F4 or I'4A 2 
or F1 A 1 empty. 

The rules ([-| and (~[-) are the same in systems .4 and B. Again, in the provisos 
the first disjunct is the crucial one - -  the others are added only for the purpose of cut 
elimination. 

The remaining connectives: constants and binary additives are unproblematic since 
they are not structure-sensitive. The formulation of their rules is obvious and independent 
of whether (Cut).4 or (Cut)13 is chosen as the starting point (see Table 1). 

The following result shows that the two basic systems .4 and B for classical Lambek 
logic, which we have motivated, can easily be translated into each other. 

Let F be the reversal of F,  i.e., if F is AI . . .  An, then F is A , . . .  A1. Let the "left 
side reversal" and "right side reversal" of a rule 

FI[-A1 F2[- A2 

/-'3 [- A3 

be the rules 

/-'I~A1 /-'2[-A2 /-'I[-A1 /"2[-A2 

/'r F3[-A3 

respectively, and similarly for one-premiss rules. (Provisos are not affected by this 
reversal, since they deal only with lists of formulas being empty or not.) Let ([-~).4 
be the rule obtained from (t-| by replacing A | B with B | A in the conclusion, and 
analogously for all | and ~-rules in A and B. For example, ([-z~) and ([-~)13 are 

F[-A1ABA 2 Fll--A1AA2 /-'21--- A3 B A4 

1-'[-A1B~AA2 F1, F2[-A1A3B | AA2A4 ' 

respectively (([-~)13 with the same proviso as ([-| For rules ~ and 7?/the notation 

means that, if an instance of ~ is given, then by forming its left side reversal we obtain 
an instance of ~ ' ,  and vice versa. Analogously, 

7~ <R> 7T 

expresses that by forming the right side reversal of an instance of ~ we obtain an instance 
of ~ ' ,  and vice versa. Then by checking rules we easily prove the following 1emma. 
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Table 1' Overview of systems A and/3. 

(Cut) A 
FI- AIAA2 F1AF2l-A 

FI F F2 I- A1A A 2 
provided A2F1 or A 1 F  2 

or AIA2 or F1F2 empty 

(Cut)~ 
FI-AIAA2 F1AF2l-A 

FI F F2I- A1AA2 
provided A2F 2 or AIF 1 
or AIA2 or F1F2 empty 

AFl- A Fl- AA 
(l-(-)• FI-A• ((-)• FA• 

F Al- A Fl- AA 
(l-• ~ (• • 

FAl-A Fl-AA 
(l-(-)• FI-A_t.A ((-)• A_LFI-A 

AFl-A Fl-AA 
(l-• ~ (~-)l-)~ -Fj_AI-A 

Fll-A1AA2 /'2l-A3 B A4 
(l-| I-,II.2I-A3A1A | BA4A2 (l-| 

provided AzA3 or AzF1 
or A3F2 empty 

f'll-A1AA2 I'2I-A3BA4 
F1F2I-A1A3A | BA2A4 

provided At A4 or A4F2 
or A I FI empty 

provided 1"21"3 or FzA1 
or F3A2 empty 

Q A ~ l - A 1  ~ B ~ l - A 2  
FI F3 A ~3 B F2 F4 I- A1A 2 

provided/-'1 U4 or F4A2 
or F1A1 empty 

Axioms and rules common to .A and/3 

Initial axiom: Al-A 

(l-l) l-1 (I-T) Fl-A~TA2 (01-) Ol- (IF-) F~_LF2I-A 

F l- A1A 2 F1F2 l- A 
(l-O) (IF-) 

FI- AIOA2 Fl lFzl- A 

Fl- A1AB A2 F~ AB Fzl- A 
(l- ~ ) ( | ) 

Fl -AaA~BA2 F1A | BFzl-A 

FI-A1AA2 1-'I-A~BA2 QAF2l-A F1BF2l-A O-&) (&~-) 
Fl- A1A&B A2 F1A&B F2l- A F1A&B F2l- A 

Fl-A1AA2 Fl-A1BA2 
(l-@) l"l-A1A ~ BA2 Fl-AaA ~ BA2 

( $l- ) 
~ A ~ l - A  Q B ~ A  

F1A ~ B F2l- A 

System ..4 corresponds to Abrusci's [1] calculus PNCL, extended with 0 and • 
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Lemma 1. For the rules of the systems .A and 13 we have the following: 

(Cut).4 < L > (Cut)t~ (Cut)A < R > (Cut)l• 

0-(_)• <L> (k-(_)• 0_(_)• <R> (F_~(_))t~ 

((_)• <L> ((-)• ((_)• <R> (_t(_)t_)t ~ 

0__• <L> (F_~(_))t~ 0_• 4 <R> 0_(_)• ~ 

(• <L> (• (~(-)f-).4 <R> ((_)• 

0- |  < L > (t_~)t 3 (F_| < R > (F-| 

(| a <L> (~f-)t3 (| t <R> (| 

0-~)A <L> (}'-| (F_~)A <R> 0-~)B 

(~t_). 4 <L> (| ~ (~-).a <R> (~t_)t ~ 

(~t_)~ t <L> (~t_)t ~ (~F_)~ t <R> (~t_)t ~ 

O-~)A <L.> (t-~)~ (t-~).~ <R> (F_~3) B 

(~-).4 <L> (~-)t~ (~t-)A <R> (~f_)~ 
L> 

for any other rule ~ .  

From that we obtain the following embedding between systems. 

Theorem2. Let F' be obtained from F by recursively replacing in every formula of 
F every subformula of the form A | B with B | A. Let F" be obtained from 1-" by 
recursively replacing in every formula of 1" every subformula of the form A ~g B with 
B~A,  and by interchanging (-)• and ~-). Then the following holds: 

(1) 1"t-AA iff1"q-BA' (2) Ft-t3A iff F"~AA" 

Obviously, if 1"+ is (F ')" ,  then we have as a corollary: 

Ft-AA iff F+I-AA + Ft-BA iff F+k-13A + 

Theorem 2 justifies that we restrict ourselves to system .4. 

Part  II: Cut  e l iminat ion  

Since we can rely on system ,4, in the notation of rules we will skip the index ~4. 

1. Cut elimination for positive logic 

For the system without negation, the cut rule can be eliminated. We just sketch the essen- 
tial points, focussing on the connective | The main reductions ("logical reductions"), 
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which take place when the cut formula of a topmost cut is introduced into both premisses 
of  the cut in the last step, are obvious. For example, 

FII-A1A Fzt--BA4 ABt-A 
F1Fzl--A1A @ BA4 A | BI--A 

is reduced to 

F1F2~-A1A A 4 

F~F-A1A AB~-A 
/ '2f-B A4 F1BF-A1A 

/'1/-'2['- A 1 A Z~4 

and similarly for all other cases of  main reductions. For the permutative reductions, 
by means of which a topmost cut and a logical inference are interchanged, it must be 
made sure that the permutations are compatible with the provisos of (~ |  and (Cut). 
For example, 

~A1A CFz~BA2 (I- | 
/-'II-A3C CF21-A1A | BA2 (Cut, l) 

F1/'21-A3AI A | Bz~2 

is reduced to 

FII-A3C CFzt-BAz (Cut.l) 

I-A1A F1 Fzl--A3BA2 (t- | .2) 

FIFzt-A3AIA | B,~2 

The application of (t- @ .2) in the second derivation is not at the same time one of 
(t- |  1). This shows that it is essential to have (F- | .2) included in (t-Q) in addition to 
(~- |  1), although it can be derived from O- | �9 1) by using cut. 

2. The failure of  cut elimination in the full system 

For atomic A, the sequent (Z• is derivable with, but not without cut: 

ZA~-• 
Ab-A •177 zAf- 

F-A'• •177 (Cut) ? (Non-Cut) 

t-A, (ZZA)Z ~-A, (Z•177 

( •177 )iXt-A ( •177 )ii f-  A 

since there is no inference apart from cut which can generate f-A, (ZIA)• 

3 This example is due to Abrusci [1, p. 1449f.]. It is strange that Abrusci does not read it as a 
decisive proof of the non-admissibility of cut but just of the fact that cut is not eliminable "by 
the usual cut elimination procedures". Lambek [6] erroneously claims that cut is el• 
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The reason for this failure of cut elimination in the full system is that the negation 
rules prevent appropriate permutative reductions. For example, in the derivation 

ABI'2f-A2 0_(_)• 

FI~-A1B BF2t-A• (Cut) 

/-'I F21- A 1A• 

(Cut) cannot be moved upwards and interchanged with 0-(-)• since 1"1~-A1B and 
ABF2~-A2 are not suitable as premisses of (Cut): According to the provisos, the A in 
front of B blocks the cut with B. Obviously, this problem is due to formulas changing 
sides, which is inherent in the negation rules. 

It is interesting that for a Tait-style one-sided sequent calculus, into which ,4 can be 
translated using cut, cut elimination can be proved (see [1, 7]). This shows that a one- 
sided system is not always just an economic variant (with the number of inference rules 
being halved) of the corresponding two-sided system, as often claimed in the literature, 
but may behave differently. 

The following counterexample to the admissibility of cut in .A shows that nested 
negations or the usage of two different negations are not essential. Consider the following 
derivation, with A, B, C, D, E, F, G being atomic: 

A~A Bt-B B~-B G~-G 
A@Bt-A, B CI-C F~-F B, GI-B | G 
(A~dB)~C~A, B, C D~D EI--E 
((A~B)~dC)~dDI-A, B, C, D 

( (A ~ B)~C)~ Dt--A, B, C~d D 

( ( A ~d B)~d C)~ D, ( C~d D)• B 

F, B, GJ-F | (B | G) 
E, F, B, G~E | (F | (B | G)) 

E | F, B, G~E| (F | (B | G)) 

B, GI-(E | F) • E | (F | (B | G)) 

( (A~B)~C)~D,  (C~D) • GJ-A, (E | F) • E | (F | (B | G)) 

To show that there is no cut-free derivation of the end sequent, we use the following 
necessary condition for a sequent Ft-A to be derivable without cut: Any atomic formula 
occurring as a subformula in FF-A has to occur at least twice. This is due to contraction 
rules being absent. 

If in a cut-free derivation of ((A@ B)~ C)~ D, (C@ D) • Gt-A, (E| F) • E| (F| 
(B | G)) the rule 0-|  1) were applied in the last step, then the right premiss of this appli- 
cation would be F ~  F |  (B | G), with F as some part of ((A~ B)~ C):~ D, (C~  D) • G. 
Thus F would occur only once. If (F- | .2) were applied in the last step, then the left 
premiss of this application would be either I-A, (E | F) • E or I-(E | F) • E or F-E, 
so either E or F would occur only once. An application of (t- | .3) would be one of 
(~ |  1) at the same time. For possible applications of ( ~ - )  one argues analogously. 
Besides (~| and (@F-) no other rule can have been applied in the last step. 

The last example also shows that without cut the associativity of | and ~ is only 
admissible, but not derivable. For example, if the rule 

1-'l--A1 (A | B) | CA2 

FI-A1A | (B | C)A2 
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were derivable without cut, then the end sequent of the above example derivation could 
be obtained from the sequent ( A ~g B ) ~ ( C ~ D ) , ( C ~ D) • , G F A , ( E | F) • ( E @ F) @ 
(B | G), which can be derived without cut using (R | .2) and (~21-.3). That associativity 
is admissible follows from the cut elimination result for the positive system and the 
derivability without cut of A | (B | C)F(A | B) | C. 

However, for the counterexamples to work it is essential that in the scope of a negation 
sign some other connective occurs, as will be demonstrated in the next section. 

3. Restricted cut elimination 

We show that cut is eliminable if we restrict ourselves to derivations of simple sequents. 
A sequent FF-A is called simple if it consists of simple formulas only. A formula is 
called simple if in the scope of a negation no logical sign except the same negation is 
allowed to occur. In other words, if A • is a subformula of a simple formula, then A is 
atomic or of the form B •177 for atomic B, and similarly for ~ .  

Our proof proceeds as follows: We define a system ,4* which is an extension of ,4. 
For A* we can prove cut elimination, based on certain permutability features of negation 
rules. Cut-free derivations of simple sequents in ,4* are cut-free derivations in .4. 

For certain negated formulas C we define C* as follows: 

(1•  * = o ( q ) *  = o 

(o•  * = 1 r  = 1 
(T-L) * = l (-LT)* = l 

( j _ a ) ,  = T (• = T 

( (•177 * = A ( • 1 7 7  * ---- A 

((A | B)•  * = B• • (• | B))* = •177 
((A~dB)'C) * = B • | A z (• * = • |177 

( (A&B)A-)  * = A • @ B • (•  = • ~•  

( (A ~ B)•  * = AA-&B • (• ~ B))* = J-A&• . 

For formulas C of a different form, C* is not defined. In particular, (A• * for atomic A 
and (A•177 * are not defined. 

For formulas A the degree deg*(A) is defined as follows: 
Let w(A • be the number of occurrences of logical signs different from (_)z in A and 
w (1.4) the number of occurrences of logical signs different from a(_) in A. (For example, 
if A and B are atomic, (~(• | Bx• z• is 5 and -t((~((• | Bz• • is 6.) 
Then 

deg*(A) := 0 if A is atomic 
deg*(T) = deg*(_L) = deg*(1) = deg*(O) := 1 
deg*(AoB) := max(deg*(A), deg*(A)) + 1 for binary connectives o 
deg*(A-L) := deg*(A) + 1 + w(A z)  
deg*(• := deg*(A) 4- 1 + w(-LA) 

It is easy to see that deg*(A*) < deg*(A) for any formula A, for which A* is defined. 
In the following the notation A x'''• which expresses that a sequence of negations 

(_)z is applied to A, will be understood as including the empty sequence, in which case 
A z' ' 'z is A itself, and analogously for •177 
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The system .4* is obtained from the system .4 by adding the following rules: 

F1- A I ( A *)•177 A2 
(1-*) F1- A1A•177 A2 

Fl ( A *)• F21- A 

('1-) F1A • . . • F21- A 

F1- AI•177 

F1- AlX..'• 
Fl• A *) Fz1- A 

r'l"'ar21- A 

and by restricting the negation rules in such a way that the formula introduced must 
always be simple: 

A •177 F1- A 
(1-(-)• F1-(A•177 )• A 

F•177 A 
(1-%))0 r1-za•177177 

F1- AA  •177 
((-)• F(AX...x)• 

F1- •177 
(%)1-)o x( •177 ) r1-  z a 

A atomic. 

Note that in the .-rules, (A*) •177 is uniquely determined by A •177 and • by 
z'"• since A is the maximal subformula of A •177 or •177 respectively, for which A* 
is defined. 

We first show that .4* is an extension of .4. 

Lemma3. F~- a A implies F1- a, A . 

Proof We have to show that the unrestricted negation rules are admissible in .4*. Due to 
the presence of cut it suffices to show that the unrestricted negation axioms are derivable 
in .4": 

1- A • A A,• 1- A,• • A1- . 

We use induction on deg*(A) and prove the derivability of all axioms simultaneously. 
(i) If A is atomic, we use the restricted negation rules available in .4*. 
(ii) If A is 1, 0, T or _L, we construct derivations like the following ones: 

1-1 (1-0) 01- (11-) 

1-1 • 1 • 11- 

(iii) If A has the form B | C, we obtain the following derivation by using the induction 
hypothesis for B and C: 

1-B • B 1-C • C (1- | .2) 

1-C • B • B | C (1-~g) 

1- C-I- Zg B • B | C (1-.) 

1-(B | C) • B | C 

We proceed analogously for the other binary connectives and the remaining three nega- 
tion axioms. 
(iv) If A has the form • we obtain 1-A • A by using the induction hypothesis for B: 
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F B , • B (~-, ) 

~-(•177177 

In order to obtain FA,IA, we write • as • in such a way that C does not 
start with ~-). If C is atomic, we obtain F•177177 by the restricted negation rules 
available in .4*. Otherwise (XC)* is defined. Thus by induction hypothesis we have 
k•177177 from which by twofold application of (F.)  we obtain 
F•177177 which is the same as F•177177 
For the two negation axioms for the succedent we argue in exactly the same way. 
(v) If A has the form B • we argue as in (iv), with (-)• and 1(_) interchanged. [] 

In order to show that `4* admits cut elimination, we prove the following: 

Lemma 4. Any cut-free derviation in `4* can be transformed into a cut-free derivation 
in ,4* of the same sequent such that the following holds: Above an application of a (-)• 
rule only initial axioms and applications of (-)• occur. Correspondingly, above 
an application of a ~(-)-rule only initial axioms and applications of • occur. 

Proof  We show that applications of negation rules can be permuted upwards in cut-free 
derivations in `4*. We consider (F(-)• as an example. Suppose in 

AFFA 

(F(-)• FFA•  
where A has the form B •177 for atomic B 

• 
the premiss A F F A has not been derived by means of a (-) -rule. Then a formula different 
from A has been introduced in the last step. We proceed according to the pattern of the 
following two examples: 

A F B F A  (F&(-)) 

A F F A  • (F(_)• 
FFA•177 is reduced to 

A F B F A  (F(_)• 
FBFA•  (F• 
FRA•177 

AFaBCF2FA AFIBCF2FA (F(_)• 
AFIB | CF2FA (| (F(-) • FIBCF2FAZA (| 

1"1B | CF2DA• is reduced to 1-'1B | CF2DA• . [] 

As an immediate consequence of this lemma we obtain the following: 

Lemma 5. Without loss of generality we may assume that in a cut-free derivation in 
`4* the premiss of an application of (F(-)• is either of the form CRC or of the form 
C, CIF, thatof((-)• either CFC orFC • C, thatof(F~(-))o either CFC or-tC, CF, 
and that of ( ~(-)F )o either CFC or FC,• C. 

Now we can prove our main result. 

Theorem 6. (Cut) is admissible in `4*. 



261 

Proof As in the proof for the positive fragment of-4 in Section II. 1, we just sketch the 
basic points. As a measure for the complexity of the cut formula A we use deg* (A). 
The additional main reductions for the (-)• l(_)_, and ,-rules are obvious. For example, 

F1A~A1 F2~-AA2 

FII--AI• • F2I--AA 2 F1A]-A 1 

F1F2[-A1 A2 is reduced to F1F2~-A1A2 

F1FAI(A*) •177 (A*) • '-• 

Flt-A1A •177 A•177 Flt-AI(A*) •177 (A*)•177 

/ 'i F2t-A1 A2 is reduced to E1 -F'2]-" A 1 A2 

The crucial cases are permutative reductions with negation rules involved. A case like 

BAF2F-A2 (F_(_)• 

F1F-A1A AF2}-B• A2 (Cut.l) 

/-'1F21-Z~ 1 B• A2 

which blocked cut elimination for -4, can now be treated as follows: Since we are consid- 
ering topmost applications of cut, the derivations above the cut are cut-free. Therefore, 
due to Lemma 5, we may assume that the premiss of (F-(-)• is either of the form Ct-C 
or of the form CC• -. Only the second form matches BAF2FAz, in which case we have 

BB• 
Fit-A1 B• B• • 

/"1 [-A1 B • , which is immediately reduced to F 1 I--A 1 B • [] 

In order to obtain a result for .4, we use the following lemma. 

Lemma 7. A cut-free derivation in .4* of a simple sequent FF A is a cut-free derivation 
of i'~-za in .4. 

Proof Since F S A  is simple, .-rules cannot be used in a cut-free derivation, since they 
always generate non-simple formulas. [] 

Taking these results together, we obtain the following theorem: 

Theorem 8. Any derivation in .4 of a simple sequent can be turned into a cut-free 
derivation in .4 of the same sequent. 

The following corollary is crucial for the justification of the inference rules of .4. 

Corollary 9. Exchange is not admissible in ..4. 

Proof  Otherwise we would obtain a cut-free derivation in .4 of A | B~-B | A for 
atomic A and B, which is not possible. 4 [] 

4 This corollary can also be obtained from Abrusci's [1] translation of.4 into a one-sided sequent 
calculus, for which he proves cut elimination. However, since Abmsci's translation only works 
in the presence of cut, Theorem 8 is not provable from his results. 
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Appendix 

It is instructive to see what happens in A* with the derivation in A of (•177177177 for which no 
cut-free derivation in .,4 exists (see Section II.2). In ,,4* there is the following cut-free derivation: 

Al-A 

I-A'• (I-.) 
l-A, (l J-A)• 

(•177 "l-A 

This is exactly what we arrive at when we perform the reductions sketched in the proofs of 
Theorem 6 and Lemma 4 starting from the derivation with cut in ,,4. 

For the second example of Section II.2 we obtain the following cut-free derivation in ,,4*: 

Al-A Bl-B 

A~BI--A, B Gl-G Cl-C 

A~B, GI-A, B | G C, C• DI--D 

(A~B)~C,  C • GI-A, B | G D, D• 

((A~B)~C):~D, D • C • GFA, B | G 

Fl-F ((A~B)~C):~D, D • | C • GI-A, B | G ( ,l- ) 
El-E F • Fl- ( (A~B)~C)~D,  (C~D)  • GFA, B | G 

E • El- ( ( A~ B)~C)~D,  (C~D) • GF-A, F -L, F | (B | G) 

( ( A ~ B ) ~ C ) ~ D ,  (C:~D) • GI-A, F • E 1, E | (F | (B | G)) 

( ( A ~ B ) ~ C ) ~ D ,  (C:~D) J-, Gl-n, F-L ~ E  -L, E | (F | (B | G)) (I-.) 

( ( A ~ B ) ~ C ) ~ D ,  (C~D) -L, GI-A, (E | F) • E | (F | (B | G)) 
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